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Abstract. A finite group G is called (l,m, n)-generated, if it is a quotient
group of the triangle group T (l,m, n) =

⟨
x, y, z|xl = ym = zn = xyz = 1

⟩
.

Moori posed the question of finding all the (p, q, r) triples, where p, q, and r
are prime numbers, such that a non-abelian finite simple group G is a (p, q, r)-
generated. In this paper, we establish all the (p, q, r)-generations of the alter-
nating group A11. The Groups, Algorithms and Programming and the Atlas
of finite group representations are used in our computations.

1. Introduction

Generations of finite groups by suitable subsets are of great interest and have
many applications to groups and their representations. For example, the com-
putations of the genus of simple groups can be reduced to the generations of the
relevant simple groups (see [34] for details). Also Di Martino, Pellegrini, and
Zalesski [26] established a useful connection between the generation of groups by
conjugates and the existence of elements representable by almost cyclic matrices.
Their motivation was to study irreducible projective representations of sporadic
simple groups. Recently more attention is given to the generation of finite groups
by conjugate elements. Ward, in his PhD thesis [32], considered a generation of a
simple group by conjugate involutions satisfying certain conditions. In this paper,
we are interested in the generation of the alternating group A11 by two elements
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of prime orders not necessarily distinct such that the product is an element of a
prime order.

A finite group G is said to be (l,m, n)-generated, if G = ⟨x, y⟩ , with o(x) =
l, o(y) = m and o(xy) = o(z) = n. Here [x] = lX, [y] = mY , and [z] =
nZ, where [x] is the conjugacy class of X in G containing elements of order
l. The same applies to [y] and [z]. In this, G is also a quotient group of the
triangular group T (l,m, n), and, by the definition of the triangular group, G
is also a (σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may
assume that l ≤ m ≤ n. In a series of papers [20–24, 27, 28], Moori and Ganief
established all possible (p, q, r)-generations, where p, q, and r are distinct primes,
of the sporadic groups J1, J2, J3, HS, McL, Co3, Co2, and F22. Ashrafi [3,
4] did the same for the sporadic simple groups He and HN. Also Darafsheh
and Ashrafi established in [14–17], the (p, q, r)-generations of the sporadic simple
groups Co1, Ru, O

′
N , and Ly. The motivation for this study is outlined in these

papers, and the reader is encouraged to consult these papers for background
material as well as basic computational techniques.

In this paper, we intend to establish all the (p, q, r)-generations of the alternat-
ing group A11. For more information on (p, q, r)-generations, the reader is referred
to [1, 2]. We follow the methods used in the papers [5–11]. Note that, in gen-
eral, if G is a (2, 2, n)-generated group, then G is a dihedral group and therefore
G is not simple. Also by [12], if G is a non-abelian (l,m, n)-generated group,
then either G ∼= A5 or 1

l
+ 1

m
+ 1

n
< 1. Thus for our purpose of establishing

the (p, q, r)-generations of G = A11, the only cases we need to consider are when
1
p
+ 1

q
+ 1

r
< 1. The result on the (p, q, r)-generations of A11 can be summarized

in the following theorem.

Theorem 1.1. With the notation being as in the Atlas [13], the alternating group
A11 is generated by all the triples (p, q, r), where p, q, and r are primes dividing
|A11|, except for the cases (p, q, r) ∈ {(2, 3, 7), (2X, 3Y, 11Z), (2A, 5B, 5B),
(2X, 5A, 5Y ), (2X, 5Y, 7A), (2X, 5A, 11Y ), (2A, 7A, 11X), (3V, 3W, 5X),
(3V, 3W, 7A), (3A, 3V, 11X), (3B, 3B, 11X), (3V, 5A, 5X), (3A, 5B, 5B),
(3X, 5Y, 7A), (3C, 5A, 7A), (3X, 5A, 11Y ), (3V, 7A, 7A), (3A, 7A, 11X),
(5A, 5A, 5X), (5A, 5X, 7A), (5A, 5A, 11X), (5A, 7A, 7A)} for all X,Y, Z ∈ {A,B}
and V,W ∈ {A,B,C}.

2. Preliminaries

Let G be a finite group and let C1, C2, . . . , Ck (not necessarily distinct) for
k ≥ 3 be conjugacy classes of G with g1, g2, . . . , gk being representatives for these
classes, respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by
∆G = ∆G(C1, C2, . . . , Ck) the number of distinct (k−1)-tuples (g1, g2, . . . , gk−1) ∈
C1 × C2 × · · · × Ck−1 such that g1g2 · · · gk−1 = gk. This number is known as
class algebra constant or structure constant. With Irr(G) = {χ1, χ2, . . . , χr}, the
number ∆G is easily calculated from the character table of G through the formula
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∆G(C1, C2, . . . , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

(χi(1G))k−2
.

Also for a fixed gk ∈ Ck, we denote by ∆∗
G(C1, C2, . . . , Ck) the number of distinct

(k − 1)-tuples (g1, g2, . . . , gk−1) satisfying

g1g2 · · · gk−1 = gk and G = ⟨g1, g2, . . . , gk−1⟩ .

Definition 2.1. If ∆∗
G(C1, C2, . . . , Ck) > 0, then the group G is said to be

(C1, C2, . . . , Ck)-generated.

Remark 2.2.A group G is (C1, C2, . . . , Ck)-generated if and only if ∆∗
G(C1, C2, . . . ,

Ck) ≥ 0.

Furthermore if H is any subgroup of G containing a fixed element hk ∈ Ck,
we let ΣH(C1, C2, . . . , Ck) be the total number of distinct tuples (h1, h2, . . . , hk−1)
such that

h1h2 · · ·hk−1 = hk and ⟨h1, h2, . . . , hk−1⟩ ≤ H.

The value of ΣH(C1, C2, . . . , Ck) can be obtained as a sum of the structure con-
stants ∆H(c1, c2, . . . , ck) of H-conjugacy classes c1, c2, . . . , ck such that ci ⊆ H∩Ci.

Theorem 2.3. Let G be a finite group and let H be a subgroup of G containing a
fixed element g such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of
conjugates of H containing g is χH(g), where χH(g) is the permutation character
of G with action on the conjugates of H. In particular

h(g,H) =
m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, . . . , xm are representatives of the NG(H)-conjugacy classes fused to
the G-class of g.

Proof. See [20] and [22, Theorem 2.1]. □

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2, . . . ,

Ck), namely, ∆∗
G(C1, C2, . . . , Ck), where

∆∗
G(C1, . . . , Ck) ≥ ∆G(C1, . . . , Ck)−

∑
h(gk, H)ΣH(C1, . . . , Ck),

where gk is a representative of the class Ck and the sum is taken over all the
representatives H of G-conjugacy classes of maximal subgroups of G containing
elements of all the classes C1, C2, . . . , Ck. Since we have all the maximal sub-
groups of the sporadic simple groups except for G = M the Monster group, it
is possible to build a small subroutine in GAP [25] to compute the values of
∆∗

G = ∆G(C1, C2, . . . , Ck) for any collection of conjugacy classes and an alternat-
ing simple group.

The following results are in some cases useful in establishing nongeneration for
finite groups.
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Lemma 2.4. Let G be a finite centerless group. If ∆∗
G(C1, C2, . . . , Ck) < |CG(gk)|,

gk ∈ Ck, then ∆∗
G(C1, C2, . . . , Ck) = 0, and therefore G is not (C1, C2, . . . , Ck)-

generated.
Proof. See [6, Lemma 2.7]. □
Theorem 2.5 (Ree [29]). Let G be a transitive permutation group generated by
permutations g1, g2, . . . , gs acting on a set of n elements such that g1g2 · · · gs = 1G.

If the generator gi has exactly ci cycles for 1 ≤ i ≤ s, then
s∑

i=1

ci ≤ (s− 2)n+ 2.

For the alternating group G = A11 and by the Atlas of finite group representa-
tions [33], we have G acting on 11 points, so that n = 11, and since our generation
is triangular, we have s = 3. Hence if G is (l,m, n)-generated, then

∑
ci ≤ 13.

Theorem 2.6 (Scott [30]). Let g1, g2, . . . , gs be elements generating a group G
with g1g2 · · · gs = 1G and let V be an irreducible module for G with dimV = n ≥ 2.
Let CV(gi) denote the fixed point space of ⟨gi⟩ on V and let di be the codimension

of CV(gi) in V. Then
s∑

i=1

di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible
module V and 1⟨gi⟩ being the trivial character of the cyclic group ⟨gi⟩ , the codi-
mension di of CV(gi) in V can be computed using the following formula (see [18]):

di = dim(V)− dim(CV(gi)) = dim(V)−
⟨
χ↓G⟨gi⟩,1⟨gi⟩

⟩
= χ(1G)−

1

| ⟨gi⟩ |

o(gi)−1∑
j=0

χ(gji ).

Theorem 2.7 ([6, Lemma 2.5]). Let G be a (2X, sY, tZ)-generated simple group;
then G is (sY, sY, (tZ)2)-generated.
Theorem 2.8 ([24, Theorem 1.2]). Let G be a finite group and let l,m, and n be
integers that are pairwise coprime. Then for any integer t coprime to n, we have

∆G(lx,mY, nZ) = ∆G(lX,mY, (nZ)t).

Moreover, G is (lX,mY, nZ)-generated if and only if G is (lX,mY, (nZ)t)-
generated.We see that (11A)−1 = 11B in A11. As an application of the above
theorem, the group A11 is (p, q, 11A)-generated if and only if it is (p, q, 11B)-
generated. Therefore, it is sufficient to consider only the (p, q, 11A)-generations
of A11.

3. The alternating group A11

In this section, we apply the results discussed in Section 2, to the group A11.
We determine all the (p, q, r)-generations of A11, where p, q, and r are primes
dividing the order of A11.

The group A11 is a simple group of order 19958400 = 27 × 34 × 52 × 7× 11. By
the Atlas of finite groups [13], the group A11 has exactly 31 conjugacy classes of
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its elements and 7 conjugacy classes of its maximal subgroups. Representatives
of these classes of maximal subgroups can be taken as follows:

H1 = A10, H2 = S9, H3 = (A8 × 3):2,
H4 = (A7 × A4):2, H5 = (A6 × A5):2, H6 = M11,
H7 = M11.

Throughout this paper, by G, we always mean the alternating group A11, unless
stated otherwise. From the electronic Atlas of finite group representations [33],
we see that G can be generated in terms of permutations on 11 points. Generators
g1 and g2 can be taken as follows:

g1 = (1, 2, 3),

g2 = (3, 4, 5, 6, 7, 8, 9, 10, 11),

with o(g1) = 3, o(g2) = 9, and o(g1g2) = 11.
In Table 1, we list the values of the cyclic structure for each conjugacy of G

containing elements of prime order together with the values of both ci and di
obtained from Ree and Scotts theorems, respectively.

Table 1. Cycle structures of prime order conjugacy classes of G

nX Cycle Structure ci di
2A 1722 9 2
2B 1324 7 4
3A 1831 9 2
3B 1532 7 4
3C 1233 5 6
5A 1651 7 4
5B 1152 3 8
7A 1471 5 6
11A 111 1 10
11B 111 1 10

In Table 2, we list the representatives of classes of the maximal subgroups
together with the orbits lengths of G on these groups and the permutation char-
acters.

Table 2. Maximal subgroups of G

Maximal Subgroup Order Orbit Lengths Character
H1 27 · 34 · 52 · 7 [1,10] 1a+ 10a
H2 27 · 34 · 5 · 7 [2,9] 1a+ 10a+ 44a
H3 27 · 33 · 5 · 7 [3,8] 1a+ 10a+ 44a+ 110a
H4 26 · 33 · 5 · 7 [7,4] 1a+ 10a+ 44a+ 110a+ 165a
H5 26 · 33 · 52 [5,6] 1a+ 10a+ 44a+ 110a +132a + 165a
H6 24 · 32 · 5 · 11 [11] 1a+ 132a+ 462a+ 825a+ 1100a
H7 24 · 32 · 5 · 11 [11] 1a+ 132a+ 462a+ 825a+ 1100a
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Table 3 gives the partial fusion maps of classes of maximal subgroups into the
classes of G. These will be used in our computations.

Table 3. The partial fusion maps into G

H1-class 2a 2b 3a 3b 3c 5a 5b 7a
→ G 2A 2B 3A 3B 3C 5A 5B 7A

h 6 1 4
H2-class 2a 2b 2c 2d 3a 3b 3c 5a 7a

→ G 2A 2A 2B 2B 3C 3A 3B 5A 7A
h 15 6

H3-class 2a 2b 2c 2d 3a 3b 3c 3d 3e 5a 7a
→ G 2B 2B 2A 2A 3A 3B 3C 3A 3B 5A 7A

h 20 4
H4-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 7a

→ G 2A 2A 2A 2B 2B 3A 3A 3B 3B 3C 5A 7A
h 15 1

H5-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 5b 5c 5d
→ G 2A 2A 2B 2A 2B 3A 3B 3A 3B 3C 5A 5A 5B 5B

h 1 6 1 1
H6-class 2a 3a 5a 11a 11b

→ G 2B 3C 5B 11A 11B
h 5 1 1

H7-class 2a 3a 5a 11a 11b
→ G 2B 3C 5B 11A 11B

h 5 1 1

4. (2, q, r)-generations

Let pX, p ∈ {2, 3, 5, 7, 11}, be a conjugacy class of G and ci be the number
of disjoint cycles in a representative of pX. The group G is not (2Y, 2Z, pX)-
generated, for if G is (2Y, 2Z, pX)-generated, then G is a dihedral group and
thus is not simple for all Y, Z ∈ {A,B}. Also we know that if G is (l,m, n)-
generated with 1

l
+ 1

m
+ 1

n
≥ 1 and G is simple, then G ∼= A5, but G ∼= A11 and

A11 ̸∼= A5. Hence if G is (p, q, r)-generated, then we must have 1
p
+ 1

q
+ 1

r
< 1.

Now the (2, q, r)-generations of G comprise the cases (2, 3, r)-, (2, 5, r)-, (2, 7, r)-,
and (2, 11, r)-generations.

4.1. (2, 3, r)-generations. By using the condition 1
p
+ 1

q
+ 1

r
< 1, the group G is

(2, 3, r)-generated if and only if r ∈ {7, 11}. Thus we have to consider the cases
(2X, 3Y, 7A) and (2X, 3Y, 11Z) for all X,Z ∈ {A,B}, Y ∈ {A,B,C}.

Proposition 4.1. The group G is not (2X, 3Y, 7A)-generated, where X ∈ {A,B},
Y ∈ {A,B,C}.

Proof. If the group G is (2X, 3Y, 7A)-generated then we must have c2X + c3Y +
c7A ≤ 13 where X ∈ {A,B} and Y ∈ {A,B,C}. By Table 1, we see that
c2X ∈ {7, 9} and c3Y ∈ {5, 7, 9}, which follows that

c2X + c3Y + c7A = 9 + c3X + 5 > 13

for X ∈ {A,B} and Y ∈ {A,B,C}. Now using Ree’s theorem, it follows that G
is not (2X, 3Y, 7A)-generated, where X ∈ {A,B} and Y ∈ {A,B,C}. □
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Proposition 4.2. The group G is
(i) neither (2X, 3Y, 11Z)- nor (2A, 3C, 11Z)-generated for all X,Y, Z ∈ {A,B},
(ii) (2B, 3C, 11X)-generated for X ∈ {A,B}.

Proof. (i) Since by Table 4, we have ∆G(2A, 3A, 11X) = ∆G(2A, 3B, 11X) =
∆G(2A, 3C, 11X) = ∆G(2B, 3A, 11X) = ∆G(2B, 3B, 11X) = 0, hence Lemma
2.4 implies that the group G is neither (2X, 3Y, 11Z)- nor (2A, 3C, 11Z)-generated
for all X,Y, Z ∈ {A,B}.

(ii) From Table 3 we see H6 (or H7) (two nonconjugate copies) is the only
maximal subgroup containing elements of orders 2, 3 and 11. The intersection of
H6 from one conjugacy class with H7 from a different conjugacy class has no ele-
ment of order 11. We obtain that

∑
H6
(2a, 3a, 11x) = 11 and h(11X,H6) = 1 (see

[19,35]). Since by Table 4 we have ∆G(2B, 3C, 11X) = 110, we then obtain that
∆∗

G(2B, 5B, 11X) = ∆G(2B, 3C, 11X) −
∑

H6
(2a, 3a, 11x) −

∑
H6
(2a, 3a, 11x) =

110 − 11 − 11 = 88 > 11 = |CG(11X)| for X ∈ {A,B}. This proves that the
group G is (2B, 3C, 11X)-generated for X ∈ {A,B}, proving (ii). □

4.2. (2, 5, r)-generations. Using the condition 1
p
+ 1

q
+ 1

r
< 1, the group G is

(2, 5, r)-generated if and only if r ∈ {5, 7, 11}. Thus we have to consider the cases
(2X, 5Y, 5Z), (2X, 5Y, 7A) and (2X, 5Y, 11Z) for all X,Y, Z ∈ {A,B}.

Proposition 4.3. The group G is
(i) neither (2A, 5B, 5B)- nor (2X, 5A, 5Y )-generated for all X,Y ∈ {A,B},
(ii) (2B, 5B, 5B)-generated.

Proof. (i) If G is (2A, 5B, 5B)-generated group, then we must have c2A + c5B +
c5B ≤ 13. For r ∈ {5A, 5B}, then by Table 1, we have cr ∈ {3, 7} and it follows
that

c2A + c5A + cr = 9 + 7 + cr > 13,

c2A + c5B + cr = 9 + 3 + cr > 13,

c2B + c5A + cr = 7 + 7 + cr > 13.

Now using Ree’s theorem [29], it follows that G is not (2A, 5B, 5B)-generated.
The same applies to (2X, 5A, 5Y ) for all X,Y ∈ {A,B}. Thus G is neither
(2A, 5B, 5B)- nor (2X, 5A, 5Y )-generated for all X,Y ∈ {A,B}, proving (i).

(ii) From Table 3, we can see that all the maximal subgroups of G have elements
of order 5. Let T be the set of all maximal subgroups of G. We are looking at
various intersections of these maximal subgroups to determine their contributions
in the calculations of ∆∗

G(2B, 5B, 5B). We have the following:
• The intersection of any 6 or 7 maximal subgroups of T does not contain

elements of order 5.
• Although some of the intersections of any 3, 4, or 5 maximal subgroups

of T contains elements of order 5, they will be no contributions because
none of their elements of order 5 fuses to 5B.

• The intersection of any two maximal subgroups of T having contributions
here is only H1 ∩H6

∼= A6 · 2 (or H1 ∩H7
∼= A6 · 2) and (H5) ∩H6

∼= 5:4
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(or H5 ∩H7
∼= 5:4), because their elements of orders 2 and 5 fuse to 2B

and 5B, respectively.
We see that H1, H5, H6 (or H7), H1 ∩ H6, and H5 ∩ H6 (or H5 ∩ H7 ) are the
only subgroups having their elements of orders 2 and 5 fusing to 2B and 5B,
respectively. By Table 4, we have ∆G(2B, 5B, 5B) = 825 and we also obtain that∑

H1
(2b, 5b, 5b) = 225,

∑
H5
(2c, 5x, 5y) = ∆H5(2c, 5c, 5c) + ∆H5(2c, 5c, 5d) +

∆H5(2c, 5d, 5d) = 50+50+50 = 150,
∑

H6
(2a, 5a, 5a) = 45,

∑
H1∩H6

(2a, 5a, 5a) =
53 and ∆H5∩H6(2a, 5a, 5a) = 3. We find that h(5B,H1) = 1 = h(5B,H5), and
h(5B,H6) = h(5B,H1 ∩H6) = h(5B,H5 ∩H6) = 5. It then follows that

∆∗
G(2B, 5B, 5B) =∆G(2B, 5B, 5B)−

∑
H1

(2b, 5b, 5b)−
∑
H5

(2c, 5x, 5y)

− 5 ·
∑
H6

(2a, 5a, 5a)− 5 ·
∑
H7

(2a, 5a, 5a)

+ 5 ·
∑

H1∩H6

(2a, 5a, 5a) + 5 ·
∑

H1∩H7

(2a, 5a, 5a)

+ 5 ·
∑

H5∩H6

(2a, 5a, 5a) + 5 ·
∑

H5∩H7

(2a, 5a, 5a)

=825− 1(225)− 1(150)− 5(45)− 5(45)

+ 5(53) + 5(53) + 5(3) + 5(3) = 560 > 0.

Hence the group G is (2B, 5B, 5B)-generated, proving (ii). □
Proposition 4.4. The group G is not (2X, 5Y, 7A)-generated for all X,Y ∈
{A,B}.

Proof. If G is a (2X, 5Y, 7A)-generated group, then we must have c2X+c5Y +c7A ≤
13 for all X,Y ∈ {A,B}. From Table 1, we see that

c2A + c5A + c7A = 9 + 7 + 5 > 13,

c2A + c5B + c7A = 9 + 3 + 5 > 13,

c2B + c5A + c7A = 7 + 7 + 5 > 13,

c2B + c5B + c7A = 7 + 3 + 5 > 13.

It follows by Ree’s theorem that G is not (2X, 5Y, 7A)-generated for all X,Y ∈
{A,B}. □
Proposition 4.5. The group G is

(i) not (2X, 5A, 11Y )-generated for all X,Y ∈ {A,B},
(ii) (2X, 5B, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. (i) By Table 4, we see that ∆G(2X, 5A, 11Y ) = 0 and by Lemma 2.4, G is
not (2X, 5A, 11Y )-generated for all X,Y ∈ {A,B} and (i) is complete.

(ii) From Table 3, we see that H6 (or H7) (two nonconjugate copies) is the
only maximal subgroup containing elements of orders 2, 5, and 11. The inter-
section of H6 from one conjugacy class with H7 from a different conjugacy class
has no element of order 11. No element of order 2 from this maximal subgroup
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fuses to the class 2A of G. By Table 4, we then obtain that ∆∗
G(2A, 5B, 11X) =

∆G(2A, 5B, 11X) = 44 > 11 = |CG(11X)| for X ∈ {A,B}. This proves that
the group G is (2A, 5B, 11X)-generated for X ∈ {A,B}. Also, we obtain that∑

H6
(2a, 5a, 11x) = 33 and we find that h(11X,H6) = 1 (or h(11X,H7) =

1). Since by Table 4, we have ∆G(2B, 5B, 11X) = 660, we then obtain that
∆∗

G(2B, 5B, 11X) = ∆G(2B, 5B, 11X) −
∑

H6
(2a, 5a, 11x) −

∑
H7
(2a, 5a, 11x) =

660 − 33 − 33 = 594 > 11 = |CG(11X)| for X ∈ {A,B}. This proves that the
group G is (2B, 5B, 11X)-generated for X ∈ {A,B}. □

4.3. (2, 7, r)-generations. Here we have to check the generation of G through
the triples (2A, 7A, 7A)-, (2A, 7A, 11A)-, (2A, 7A, 11B)-, (2B, 7A, 7A)-,
(2B, 7A, 11A)-, and (2B, 7A, 11B)-generation.

Proposition 4.6. The group G is
(i) (2A, 7A, 7A)-generated,
(ii) not (2B, 7A, 7A)-generated.

Proof. (i) From Table 3, we find only four maximal subgroups of G each have
an element of order 7, namely, H1, H2, H3, and H4. We have H1 ∩ H2

∼= A9,
H1 ∩ H3

∼= S8
∼= A8:2, H1 ∩ H4

∼= C3:S7, H2 ∩ H3
∼= S8, H2 ∩ H4

∼= C2:S7,
H3 ∩ H4

∼= A7:S3, H1 ∩ H2 ∩ H3
∼= A8, H1 ∩ H2 ∩ H4

∼= S7, H1 ∩ H3 ∩ H4
∼=

S7, H2 ∩ H3 ∩ H4
∼= S7, and H1 ∩ H2 ∩ H3 ∩ H4

∼= A7. By Table 4 we have
∆G(2A, 7A, 7A) = 175. We obtain that∑

H1

(2a, 7a, 7a) =140,∑
H2

(2x, 7a, 7a) =∆H2(2a, 7a, 7a) + ∆H2(2c, 7a, 7a) = 105 + 0 = 105,∑
H3

(2x, 7a, 7a) =∆H3(2b, 7a, 7a) + ∆H3(2c, 7a, 7a) = 70 + 0 = 70,∑
H4

(2x, 7a, 7a) =∆H4(2a, 7a, 7a) + ∆H4(2b, 7a, 7a) + ∆H4(2d, 7a, 7a)

=0 + 35 + 0 = 35,∑
H1∩H2

(2b, 7a, 7a) =105,∑
H1∩H3

(2x, 7a, 7a) =∆H1∩H3(2a, 7a, 7a) + ∆H1∩H3(2c, 7a, 7a)

=35 + 0 = 35,∑
H1∩H4

(2x, 7a, 7a) =∆H1∩H4(2a, 7a, 7a) + ∆H1∩H4(2c, 7a, 7a)

=35 + 0 = 35,∑
H2∩H3

(2x, 7a, 7a) =∆H2∩H3(2a, 7a, 7a) + ∆H2∩H3(2b, 7a, 7a) = 70 + 0 = 70,
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H2∩H4

(2x, 7a, 7a) =∆H2∩H4(2a, 7a, 7a) + ∆H2∩H4(2b, 7a, 7a)

+ ∆H2∩H4(2c, 7a, 7a) + ∆H2∩H4(2d, 7a, 7a)

=0 + 0 + 0 + 35 = 35,∑
H3∩H4

(2x, 7a, 7a) =∆H3∩H4(2a, 7a, 7a) + ∆H3∩H4(2c, 7a, 7a)

=0 + 35 = 35,∑
H1∩H2∩H3

(2b, 7x, 7y) =∆H1∩H2∩H3(2b, 7a, 7a) + ∆H1∩H2∩H3(2b, 7a, 7b)

+ ∆H1∩H2∩H3(2b, 7b, 7b) = 28 + 42 + 28 = 98,∑
H1∩H2∩H4

(2x, 7a, 7a) =∆H1∩H2∩H4(2b, 7a, 7a) + ∆H1∩H2∩H4(2c, 7a, 7a)

=35 + 0 = 35,∑
H1∩H3∩H4

(2x, 7a, 7a) =∆H1∩H3∩H4(2a, 7a, 7a) + ∆H1∩H3∩H4(2c, 7a, 7a)

=0 + 35 = 35,∑
H2∩H3∩H4

(2x, 7a, 7a) =∆H2∩H3∩H4(2a, 7a, 7a) + ∆H2∩H3∩H4(2b, 7a, 7a)

=35 + 0 = 35,∑
H1∩H2∩H3∩H4

(2a, 7x, 7x) =∆H1∩H2∩H3∩H4(2a, 7a, 7a) + ∆H1∩H2∩H3∩H4(2a, 7a, 7b)

+ ∆H1∩H2∩H3∩H4(2a, 7b, 7b)

=7 + 28 + 7 = 42.

We find that

h(7A,H1) =h(7A,H3) = h(7A,H1 ∩H4) = h(7A,H3 ∩H4) = 4,

h(7A,H2) =h(7A,H2 ∩H4) = 6, h(7A,H4) = 1,

h(7A,H1 ∩H2) =h(7A,H1 ∩H3) = h(7A,H2 ∩H3) = h(7A,H1 ∩H2 ∩H3)

=h(7A,H1 ∩H2 ∩H4) = h(7A,H1 ∩H3 ∩H4)

=h(7A,H2 ∩H3 ∩H4) = h(7A,H1 ∩H2 ∩H3 ∩H4) = 12.

We then obtain that

∆∗
G(2A, 7A, 7A) =∆G(2A, 7A, 7A)− 4 ·

∑
H1

(2a, 7a, 7a)− 6 ·
∑
H2

(2x, 7a, 7a)

− 4 ·
∑
H3

(2x, 7a, 7a)−
∑
H4

(2x, 7a, 7a)

+ 12 ·
∑

H1∩H2

(2b, 7a, 7a) + 12 ·
∑

H1∩H3

(2x, 7a, 7a)
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+ 12 ·
∑

H1∩H4

(2x, 7a, 7a) + 12 ·
∑

H2∩H3

(2x, 7a, 7a)

+ 12 ·
∑

H2∩H4

(2x, 7a, 7a) + 12 ·
∑

H3∩H4

(2x, 7a, 7a)

− 12 ·
∑

H1∩H2∩H3

(2b, 7a, 7a)− 12 ·
∑

H1∩H2∩H4

(2x, 7a, 7a)

− 12 ·
∑

H1∩H3∩H4

(2x, 7a, 7a)− 12 ·
∑

H2∩H3∩H4

(2x, 7a, 7a)

+ 12 ·
∑

H1∩H2∩H3∩H4

(2a, 7x, 7y)

=175− 4(140)− 6(105)− 4(70)− 1(35) + 12(105) + 12(70)

+ 4(35) + 12(70) + 6(35) + 4(35)− 12(98)− 12(35)− 12(35)

+ 12(42) = 588 > 0,

proving that G is (2A, 7A, 7A)-generated.
(ii) We compute the structure constant ∆A11 = ∆A11(2B, 7A, 7A) = 644. The

only maximal subgroups of A11 that can potentially contribute to the structure
constant ∆A11 are isomorphic to A10, S9, (A8×3):2, and (A7×A4):2. We calculate
now contribution from each these maximal subgroups to ∆A11 .

First, we consider the group Σ(A7×A4):2. The 2B-class of A11 does not meet the
group A7. We have ΣA7 = 0. Further, as Σ(A7×A4):2 = ΣA7 , we have Σ∗

(A7×A4):2
=

0. This means that the maximal subgroup (A7×A4):2 does not contribute to
∆A11 .

For the group (A8×3):2, we calculate Σ(A8×3):2 = ΣA8 = 35. Up to isomor-
phism, A7 and 23:L3(2) (two nonconjugate copies) are the only maximal sub-
groups of A8. From the above case, we know that ΣA7 = 0. Next consider the
subchain of groups 23:7 < (23:7):3 < 23:L3(2). We compute that Σ∗

23:7 = Σ23:7 = 7
and Σ(23:7):3 = 7 = Σ23:L3(2). As |N(23:7):3(2

3:7)| = (23:7):3 = N23:L3(2)(2
3:7), we

obtain that a fixed z ∈ 7A is contained in a unique copy of each of (23:7):3-
conjugate of 23:7 and 23:L3(2) groups. Thus we obtain Σ∗

(23:7):3 = Σ(23:7):3−Σ23:7 =

7 − 7 = 0 and Σ∗
(23:L3(2))

= Σ23:L3(2) − Σ23:7 = 7 − 7 = 0. Observe that, the only
contribution toward ΣA8 so far is coming from a unique conjugate of 23:7. As
there are two nonconjugate copies of 23:L3(2), we compute

Σ∗
A8

= ΣA8 − 2 Σ23:7 = 35− 2(7) = 21.

Next, we treat the maximal group S9. We compute ΣS9 = ΣA9.2 = ΣA9 =
154. From the list of maximal subgroups of A9, observe that the (2B, 7A, 7A)-
generated proper subgroups of A11 are contained in the subgroups isomorphic
to S7, A8, or 23:L2(8) (two nonconjugate copies). From above, we have ΣS7 =
ΣA7.2 = 0 as A7 ∩ 2B = ∅. Also Σ∗

A8
= 21. We investigate contribution from

L2(8):3 to ∆A11 . We calculate ΣL2(8):3 = ΣL2(8) = 28 and Σ∗
23:7 = 7. Since

23:7 < L2(8) and a fixed element z ∈ 7A lies in two L2(8)-conjugates of 23:7, we
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have
Σ∗

L2(8)
= ΣL2(8) − 2Σ23:7 = 28− 2(7) = 14.

We now collect the total contribution coming from A9 to ∆A11 . Note that a fixed
element z of order 7 (in A11) lies in two, two and four A9-conjugates of groups
A8, L2(8), and 23:7, respectively. We obtain

Σ∗
A9

= ΣA9 − 2 Σ∗
A8

− 2 Σ∗
L2(8)

− 4 Σ∗
23:7

= 154− 2(28)− 2(14)− 4(7) = 56.

Finally, it remains to compute contribution from the group A10. We calculate
Σ(A10) = 644. From the list of maximal subgroups of A10, the groups that may
contain (2B, 7A, 7A)-generated proper subgroups, up to isomorphism, are A9,
S8, and (A7×3):2. In fact, we have already contributions from these groups as
ΣS8 = ΣA8.2 = ΣA8 , Σ∗

A9
= 56, and Σ(A7×3):2 = ΣA7 = 0. As, NA10(A8) = S8,

NA10(L2(8)) = 3:L2(8), NA10(2
3:7) = (23:7) : 3, and A9 is self normalized in A10

being maximal in A10. A fixed element z ∈ 7B is contained in three, three,
six and six A10-conjugates of groups A9, A8, L2(8), and 23:7, respectively. We
calculate that

Σ∗
A10

= ΣA10 − 3 Σ∗
A9

− 3 Σ∗
A8

− 6 Σ∗
L2(8)

− 6 Σ23:7

= 357− 3(56)− 3(21)− 6(14)− 6(7) = 0.

To summarize, the only proper (2B, 7A, 7A)-subgroups of A11 are A9, A8, 23:7,
and L2(8). As the respective numbers of A11-conjugates of these subgroups con-
taining a fixed element z ∈ 7A are six, four, six and twelve, we obtain

∆∗
A11

≤ ∆A11 − 6 Σ∗
A9

− 4 Σ∗
A8

− 6 Σ23:7 − 12 Σ∗
L2(8)

= 644− 6(56)− 4(21)− 6(7)− 12(14)

= 14 < 84 = |CA11(7A)|,
which establishes that A11 is not (2B, 7A, 7A)-generated. □
Proposition 4.7. The group G is

(i) not (2A, 7A, 11X)-generated for X ∈ {A,B},
(ii) (2B, 7A, 11X)-generated for X ∈ {A,B}.

Proof. (i) Table 4 gives that ∆G(2A, 7A, 11X) = 0 for X ∈ {A,B} and thus the
result holds.

(ii) By Table 3, we see that none of the maximal subgroups of G have el-
ements of orders 7 and 11. By Table 4, we obtain that ∆∗

G(2B, 7A, 11X) =
∆G(2B, 7A, 11X) = 55 > 0 for X ∈ {A,B}. □

4.4. (2, 11, r)-generations. Also here we have to check for the generation of G
through the triples (2A, 11A, 11A)-, (2A, 11A, 11B)- (2A, 11B, 11B)-,
(2B, 11A, 11A)-, (2B, 11A, 11B)- and (2B, 11B, 11B)-generation. We handle all
these cases in the following proposition.

Proposition 4.8. The group G is (2X, 11Y, 11Z)-generated for all X,Y, Z ∈
{A,B}.
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Proof. As in Proposition 4.5, the two noncojugate copies of H6 (or H7) contain
elements of orders 2 and 11. No maximal subgroup of G meets the classes 2A,
11A, and 11B of G. Thus ∆∗

G(2A, 11A, 11B) = ∆G(2A, 11A, 11B) = 220 > 0,
∆∗

G(2A, 11A, 11A) = ∆G(2A, 11A, 11A) = 110 > 0, and ∆∗
G(2A, 11B, 11B) =

∆G(2A, 11B, 11B) = 110 > 0. This proves that G is (2A, 11A, 11B)-,
(2A, 11A, 11A)-, and (2A, 11B, 11B)-generated.

We obtain that
∑

H6
(2a, 11x, 11y) =

∑
H7
(2a, 11x, 11y) = 11 for all x, y ∈

{a, b}, and we have h(11X,H6) = 1 or (h(11X,H7) = 1) for X ∈ {A,B}. By
Table 4, we have ∆G(2B, 11A, 11B) = 1320 and ∆G(2B, 11A, 11A) = 2145 =
∆G(2B, 11B, 11B). It renders that ∆∗

G(2B, 11A, 11B) = 1320−11−11 = 1298 > 0
and ∆∗

G(2B, 11A, 11A) = ∆∗
G(2B, 11B, 11B) = 2145−11−11 = 2123 > 0, proving

that G is (2B, 11A, 11B)-, (2B, 11A, 11A)-, and (2B, 11B, 11B)-generated. □

5. (3, q, r)-generations

In this section, we handle all the possible (3, q, r)-generations, namely
(3X, 3Y, 5A)-, (3X, 3Y, 5B)-, (3X, 3Y, 7A)-, (3X, 3Y, 11A)-, (3X, 3Y, 11B)-,
(3X, 5A, 5A)-, (3X, 5A, 5B)-, (3X, 5A, 7A)-, (3X, 5A, 11A)-, (3X, 5A, 11B)-,
(3X, 5B, 5B)-, (3X, 5B, 7A)-, (3X, 5B, 11A)-, (3X, 5B, 11B)-, (3X, 7A, 7A)-,
(3X, 7A, 11A)-, (3X, 7A, 11B)-, (3X, 11A, 11A)-, (3X, 11A, 11B)-, and
(3X, 11B, 11B)-generations.

5.1. (3, 3, r)-generations.
Proposition 5.1. The group G is neither (3X, 3Y, 5Z)- nor (3X, 3Y, 7A)-generated
group for all X,Y ∈ {A,B,C} and Z ∈ {A,B}.

Proof. The group G acts on a 10-dimensional irreducible complex module V.
Applying Scott’s theorem to the module V and using the Atlas of finite groups,
we get

d3A = dim(V/CV(3A)) =
2(10− 7)

3
= 2,

d3B = dim(V/CV(3B)) =
2(10− 4)

3
= 4,

d3C = dim(V/CV(3C)) =
2(10− 1)

3
= 6,

d5A = dim(V/CV(5A)) =
4(10− 5)

5
= 4,

d5B = dim(V/CV(5B)) =
4(10− 0)

5
= 8,

d7A = dim(V/CV(7A)) =
6(10− 3)

7
= 6.

For the cases (3A, 3A, nX), we get d3A+d3A+dnX = 2×2+dnX < 2×10 and hence
by Scott’s theorem, G is not (3A, 3A, nX)-generated for all nX ∈ {5A, 5B, 7A}.
We get nongenerations when Scott’s theorem is applied to the following cases
(3A, 3B, nX), (3A, 3C, nX), (3B, 3B, nX), (3B, 3C, nX), and (3C, 3C, nX) for
all nX ∈ {5A, 5B, 7A}. □
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Proposition 5.2. The group G is
(i) neither (3A, 3X, 11Y )- nor (3B, 3B, 11Y )-generated for X ∈ {A,B,C}

and Y ∈ {A,B},
(ii) (3B, 3C, 11X)- and (3C, 3C, 11X)-generated for X ∈ {A,B}.

Proof. (i) By Table 5, we see that ∆G(3A, 3X, 11Y ) = 0 = ∆G(3B, 3B, 11Y )
for X ∈ {A,B,C} and Y ∈ {A,B}. Hence, G is neither (3A, 3X, 11Y )- nor
(3B, 3B, 11Y )-generated for X ∈ {A,B,C} and Y ∈ {A,B}.

(ii) No maximal subgroup of G meets the classes 3B, 3C, and 11A or 11B of G.
By Table 5, we then obtain that ∆∗

G(3B, 3C, 11X) = ∆G(3B, 3C, 11X) = 66 > 0,
proving that G is (3B, 3C, 11X)-generated for X ∈ {A,B}. Now we prove that
G is (3C, 3C, 11X)-generated for X ∈ {A,B}. By Proposition 4.2, we prove that
G is (2B, 3C, 11X)-generated for X ∈ {A,B}. It follows by Theorem 2.7 that
G is (3C, 3C, (11A)2)- and (3C, 3C, (11B)2)-generated. By GAP, we see that
(11A)2 = 11B and (11B)2 = 11A, and thus G is (3C, 3C, 11X)-generated for
X ∈ {A,B}. □
5.2. (3, 5, r)-generations.
Proposition 5.3. The group G is

(i) neither (3X, 5A, 5Y )- nor (3A, 5B, 5B) generated for X ∈ {A,B,C} and
Y ∈ {A,B}, while G is,

(ii) (3X, 5B, 5B)-generated for X ∈ {B,C}.
Proof. (i) If G is a (3X, 5A, 5Y )-generated group, then we must have c3X + c5A+
c5Y ≤ 13 where X ∈ {A,B,C} and Y ∈ {A,B}. Since by Table 1, we have
c3X ∈ {5, 7, 9} for X ∈ {A,B,C}, we then obtain by the same Table 1 that

c3X + c5A + c5A = c3X + 7 + 7 > 13,

c3X + c5A + c5B = c3X + 7 + 3 > 13.

Now using Ree’s theorem, it follows that G is not (3X, 5A, 5Y )-generated for
X ∈ {A,B,C} and Y ∈ {A,B}. Again by Table 1, we have c3A + c5B + c5B =
9+3+3 > 13 and by Ree’s theorem, the group G is not (3A, 5B, 5B)-generated.

(ii) We show that G is (3X, 5B, 5B)-generated for X ∈ {B,C}. We firstly
consider the triple (3B, 5B, 5B). By Table 5, we have ∆G(3B, 5B, 5B) = 1080.
We notice that the elements of order 3 for both H6 and H1 ∩H6 do not fuse to
3B, and also H5∩H6 does not have elements of order 3. Therefore there is no any
contributions here. We obtain that

∑
H1
(3b, 5b, 5b) = 650 and

∑
H5
(3b, 5x, 5y) =

∆H5(3b, 5c, 5c) + ∆H5(3b, 5c, 5d) + ∆H5(3b, 5d, 5d) = 5 + 10 + 5 = 20. We then
obtain that

∆∗
G(3B, 5B, 5B) = ∆G(3B, 5B, 5B)−

∑
H1

(3b, 5b, 5b)−
∑
H5

(3b, 5x, 5y)

= 1080− 1(650)− 1(20) = 410 > 0.

We turn to the other case, namely, the triple (3C, 5B, 5B). In order to show
that (3C, 5B, 5B) is a generating triple of A11, we consider its 10-dimensional
irreducible representation over F2 (see [33]). The group A11 = ⟨a, b⟩ is generated
by its standard generators a and b, where a and b are 10×10 matrices over F2 with
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orders 3 and 9, respectively such that a is in class 3A and ab has order 11. Then via
GAP, we produce c = ab3a−1b2(ba)3b3aba−1 and d = ab−1ab2a−1b4ab−1a−1b2ab2

such that c and d are in 5B and cd ∈ 12A. Set y = c and x = dc−1; then we see
that P = ⟨x, y⟩ and such that x ∈ 3C, y ∈ 5B and xy ∈ 5B. Moreover, there are
elements of order 5, 7, and 11 in P . As A11 has no proper subgroup divisible by
5×7×11, we have A11 = ⟨x, y⟩ = P , as claimed. Hence (ii) follows. □

Proposition 5.4. The group G is
(i) neither (3X, 5Y, 7A)- nor (3C, 5A, 7A)-generated for all X,Y ∈ {A,B},
(ii) (3C, 5B, 7A)-generated.

Proof. (i) Since by Table 5, we have ∆G(3A, 5A, 7A) = 7 < 84 = |CA11(7A)|
and ∆G(3A, 5B, 7A) = 0, it follows that G is not (3A, 5X, 7A)-generated for
X ∈ {A,B}. By Proposition 5.1, we see that d3B = 4, d3C = 6, d5A = 4, d5B = 8,
and d7A = 6. Thus d3B + d5X + d7A = 4 + d5X + 6 < 20 and d3C + d5A + d7A =
6+4+6 < 20 for X ∈ {A,B}. By Scott’s theorem the group G is not (3B, 5X, 7A)-
and (3C, 5A, 7A)-generated for X ∈ {A,B}.

(ii) By Table 5, we have ∆G(3C, 5B, 7A) = 5376. The only maximal subgroup
meeting the classes 3C, 5B, and 7A of G is H1. We obtain that

∑
H1
(3c, 5b, 7a)

= 882 and h(7A,H1) = 4. It then follows that ∆∗
G(3C, 5B, 7A) = 5376−4(882) =

1848 > 0, proving (ii). □

Proposition 5.5. The group G is
(i) not (3X, 5A, 11Y )-generated for all X,Y ∈ {A,B},
(ii) (3C, 5A, 11Y )- and (3X, 5B, 11Y )-generated for X ∈ {A,B,C} and Y ∈

{A,B}.

Proof. (i) Since c3X ∈ {7, 9}, by Table 1, it follows that c3X + c5A + c11Y =
c3X + 7 + 1 > 13 for all X,Y ∈ {A,B} and the result follows.

(ii) From Table 3, we see that two nonconjugate copies of H6 (or H7) are the
only two maximal subgroups containing elements of orders 3, 5, and 11. The
intersection of H6 from one conjugacy class with H7 from a different conjugacy
class has no element of order 11. By Table 5, we have ∆G(3C, 5A, 11X) = 22 for
X ∈ {A,B}. No element of order 5 from these two maximal subgroups fuses to the
class 5A of G. We then obtain that ∆∗

G(3C, 5A, 11X) = ∆G(3C, 5A, 11X) = 22 >
11 = |CG(11X)|, proving that G is (3C, 5A, 11X)-generated for X ∈ {A,B}.
Similarly, we have ∆G(3A, 5B, 11X) = 11 for X ∈ {A,B}. From Table 3, we
see that no maximal subgroup of G meets the classes 3A, 5B, and 11A or 11B
of G. It follows that ∆∗

G(3A, 5B, 11X) = ∆G(3A, 5B, 11X) = 11 > 0, prov-
ing that G is (3A, 5B, 11X)-generated for X ∈ {A,B}. By the same Table
5, we have ∆G(3B, 5B, 11X) = 704 for X ∈ {A,B}. No element of order 3
from these two maximal subgroups fuses to the class 3B of G. Therefore we get
∆∗

G(3B, 5B, 11X) = ∆G(3B, 5B, 11X) = 704 > 11 = |CG(11X)|, proving that G
is (3B, 5B, 11X)-generated for X ∈ {A,B}. For the other argument, the com-
putations show that

∑
H6
(3a, 5a, 11x) = ∆H6(3a, 5a, 11a) + ∆H6(3a, 5a, 11b) =

99+99 = 198 and h(11X,H6) = 1. Similarly
∑

H7
(3a, 5a, 11x) = 198. Since by Ta-

ble 5, we have ∆G(3C, 5B, 11X) = 4928, and we obtain that ∆∗
G(3C, 5B, 11X) =
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∆G(3C, 5B, 11X) −
∑

H6
(3a, 5a, 11x) −

∑
H7
(3a, 5a, 11x) = 4928 − 198 − 198 =

4532 > 11 = |CG(11X)| for X ∈ {A,B}. This proves that G is (3C, 5B, 11X)-
generated for X ∈ {A,B}. □
5.3. (3, 7, r)- and (3, 11, r)-generations. In this subsection we discuss the cases
(3, 7, r)- and (3, 11, r)-generations. This comprises of 18 cases: (3A, 7A, 7A)-,
(3A, 7A, 11A)-, (3A, 7A, 11B)-, (3B, 7A, 7A)-, (3B, 7A, 11A)-, (3B, 7A, 11B)-,
(3C, 7A, 7A)-, (3C, 7A, 11A)-, (3C, 7A, 11B)-, (3A, 11A, 11A)-, (3A, 11A, 11B)-,
(3A, 11B, 11B)-, (3B, 11A, 11A)-, (3B, 11A, 11B)-, (3B, 11B, 11B)-,
(3C, 11A, 11A)-, (3C, 11A, 11B)- and (3A, 11B, 11B)-generation.
Proposition 5.6. The group G is not (3X, 7A, 7A)-generated for X ∈ {A,B,C}.

Proof. This is a direct application of Ree’s theorem. Since by Table 1, we see
that c3X ∈ {5, 7, 9}, it then follows that c3X + c7A+ c7A = c3X +5+5 > 13, which
implies that G is not (3X, 7A, 7A)-generated for X ∈ {A,B,C}. □
Proposition 5.7. The group G is

(i) not (3A, 7A, 11X)-generated for X ∈ {A,B},
(ii) (3Y, 7A, 11X)-generated for X ∈ {A,B} and Y ∈ {B,C}.

Proof. (i) Since by Table 5, we have ∆G(3A, 7A, 11X) = 0, it follows that G is
not (3A, 7A, 11X)-generated for X ∈ {A,B}.

(ii) No maximal subgroup of G contains both elements of orders 3, 7, and 11.
Therefore ∆∗

G(3B, 7A, 11X) = ∆G(3B, 7A, 11X) = 33 > 0 and
∆∗

G(3C, 7A, 11X) = ∆G(3C, 7A, 11X) = 990 > 0. □
Proposition 5.8. The group G is (3X, 11Y, 11Z)-generated for X ∈ {A,B,C}
and Y, Z ∈ {A,B}.

Proof. By Table 3, we see that no elements of the maximal subgroups of G meet
the classes 3A, 11A, and 11B of G. Then by Table 5, we have ∆∗

G(3A, 11A, 11A) =
∆G(3A, 11A, 11A) = 110 > 0, ∆∗

G(3A, 11B, 11B) = ∆G(3A, 11B, 11B) = 110 >
0, and ∆∗

G(3A, 11A, 11B) = ∆G(3A, 11A, 11B) = 55 > 0, proving that G is
(3A, 11X, 11Y )-generated for all X,Y ∈ {A,B}. Again, by Table 3, we see that
no elements of the maximal subgroups of G meet the classes 3B, 11A, and 11B
of G. Then by Table 5, we have ∆∗(3B, 11X, 11X) = ∆G(3B, 11X, 11X) =
3212 > 0 and ∆∗

G(3B, 11A, 11B) = ∆G(3B, 11A, 11B) = 2332 > 0, proving
that G is (3B, 11X, 11Y )-generated for all X,Y ∈ {A,B}. By Table 5, we have
∆(3C, 11X, 11Y ) = 12760 for all X,Y ∈ {A,B}. Only two nonconjugate copies
of H6 (or H7) meet the classes 3C, 11A and 11B of G. We obtain that∑

H6
(3a, 11a, 11b) = 22,

∑
H6
(3a, 11a, 11a) = 77 =

∑
H6
(3a, 11b, 11b), and

h(11X,H6) = 1 for X ∈ {A,B}. Similarly
∑

H7
(3a, 11a, 11b) = 22,∑

H7
(3a, 11a, 11a) = 77 =

∑
H7
(3a, 11b, 11b), and h(11X,H7) = 1 for X ∈

{A,B}. Therefore ∆∗
G(3C, 11A, 11B) = ∆G(3C, 11A, 11B)−

∑
H6
(3a, 11a, 11b)−∑

H7
(3a, 11a, 11b) = 12760 − 77 − 77 = 12606 > 0 and ∆∗

G(3C, 11A, 11A) =
∆G(3C, 11A, 11A)−

∑
H6
(3a, 11a, 11a)−

∑
H7
(3a, 11a, 11a) = 12760− 22− 22 =

12716 > 0. Similarly ∆∗
G(3C, 11B, 11B) = 12716. Hence G is (3C, 11X, 11Y )-

generated for all X,Y ∈ {A,B}. □
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6. Other results

In this section, we handle all the remaining cases, namely, the (5, q, r)-, (7, q, r)-,
and (11, q, r)-generations.

6.1. (5, 5, r)-generations. We have to check for the generation of G through the
triples (5A, 5A, 5A)-, (5A, 5A, 5B)-, (5A, 5A, 7A)-, (5A, 5A, 11A)-,
(5A, 5A, 11B)-, (5A, 5B, 5B)-, (5A, 5B, 7A)-, (5A, 5B, 11A)-, (5A, 5B, 11B)-,
(5B, 5B, 5B)-, (5B, 5B, 7A)-, (5B, 5B, 11A)-, and (5A, 5A, 11B)-generation.

Proposition 6.1. The group G is
(i) not (5A, 5A, 5X)-generated for X ∈ {A,B},
(ii) (5X, 5B, 5B)-generated for X ∈ {A,B}.

Proof. (i) Since by Table 6, we have that ∆G(5A, 5A, 5A) = 428 < 1800 =
|CG(5A)| and ∆G(5A, 5A, 5B) = 2 < 25 = |CG(5B)|, it follows by Lemma 2.4
that G is not (5A, 5A, 5X)-generated for X ∈ {A,B}.

(ii) From Table 3, we can see that all the maximal subgroups of G have elements
of order 5. Let T be the set of all maximal subgroups of G. We are looking at
various intersections of these maximal subgroups to determine their contributions
in the calculations of ∆∗

G(5A, 5B, 5B). We have the following:
• The intersection of any 6 or 7 maximal subgroups of T does not contain

elements of order 5.
• Although some of the intersections of any 2, 3, 4, or 5 maximal subgroups

of T contains elements of order 5, they will not contribute here because
none of their elements of order 5 fuse to both 5A and 5B.

Out of all the subgroups of G, only H1 and H5 have contributions in the calcu-
lations of ∆∗

G(5A, 5B, 5B) because they both meet 5A and 5B classes of G. The
computations render

∑
H1
(5a, 5b, 5b) = 316 and

∑
H5
(5x, 5c, 5y) = ∆H5(5a, 5c, 5c)

+∆H5(5a, 5c, 5d)+∆H5(5b, 5c, 5c)+∆H5(5b, 5c, 5d) = 6+2+31+22 = 61. We find
that h(5B,H1) = h(5B,H5) = 1. Since by Table 6, we have ∆G(5A, 5B, 5B) =
456, we have ∆∗

G(5A, 5B, 5B) = ∆G(5A, 5B, 5B)−
∑

H1
(5a, 5b, 5b)−∑

H5
(5x, 5c, 5y) = 456 − 316 − 61 = 79 > 25 = |CG(5B)|. This proves that G

is (5A, 5B, 5B)-generated. Now we prove that G is (5B, 5B, 5B)-generated. By
Proposition 4.3, we prove that G is (2B, 5B, 5B)-generated. It follows by Theo-
rem 2.7 that G is (5B, 5B, (5B)2)-generated. By GAP, we see that (5B)2 = 5B
so that G becomes (5B, 5B, 5B)-generated as required. □
Proposition 6.2. The group G is

(i) not (5A, 5X, 7A)-generated for X ∈ {A,B},
(ii) (5B, 5B, 7A)-generated.

Proof. (i) If G is (5A, 5X, 7A)-generated group, then we must have c5A + c5X +
c7A ≤ 13, where X ∈ {A,B}. Since by Table 1, we have c5X ∈ {3, 7}, we then
obtain by the same Table 1 that c5A+c5X+c7A = 7+c5X+5 > 13 for X ∈ {A,B}.
By Ree’s theorem, G is not (5A, 5X, 7A)-generated for X ∈ {A,B}.

(ii) As in Proposition 4.6, only four maximal subgroups of G have an ele-
ment of order 7, namely, H1, H2, H3, and H4. By Table 6, we have that
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∆G(5B, 5B, 7A) = 32256. Out of all subgroups having elements of order 7, only
H1 will have contributions here because it is the only maximal subgroup meet-
ing the classes 5B and 7A of G. We obtain that

∑
H1
(5b, 5b, 7a) = 3654 and

h(7A,H1) = 4. We have ∆∗
G(5B, 5B, 7A) = ∆G(5B, 5B, 7A)−4·

∑
H1
(5b, 5b, 7a) =

32256− 4(3654) = 17640 > 0 and G is a (5B, 5B, 7A)-generated group. □
Proposition 6.3. The group G is

(i) not (5A, 5A, 11X)-generated for X ∈ {A,B},
(ii) (5X, 5B, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. (i) By Table 6, we have ∆G(5A, 5A, 11X) = 0.
(ii) As in Proposition 4.5, we see that two nonconjugate copies of H6 (or

H7) contain elements of orders 5 and 11. None of these two maximal subgroups
meet the classes 5A and 11A or 11B of G. It follows that ∆∗

G(5A, 5B, 11X) =
∆G(5A, 5B, 11X) = 440 > 0, proving that G is (5A, 5B, 11X)-generated for
X ∈ {A,B}. We now prove that G is (5B, 5B, 11X)-generated for X ∈ {A,B}.
By Proposition 4.5, the group G is (2X, 5B, 11Y )-generated, it follows by Theo-
rem 2.7 that G is (5B, 5B, 11X)-generated for all X,Y ∈ {A,B}. □
Proposition 6.4. The group G is

(i) not (5A, 7A, 7A)-generated,
(ii) (5B, 7A, 7A)-generated.

Proof. (i) The group G acts on a 10-dimensional irreducible complex module V.
By applying Scott’s theorem [30] to the module V and using the Atlas of finite
groups, we get d5A + d7A + d7A = 4 + 6 + 6 = 16 < 2× 10, and hence by Scott’s
theorem, G is not (5A, 7A, 7A)-generated.

(ii) By Table 6, we have that ∆G(5B, 7A, 7A) = 8736. As in Proposition 6.2,
only the maximal subgroup H1 will have contributions here because it is the only
one meeting of the classes 5B and 7A of G. We have

∑
H1
(5b, 7a, 7a) = 1974

and h(7A,H1) = 4. We then obtain ∆∗
G(5B, 7A, 7A) = ∆G(5B, 7A, 7A) − 4 ·∑

H1
(5b, 7a, 7a) = 8736 − 4(1974) = 840 > 0, and hence G is a (5B, 7A, 7A)-

generated group. □
Proposition 6.5. The group G is a (5X, 7A, 11Y )-generated group for all X,Y, Z
∈ {A,B}.
Proof. By Table 3, we see there is no maximal subgroup whose order is divisible
by (5 × 7 × 11). Since there is no contribution from any of the maximal sub-
groups, by Table 6, we have ∆∗

G(5A, 7A, 11X) = ∆G(5A, 7A, 11X) = 11 > 0 and
∆∗

G(5B, 7A, 11X) = ∆G(5B, 7A, 11X) = 9504 > 0 for X ∈ {A,B}. Hence G is
(5A, 7A, 11X)- and (5B, 7A, 11X)-generated for X ∈ {A,B}. □
Proposition 6.6. The group G is (5X, 11Y, 11Z)-generated for all X,Y, Z ∈
{A,B}.
Proof. As in Proposition 4.5, H6 (or H7) (two nonconjugate copies) is the only
maximal subgroup of G that contains elements of order 11. Since none of them
meet the classes 5A, 11A, and 11B of G, by Table 6, we have ∆∗

G(5A, 11A, 11B) =
∆G(5A, 11A, 11B) = 1804, ∆∗

G(5A, 11A, 11A) = ∆G(5A, 11A, 11A) = 1892 and
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∆∗
G(5A, 11B, 11B) = ∆G(5A, 11B, 11B) = 1892. Hence G is (5A, 11A, 11B)-,

(5A, 11A, 11A), and (5A, 11B, 11B)-generated.
By the same Table 6, we have ∆G(5B, 11A, 11B) = 69696 and ∆G(5B, 11A, 11A)

= ∆G(5B, 11B, 11B) = 76032. We have
∑

H6
(5a, 11a, 11b) =

∑
H7
(5a, 11a, 11b) =

99, h(11b,H6) = h(11b,H7) = 1. We also have
∑

H6
(5a, 11a, 11a)

=
∑

H6
(5a, 11b, 11b) = 198,

∑
H7
(5a, 11a, 11a) =

∑
H7
(5a, 11b, 11b) = 198,

h(11x,H6) = h(11x,H6) = 1 for x ∈ {a, b}. It follows that ∆∗
G(5B, 11A, 11B) =

∆G(5B, 11A, 11B)−
∑

H6
(5a, 11a, 11b)−

∑
H7
(5a, 11a, 11b) = 69696− 99− 99 =

69498 > 0 and ∆∗
G(5B, 11A, 11A) = ∆G(5B, 11A, 11A) −

∑
H6
(5a, 11a, 11a) −∑

H7
(5a, 11a, 11a) = 76032−198−198 = 75636 > 0. Similarly ∆∗

G(5B, 11A, 11A)
= 75636. Hence G is (5B, 11A, 11B)- and (5B, 11X, 11X)-generated for X ∈
{A,B}. □
6.2. (7, 7, r)-generations.
Proposition 6.7. The group G is a (7A, 7A, 7A)-generated group.
Proof. By Proposition 4.6, we prove that G is (2A, 7A, 7A)-generated. It follows
by Theorem 2.7 that G is (7A, 7A, (7A)2)- generated. Since there is only one
class of element 7, it follows that (7A)2 = 7A, so that G becomes (7A, 7A, 7A)-
generated. □
Proposition 6.8. The group G is a (7A, 7A, 11X)-generated group.
Proof. By Proposition 4.7, we prove that G is (2B, 7A, 11X)-generated for X ∈
{A,B}. It follows by Theorem 2.7 that G is (7A, 7A, (11A)2)- and (7A, 7A, (11B)2)-
generated. By GAP, we see that (11A)2 = 11B and (11B)2 = 11A so that G
becomes (7A, 7A, 11X)-generated for X ∈ {A,B}. □
Proposition 6.9. The group G is (7A, 11X, 11Y )-generated for all X,Y ∈
{A,B}.
Proof. Since H6 (or H7) (two nonconjugate copies) is the only maximal subgroup
of G whose order is divisible by 11 and H6 (or H7) does not have elements of order
7, then by Table 7, we have ∆∗

G(7A, 11X, 11Y ) = ∆G(7A, 11X, 11Y ) = 29700 > 0,
proving that G is (7A, 11X, 11Y )-generated for all X,Y ∈ {A,B}. □
6.3. (11, 11, r)-generations. We conclude our investigation on the (p, q, r)-
generation of the alternating group G by considering the (11, 11, 11)-generations.
Thus we will be looking at the cases (11A, 11A, 11A)-, (11A, 11A, 11B)-,
(11A, 11B, 11B)-, and (11B, 11B, 11B)-generation.
Proposition 6.10. The group G is a (11A, 11A, 11A)-, (11A, 11A, 11B)-,
(11A, 11B, 11B)- and (11B, 11B, 11B)-generated group.
Proof. The cases (11A, 11A, 11A), (11A, 11A, 11B) and (11B, 11B, 11B) follow
by Proposition 4.8 together with the applications of Theorem 2.7. Since by
Proposition 4.2, H6 (or H7) (two nonconjugate copies) is the only maximal sub-
group of G whose order is divisible by 11. we have

∑
H6
(11a, 11b, 11b) = 35

and h(11b,H6) = 1. Similarly
∑

H7
(11a, 11b, 11b) = 35 and h(11b,H7) = 1.

Since by Table 7, we have ∆G(11A, 11B, 11B) = 1476600, we then obtain that
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∆∗
G(11A, 11B, 11B) = ∆G(11A, 11B, 11B)−

∑
H6
(11a, 11b, 11b)−∑

H7
(11a, 11b, 11b) = 1476600 − 35 − 35 = 1476530 > 0, proving that G is a

(11A, 11B, 11B)-generated group. □

Tables : Structure constants of G

Table 4. The structure constants ∆G(2X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B
∆G(2A, 2A, pX) 44 6 84 9 0 5 0 0 0 0
∆G(2A, 2B, pX) 105 24 0 0 0 0 0 0 0 0
∆G(2A, 3A, pX) 28 0 24 0 0 5 0 0 0 0
∆G(2A, 3B, pX) 168 0 0 39 0 30 0 14 0 0
∆G(2A, 3C, pX) 0 0 0 0 45 0 0 0 0 0
∆G(2A, 5A, pX) 56 0 168 18 0 95 0 14 0 0
∆G(2A, 5B, pX) 0 0 0 0 0 0 90 0 44 44
∆G(2A, 7A, pX) 0 0 0 180 0 300 0 175 0 0
∆G(2A, 11A, pX) 0 0 0 0 0 0 100 0 110 220
∆G(2A, 11B, pX) 0 0 0 0 0 0 100 0 220 110
∆G(2B, 2B, pX) 420 84 1260 165 54 225 25 42 0 0
∆G(2B, 3A, pX) 0 24 0 0 0 0 0 0 0 0
∆G(2B, 3B, pX) 0 176 0 180 0 0 25 28 0 0
∆G(2B, 3C, pX) 0 384 0 0 216 0 100 84 110 110
∆G(2B, 5A, pX) 0 144 0 0 0 0 0 28 0 0
∆G(2B, 5B, pX) 0 1152 0 1080 648 0 825 504 660 660
∆G(2B, 7A, pX) 0 576 0 360 162 600 150 644 55 55
∆G(2B, 11A, pX) 0 0 0 0 1620 0 1500 420 2145 1320
∆G(2B, 11B, pX) 0 0 0 0 1620 0 1500 420 1320 2145

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11

Table 5. The structure constants ∆G(3X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B
∆G(3A, 3A, pX) 8 0 25 2 0 5 0 0 0 0
∆G(3A, 3B, pX) 0 0 112 32 3 30 0 7 0 0
∆G(3A, 3C, pX) 0 0 0 20 21 0 0 0 0 0
∆G(3A, 5A, pX) 56 0 168 18 0 40 0 7 0 0
∆G(3A, 5B, pX) 0 0 0 0 0 0 30 0 11 11
∆G(3A, 7A, pX) 0 0 0 90 0 150 0 63 0 0
∆G(3A, 11A, pX) 0 0 0 0 0 0 25 0 110 55
∆G(3A, 11B, pX) 0 0 0 0 0 0 25 0 55 110
∆G(3B, 3B, pX) 728 192 1792 440 42 380 25 168 0 0
∆G(3B, 3C, pX) 0 0 1120 280 390 600 100 224 66 66
∆G(3B, 5A, pX) 336 0 1008 228 54 540 0 140 0 0
∆G(3B, 5B, pX) 0 1152 0 1080 648 0 1080 504 704 704
∆G(3B, 7A, pX) 3360 384 5040 2160 432 3000 150 1428 33 33
∆G(3B, 11A, pX) 0 0 0 0 972 0 1600 252 3212 2332
∆G(3B, 11B, pX) 0 0 0 0 972 0 1600 252 2332 3212
∆G(3C, 3C, pX) 5600 1536 7840 2600 1198 2000 900 840 660 660
∆G(3C, 5A, pX) 0 0 0 360 180 0 100 168 22 22
∆G(3C, 5B, pX) 0 4608 0 4320 5832 7200 440 5376 4928 4928
∆G(3C, 7A, pX) 0 1152 0 2880 1620 3600 1600 3024 990 990
∆G(3C, 11A, pX) 0 11520 0 6480 9720 3600 11200 7560 12760 12760
∆G(3C, 11B, pX) 0 11520 0 6480 9720 3600 11200 7560 12760 12760

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11
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Table 6. The structure constants ∆G(5X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B
∆G(5A, 5A, pX) 1064 0 1344 324 0 428 2 112 0 0
∆G(5A, 5B, pX) 0 0 0 0 648 144 456 336 440 440
∆G(5A, 7A, pX) 3360 384 5040 1800 324 2400 100 1092 11 11
∆G(5A, 11A, pX) 0 0 0 0 324 0 1000 84 1892 1804
∆G(5A, 11B, pX) 0 0 0 0 324 0 1000 84 1804 1892
∆G(5B, 5B, pX) 72576 38016 72576 46656 28512 32832 33984 32256 31680 31680
∆G(5B, 7A, pX) 0 6912 0 6480 10368 7200 9600 8736 9504 9504
∆G(5B, 11A, pX) 80640 69120 60480 69120 72576 72000 72000 72576 76032 69696
∆G(5B, 11B, pX) 80640 69120 60480 69120 72576 72000 72000 72576 69696 76032

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11

Table 7. The structure constants ∆G(7A, qY, rZ) and ∆G(11X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B
∆G(7A, 7A, pX) 42000 8832 45360 18360 5832 23400 2600 11996 825 825
∆G(7A, 11A, pX) 0 5760 0 3240 14580 1800 21600 6300 29700 29700
∆G(7A, 11B, pX) 0 5760 0 3240 14580 1800 21600 6300 29700 29700
∆G(11A, 11A, pX) 403200 138240 302400 228960 187920 295200 158400 226800 147600 162000
∆G(11A, 11B, pX) 201600 224640 604800 315360 187920 309600 172800 226800 147600 147600
∆G(11B, 11B, pX) 403200 138240 302400 228960 187920 295200 158400 226800 162000 147600

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11
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