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RADICALLY PRINCIPAL RINGS
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Abstract. Let A be a commutative ring. An ideal I of A is radically principal
if there exists a principal ideal J of A such that

√
I =

√
J . The ring A is

radically principal if every ideal of A is radically principal. In this article, we
study radically principal rings. We prove an analogue of the Cohen theorem,
precisely, a ring is radically principal if and only if every prime ideal is radically
principal. Also we characterize a zero-dimensional radically principal ring.
Finally we give a characterization of polynomial ring to be radically principal.

1. Introduction and preliminaries

A commutative ring A is said to have Noetherian spectrum if A satisfies the
ascending chain condition (ACC) on radical ideals. This is equivalent to the
condition that A satisfies the ACC on prime ideals and each ideal has only finitely
many prime ideals minimal over it. Remark that every Noetherian ring has
Noetherian spectrum and the converse is false; see [3]. Many authors studied
the property of a commutative ring satisfying the Noetherian spectrum property
([2, 5] and so on). Recall from [4] that, an ideal I of A is said radically of finite

type if
√
I =
√
J for some finitely generated subideal J of I. In [4], the authors

showed that A has Noetherian spectrum if and only if every ideal of A is radically
of finite type if and only if every prime ideal of A is radically of finite type. Also
Ohm and Pendleton [4] studied the Hilbert basis theorem for a commutative ring
satisfying the Noetherian spectrum condition. They showed that a commutative
ring A has Noetherian spectrum if and only if the polynomial ring A[X] has
Noetherian spectrum.
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Let A be a commutative ring. We say that an ideal I of A is radically principal
if there exists a principal ideal J of A such that

√
I =
√
J . We also define A to be

radically principal if each ideal I of A is radically principal. This is equivalent to
the condition that every open of SpecA is a principal affine open. Note that if A
is a radically principal ring, then A has Noetherian spectrum, and every principal
ideal ring is a radically principal ring. In this article, we study rings with this
property. We prove the Cohen-type theorem for radically principal property,
that is, a ring A is radically principal if and only if every prime ideal is radically
principal. Recall that, the avoidance prime theorem says that, if P ⊆ P1∪· · ·∪Pn,
where P, Pi are prime ideals, then P ⊆ Pi for some i, this property does not hold
for infinite set of ideals Pi. We characterize rings with avoidance property for
infinite set of prime ideals. Also we give a characterization of zero-dimensional
radically principal rings. Finally we study the radically principal property for the
polynomial ring A[X], and we show that the polynomial ring A[X] is radically
principal if and only if A is zero-dimensional and has finitely many prime ideals.

2. Radically principal ring

We start this section by introducing the following definition in order to give
some results about radically principal rings.

Definition 2.1. Let A be a commutative ring. An ideal I of A is radically
principal if the radical of I is a radical of a principal ideal, that is, if there is
a ∈ A such that

√
I =

√
(a). The ring A is radically principal if every ideal of A

is radically principal.

Remark 2.2. Let I be an ideal of A, and set U = SpecA \ V (I), where V (I)
the closed subset V (I) = {p ∈ SpecA/I ⊆ p}. Then I is radically principal if
and only if U is a principal affine open of SpecA. Indeed, I is radically principal
if and only if there exists a ∈ A such that

√
I =

√
(a), which is equivalent to

V (I) = V ((a)), that is U = SpecA\V ((a)) is a principal affine open. In particular
a ring A is radically principal if and only if every open of SpecA is a principal
affine open. Since every principal affine open is quasi-compact, it follows that
every radically principal ring has Noetherian spectrum.

Example 2.3. (1) Every principal ideal ring is radically principal.

(2) Let K be a filed, and set A =
K[X, Y ]

(X2, XY, Y 2)
= K[x, y], where x = X and

y = Y . Then A is a radically principal ring. Let P be a prime ideal of
A. Then x2 = y2 = 0 ∈ P , and hence x, y ∈ P , that is (x, y) ⊆ P . Since
(x, y) is a maximal ideal of A, P = (x, y). Thus the only prime ideal of A

is P = (x, y) =
√

(0). If I is an ideal of A, then either I = A =
√

(1) or

I ⊆ P , and in this case
√
I = P =

√
(0). This shows that A is radically

principal. Note that P = (x, y) is not a principal ideal, hence A is not a
principal ideal ring, but it is radically principal.

Proposition 2.4. Let A be a commutative ring. If I is a radically principal ideal
of A, then there is a ∈ I, such that I =

√
(a).
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Proof. If I is radically principal, then there is b ∈ A such that
√
I =

√
(b). Since

b ∈
√
I, there exists n ∈ N such that bn ∈ I, and hence

√
I =

√
(b) =

√
(bn) =√

a, where a = bn. �

Proposition 2.5. If I and J are radically principal ideals of A, then so is IJ
and I ∩ J .

Proof. Let a, b ∈ A such that
√
I =

√
(a) and

√
J =

√
(b). Since

√
IJ =√

I ∩ J =
√
I ∩
√
J =

√
(a) ∩

√
(b) =

√
(ab), it follows that IJ and I ∩ J are

radically principal ideals. �

Proposition 2.6. Let A be a radically principal ring. For every ideal I of A, it
follows that A/I is a radically principal ring.

Proof. Let J be an ideal of A containing I. Then J =
√

(a) for some a ∈ A, and

hence
√
J/I =

√
(a). it follows that A/I is radically principal. �

The following theorem gives the analogue of the Cohen-type theorem for radi-
cally principal rings.

Theorem 2.7. Let A be a commutative ring. Then A is radically principal if
and only if every prime ideal of A is radically principal.

Proof. There is nothing to show for the direct implication.
Assume that every prime ideal of A is a radically principal ideal. Set E =

{I/ I not radically principal ideal of A}. We show that E = ∅. By contradiction,
suppose that E is not empty. Now let I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · · be an increasing
chain of elements of E (each ideal of this chain is not radically principal). Set

I = ∪iIi. Clearly I is an ideal of A. If I is radically principal, then
√
I =

√
(f)

for some f ∈ A. Since f ∈
√
I, we have fN ∈ I, for some N ∈ N. Hence fN ∈ Ij

for some j. Thus f ∈
√
Ij, it follows that

√
Ij =

√
(f), which is a contradiction

by the fact that Ij is not radically principal. Now, In ⊆ I for all n ∈ N and
I ∈ E. By Zorn’s lemma, E has a maximal element say P . Let us next show that
P is a prime ideal. Let a, b ∈ A such that ab ∈ P , and assume that a, b 6∈ P . Set
Pa = P + (a) and Pb = P + (b). Since P is a maximal element of E, P ( Pa, and
P ( Pb, it follows that Pa and Pb are radically principal ideals. By Proposition
2.5, PaPb is radically principal, but

√
PaPb =

√
P , since PaPb ⊆ P and P 2 ⊆ PaPb.

This yields a contradiction. Now P is a prime ideal and not radically principal.
It follows that E = ∅, and every ideal of A is radically principal. �

Corollary 2.8. Let A be a radically principal ring. If S is a multiplicative subset
of A, then S−1A is a radically principal ring.

Proof. Let P be a prime ideal of S−1A. Then P = S−1p for some prime ideal of
A. Since

√
P = S−1p = S−1

√
I =
√
S−1I, where I is a principal ideal of A such

that p =
√
I, P is radically principal. By the previous theorem, S−1A is radically

principal. �

Remark 2.9. If A is radically principal, then Ap, where p ∈ Spec(A) (respectively
Af , where f ∈ A ) is a radically principal ring.
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Corollary 2.10. Let A1, . . . , Am be rings, and set A = A1 × · · · × Am. Then A
is radically principal if and only ifAi is radically principal for every i.

Proof. If A is a radically principal ring, then Ai =
A

Ii
, where Ii = A1 × · · · ×

Ai−1 × {0} × Ai+1 × · · · × Am, is a radically principal ring. Conversely, assume
that each Ai is a radically principal rings. Let q be a prime ideal of A. Then
there is a prime ideal pi of Ai for some i, such that p = A1 × · · · × pi × · · · ×Am.
Since Ai is a radically principal ring, there is ai ∈ pi such that pi =

√
(ai). It is

easy to see that p =
√

(a), where a = (1, . . . , ai, . . . , 1). �

Theorem 2.11. Let A be a commutative ring. The following statements are
equivalent:

(1) A is a radically principal ring.
(2) For every prime ideal P of A, we have P 6⊆ ∪P 6⊆QQ.

Proof. (1)⇒ (2): Let P be a prime ideal of A, and let a ∈ A such that P =
√

(a).
If Q is a prime ideal of A with P 6⊆ Q, then a 6∈ Q since P =

√
a 6⊆ Q. It follows

that a 6∈ ∪P 6⊆QQ. Hence P 6⊆ ∪P 6⊆QQ.
(2)⇒ (1): Let P be a prime ideal of A. Since P 6⊆ ∪P 6⊆QQ, there is a ∈ P such

that a 6∈ Q whenever P 6⊆ Q. Clearly
√
a ⊆ P . If Q is a prime ideal containing

a, then P ⊆ Q. Thus P ⊆ ∩a∈QQ =
√
a. It follows that P =

√
(a). By Theorem

2.7, A is radically principal. �

For a commutative ring A, it is well known that if P is a prime ideal such that
P ⊆ ∪i∈IPi, where Pi are prime ideals and I is finite, then P ⊆ Pi for some i ∈ I.
This result does not hold for an infinite set I. The following result characterizes
commutative rings with this property.

Corollary 2.12. Let A be a commutative ring. The following statements are
equivalent:

(1) A is a radically principal ring.
(2) A has the avoidance property, that is, if P ⊆ ∪i∈IPi, where P and Pi are

prime ideals, then P ⊆ Pi for some i ∈ I.

Proof. Immediate from the previous theorem. �

Corollary 2.13. Let A be a commutative ring. If A has finitely many prime
ideals, then A is a radically principal ring.

Proof. If A has a finitely many prime ideals, then the avoidance property hods.
By the previous result, it follows that A is radically principal. �

Remark 2.14. Let V be a valuation domain with finite Krull dimension, dimV =
n. Then V has finitely many prime ideals, so radically principal. This is an
example of radically principal ring with arbitrary finite Krull dimension.

It is well known that, if A a principal ideal ring, then dimA ≤ 1. The previous
example shows that, the krull dimension of a radically principal ring is arbitrary.
Indeed in the case of Noetherian rings, we have the following result.
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Proposition 2.15. Let A be a commutative ring. If A is radically principal and
Noetherian, then dimA ≤ 1.

Proof. Let P be a prime ideal of A. Then P =
√

(a) for some a ∈ A. It follows
that P is a minimal prime ideal over the principal ideal (a). Since A is Noetherian,
by Krull’s principal ideal theorem, the height of P is less than or equal to 1, so
dimA ≤ 1. �

3. Zero-dimensional radically principal ring

In this section, we study radically principal rings of small dimension.

Proposition 3.1. Let A be a zero-dimensional ring. Then A is radically principal
if and only if A has finitely many prime ideals.

Proof. Let A be a zero-dimensional radically principal ring. If A is a radically
principal ring, then it has a Noetherian spectrum, by [3, Theorem 1.6], A has
finitely many minimal prime ideals. Since A is a zero-dimensional ring, every
prime ideal of A is minimal. It follows that A has finitely many prime ideals. For
the converse, see Corollary 2.13. �

Theorem 3.2. Let A be a zero-dimensional ring. Then A is a radically principal
ring if and only if A is a product of a zero-dimensional local rings.

Proof. If A is a product of zero-dimensional local rings, then it is a radically
principal ring, since it is a product of a radically principal rings.

Conversely, assume that A is a radically principal ring, by the previous propo-
sition, A has a finitely many prime ideals, say p1, . . . , pr. For each 1 ≤ i ≤ r,
∩j 6=ipj 6⊆ pi (in fact, if ∩j 6=ipj ⊆ pi, then there exists j 6= i such that pj ⊆ pi, which
is not possible, since dimA = 0). Hence there is fi ∈ ∩j 6=ipj such that fi 6∈ pi,
that is, fi 6∈ pi and fi ∈ pj for j 6= i. For i 6= j, we have fifj ∈ p1 ∩ · · · ∩ pr.
Since p1 ∩ · · · ∩ pr =

√
0 the nilradical of A, we have that fifj is a nilpotent

element. Hence for i 6= j, there exists Nij ∈ N such that (fifj)
Nij = 0. Let

N = maxi 6=j Nij; then we have (fifj)
N = 0 whenever j 6= i. Now, set ai = fN

i .
Then ai ∈ pj if and only if i 6= j and aiaj = 0 whenever i 6= j. In particular,
there is no prime ideal of A containing all ai, it follows that (a1, . . . , ar) = A, so
1 = α1a1 + · · · + αrar, where αi ∈ A. Set ei = αiai; then eiej = 0 if i 6= j and
ei = ei(e1 + · · ·+ er) = e2i . It easy to see that ei ∈ pj for j 6= i and ei 6∈ pi (since
ei ∈ pi implies all ej are in pi hence 1 ∈ pi). Let ϕ : A → Ae1 × · · · × Aer be
the morphism defined by ϕ(a) = (a, . . . , a). Then ϕ is an isomorphism of rings.
For each i, Aei is a zero-dimensional local ring, by the fact that Aei = Api (pi is
the unique prime ideal of A that does not containing ei). This shows that A is a
product of a zero-dimensional local rings. �

4. The case of the polynomial ring A[X]

In this section, we characterize ? when the polynomial ring A[X] is radically
principal. We start this section by the case where the ring A is an a integral
domain.
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Proposition 4.1. Let A be an integral domain. The following statements are
equivalent:

(1) A[X] is a radically principal ring.
(2) A is a field.

Proof. If A is a field, then A[X] is a principal domain, which implies that is a
radically principal ring.

(1)⇒ (2). Assume that A[X] is a radically principal ring. Let a be a nonzero
element of A and let I be the ideal of A[X] generated by a and X. Since A[X] is

radically principal, there is f ∈ A[X] such that
√
I =

√
(f). Since a ∈ I ⊆

√
(f),

there is N ∈ N such that aN = gf , where g ∈ A[X]. Since A is an integral
domain, 0 = deg aN = deg f + deg g. It follows that f is a nonzero constant. On
the other hand, we have X ∈

√
(f), then there is m ∈ N such that Xm = hf ,

where h ∈ A[X]. Since f is constant, it follows that, 1 = αmf , where αm is
the coefficient of Xm in h. Hence f is an invertible element and so I = A[X],
this implies that there exist R, S ∈ A[X] such that 1 = aS + XR, in particular
1 = aS(0). Thus a is an invertible element. �

The following corollary is an immediate result from the previous proposition.
It states that, when A is an integral domain, there is equivalent between principal
and radically principal for polynomial rings.

Corollary 4.2. Let A be an integral domain. Then A[X] is radically principal if
and only if A[X] is a principal domain.

The following theorem gives a characterization for polynomial ring to be radi-
cally principal without integral domain hypothesis.

Theorem 4.3. Let A be a commutative ring. The following statements are equiv-
alent:

(1) A[X] is a radically principal ring.
(2) A is a zero-dimensional radically principal ring.
(3) A is a product of zero-dimensional local rings.

Proof. (1)⇒ (2) If A[X] is a radically principal ring, then A[X]/(X) is a radically
principal ring, so it follows that A is radically principal. Let p be a prime ideal of
A. Then (A/p)[X] = A[X]/p[X], it follows that (A/p)[X] is radically principal,
by the previous proposition, A/p is a field, so p is a maximal ideal of A. Thus A
is a zero-dimensional ring.

(3) ⇒ (1) If A is a zero-dimensional local ring, then A has a unique prime
ideal, say p, in particular, every element of p is nilpotent. Let Q be a prime ideal
of A[X]. Clearly Q ∩ A = p, hence p[X] ⊆ Q. Since A[X]/p[X] = (A/p)[X] is a
principal ideal domain, there is f ∈ Q such that Q/p[X] = (f). Since f ∈ Q, we
have

√
f ⊆ Q. Conversely, let g ∈ Q. Then there is R ∈ A[X] such that g = Rf ,

so it follows that g = Rf +S, where S ∈ p[X]. Since S ∈ p[X], S is nilpotent, in

particular S ∈
√

(f), thus g = Rf + S ∈
√

(f). It follows that Q =
√

(f). Now,
let A1, . . . , Ar be zero-dimensional local rings and let A = A1× · · · ×Ar. Clearly
A[X] = A1[X]× · · · × Ar[X]. Since for each 1 ≤ i ≤ r, Ai is a zero-dimensional
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local ring, Ai[X] is a radically principal ring, and hence A[X], as a product of a
radically principal rings, is a radically principal ring.

(2)⇔ (3) See Theorem 3.2. �

We close this section by the following corollary.

Corollary 4.4. Let n ≥ 1 and let X = An = Spec(A[X1, ..., Xn]) the affine space.
The following statements are equivalent:

(1) Every open of X is a principal affine open.
(2) n = 1 and A is a zero-dimensional radically principal ring.

Proof. Straightforward. �

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments on this manuscript.

References

1. D.D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994) 13–14.
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