

Khayyam Journal of Mathematics

emis.de/journals/KJM kjm-math.org

THE (p, q, r)-GENERATIONS OF THE ALTERNATING GROUP A_{11}

AYOUB B. M. BASHEER ${ }^{1}$, MALEBOGO J. MOTALANE ${ }^{1^{*}}$ AND THEKISO T. SERETLO ${ }^{1}$

Communicated by B. Mashayekhy

Abstract

A finite group G is called (l, m, n)-generated, if it is a quotient group of the triangle group $T(l, m, n)=\left\langle x, y, z \mid x^{l}=y^{m}=z^{n}=x y z=1\right\rangle$. Moori posed the question of finding all the (p, q, r) triples, where p, q, and r are prime numbers, such that a non-abelian finite simple group G is a (p, q, r) generated. In this paper, we establish all the (p, q, r)-generations of the alternating group A_{11}. The Groups, Algorithms and Programming and the Atlas of finite group representations are used in our computations.

1. Introduction

Generations of finite groups by suitable subsets are of great interest and have many applications to groups and their representations. For example, the computations of the genus of simple groups can be reduced to the generations of the relevant simple groups (see [34] for details). Also Di Martino, Pellegrini, and Zalesski [26] established a useful connection between the generation of groups by conjugates and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of sporadic simple groups. Recently more attention is given to the generation of finite groups by conjugate elements. Ward, in his PhD thesis [32], considered a generation of a simple group by conjugate involutions satisfying certain conditions. In this paper, we are interested in the generation of the alternating group A_{11} by two elements

[^0]of prime orders not necessarily distinct such that the product is an element of a prime order.

A finite group G is said to be (l, m, n)-generated, if $G=\langle x, y\rangle$, with $o(x)=$ $l, o(y)=m$ and $o(x y)=o(z)=n$. Here $[x]=l X,[y]=m Y$, and $[z]=$ $n Z$, where $[x]$ is the conjugacy class of X in G containing elements of order l. The same applies to $[y]$ and $[z]$. In this, G is also a quotient group of the triangular group $T(l, m, n)$, and, by the definition of the triangular group, G is also a $(\sigma(l), \sigma(m), \sigma(n))$-generated group for any $\sigma \in S_{3}$. Therefore we may assume that $l \leq m \leq n$. In a series of papers [20-24, 27, 28], Moori and Ganief established all possible (p, q, r)-generations, where p, q, and r are distinct primes, of the sporadic groups $J_{1}, J_{2}, J_{3}, H S, M c L, C o_{3}, C o_{2}$, and F_{22}. Ashrafi [3, 4] did the same for the sporadic simple groups $H e$ and $H N$. Also Darafsheh and Ashrafi established in [14-17], the (p, q, r)-generations of the sporadic simple groups $C o_{1}, R u, O^{\prime} N$, and $L y$. The motivation for this study is outlined in these papers, and the reader is encouraged to consult these papers for background material as well as basic computational techniques.

In this paper, we intend to establish all the (p, q, r)-generations of the alternating group A_{11}. For more information on (p, q, r)-generations, the reader is referred to $[1,2]$. We follow the methods used in the papers [5-11]. Note that, in general, if G is a $(2,2, n)$-generated group, then G is a dihedral group and therefore G is not simple. Also by [12], if G is a non-abelian (l, m, n)-generated group, then either $G \cong A_{5}$ or $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}<1$. Thus for our purpose of establishing the (p, q, r)-generations of $G=A_{11}$, the only cases we need to consider are when $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$. The result on the (p, q, r)-generations of A_{11} can be summarized in the following theorem.

Theorem 1.1. With the notation being as in the Atlas [13], the alternating group A_{11} is generated by all the triples (p, q, r), where p, q, and r are primes dividing $\left|A_{11}\right|$, except for the cases $(p, q, r) \in\{(2,3,7),(2 X, 3 Y, 11 Z),(2 A, 5 B, 5 B)$, $(2 X, 5 A, 5 Y),(2 X, 5 Y, 7 A),(2 X, 5 A, 11 Y),(2 A, 7 A, 11 X),(3 V, 3 W, 5 X)$, $(3 V, 3 W, 7 A),(3 A, 3 V, 11 X),(3 B, 3 B, 11 X),(3 V, 5 A, 5 X),(3 A, 5 B, 5 B)$,
$(3 X, 5 Y, 7 A),(3 C, 5 A, 7 A),(3 X, 5 A, 11 Y),(3 V, 7 A, 7 A),(3 A, 7 A, 11 X)$, $(5 A, 5 A, 5 X),(5 A, 5 X, 7 A),(5 A, 5 A, 11 X),(5 A, 7 A, 7 A)\}$ for all $X, Y, Z \in\{A, B\}$ and $V, W \in\{A, B, C\}$.

2. Preliminaries

Let G be a finite group and let $C_{1}, C_{2}, \ldots, C_{k}$ (not necessarily distinct) for $k \geq 3$ be conjugacy classes of G with $g_{1}, g_{2}, \ldots, g_{k}$ being representatives for these classes, respectively.

For a fixed representative $g_{k} \in C_{k}$ and for $g_{i} \in C_{i}, 1 \leq i \leq k-1$, denote by $\Delta_{G}=\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ the number of distinct $(k-1)$-tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right) \in$ $C_{1} \times C_{2} \times \cdots \times C_{k-1}$ such that $g_{1} g_{2} \cdots g_{k-1}=g_{k}$. This number is known as class algebra constant or structure constant. With $\operatorname{Irr}(G)=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{r}\right\}$, the number Δ_{G} is easily calculated from the character table of G through the formula

$$
\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)=\frac{\prod_{i=1}^{k-1}\left|C_{i}\right|}{|G|} \sum_{i=1}^{r} \frac{\chi_{i}\left(g_{1}\right) \chi_{i}\left(g_{2}\right) \cdots \chi_{i}\left(g_{k-1}\right) \overline{\chi_{i}\left(g_{k}\right)}}{\left(\chi_{i}\left(1_{G}\right)\right)^{k-2}}
$$

Also for a fixed $g_{k} \in C_{k}$, we denote by $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ the number of distinct ($k-1$)-tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ satisfying

$$
g_{1} g_{2} \cdots g_{k-1}=g_{k} \quad \text { and } \quad G=\left\langle g_{1}, g_{2}, \ldots, g_{k-1}\right\rangle
$$

Definition 2.1. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)>0$, then the group G is said to be $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$-generated.

Remark 2.2. A group G is $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$-generated if and only if $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots\right.$, $\left.C_{k}\right) \geq 0$.

Furthermore if H is any subgroup of G containing a fixed element $h_{k} \in C_{k}$, we let $\Sigma_{H}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ be the total number of distinct tuples $\left(h_{1}, h_{2}, \ldots, h_{k-1}\right)$ such that

$$
h_{1} h_{2} \cdots h_{k-1}=h_{k} \quad \text { and } \quad\left\langle h_{1}, h_{2}, \ldots, h_{k-1}\right\rangle \leq H
$$

The value of $\Sigma_{H}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ can be obtained as a sum of the structure constants $\Delta_{H}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ of H-conjugacy classes $c_{1}, c_{2}, \ldots, c_{k}$ such that $c_{i} \subseteq H \cap C_{i}$.

Theorem 2.3. Let G be a finite group and let H be a subgroup of G containing a fixed element g such that $\operatorname{gcd}\left(o(g),\left[N_{G}(H): H\right]\right)=1$. Then the number $h(g, H)$ of conjugates of H containing g is $\chi_{H}(g)$, where $\chi_{H}(g)$ is the permutation character of G with action on the conjugates of H. In particular

$$
h(g, H)=\sum_{i=1}^{m} \frac{\left|C_{G}(g)\right|}{\left|C_{N_{G}(H)}\left(x_{i}\right)\right|},
$$

where $x_{1}, x_{2}, \ldots, x_{m}$ are representatives of the $N_{G}(H)$-conjugacy classes fused to the G-class of g.

Proof. See [20] and [22, Theorem 2.1].
The above number $h(g, H)$ is useful in giving a lower bound for $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots\right.$, C_{k}), namely, $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$, where

$$
\Delta_{G}^{*}\left(C_{1}, \ldots, C_{k}\right) \geq \Delta_{G}\left(C_{1}, \ldots, C_{k}\right)-\sum h\left(g_{k}, H\right) \Sigma_{H}\left(C_{1}, \ldots, C_{k}\right)
$$

where g_{k} is a representative of the class C_{k} and the sum is taken over all the representatives H of G-conjugacy classes of maximal subgroups of G containing elements of all the classes $C_{1}, C_{2}, \ldots, C_{k}$. Since we have all the maximal subgroups of the sporadic simple groups except for $G=\mathbb{M}$ the Monster group, it is possible to build a small subroutine in GAP [25] to compute the values of $\Delta_{G}^{*}=\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ for any collection of conjugacy classes and an alternating simple group.

The following results are in some cases useful in establishing nongeneration for finite groups.

Lemma 2.4. Let G be a finite centerless group. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)<\left|C_{G}\left(g_{k}\right)\right|$, $g_{k} \in C_{k}$, then $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)=0$, and therefore G is not $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ generated.
Proof. See [6, Lemma 2.7].
Theorem 2.5 (Ree [29]). Let G be a transitive permutation group generated by permutations $g_{1}, g_{2}, \ldots, g_{s}$ acting on a set of n elements such that $g_{1} g_{2} \cdots g_{s}=1_{G}$. If the generator g_{i} has exactly c_{i} cycles for $1 \leq i \leq s$, then $\sum_{i=1}^{s} c_{i} \leq(s-2) n+2$.

For the alternating group $G=A_{11}$ and by the Atlas of finite group representations [33], we have G acting on 11 points, so that $n=11$, and since our generation is triangular, we have $s=3$. Hence if G is (l, m, n)-generated, then $\sum c_{i} \leq 13$.
Theorem 2.6 (Scott [30]). Let $g_{1}, g_{2}, \ldots, g_{s}$ be elements generating a group G with $g_{1} g_{2} \cdots g_{s}=1_{G}$ and let \mathbb{V} be an irreducible module for G with $\operatorname{dim} \mathbb{V}=n \geq 2$. Let $C_{\mathbb{V}}\left(g_{i}\right)$ denote the fixed point space of $\left\langle g_{i}\right\rangle$ on \mathbb{V} and let d_{i} be the codimension of $C_{\mathbb{V}}\left(g_{i}\right)$ in \mathbb{V}. Then $\sum_{i=1}^{s} d_{i} \geq 2 n$.

With χ being the ordinary irreducible character afforded by the irreducible module \mathbb{V} and $\mathbf{1}_{\left\langle g_{i}\right\rangle}$ being the trivial character of the cyclic group $\left\langle g_{i}\right\rangle$, the codimension d_{i} of $C_{\mathbb{V}}\left(g_{i}\right)$ in \mathbb{V} can be computed using the following formula (see [18]):

$$
\begin{aligned}
d_{i} & =\operatorname{dim}(\mathbb{V})-\operatorname{dim}\left(C_{\mathbb{V}}\left(g_{i}\right)\right)=\operatorname{dim}(\mathbb{V})-\left\langle\chi \downarrow_{\left\langle g_{i}\right\rangle}^{G}, \mathbf{1}_{\left\langle g_{i}\right\rangle}\right\rangle \\
& =\chi\left(1_{G}\right)-\frac{1}{\left|\left\langle g_{i}\right\rangle\right|} \sum_{j=0}^{o\left(g_{i}\right)-1} \chi\left(g_{i}^{j}\right) .
\end{aligned}
$$

Theorem 2.7 ([6, Lemma 2.5]). Let G be a ($2 X, s Y, t Z$)-generated simple group; then G is $\left(s Y, s Y,(t Z)^{2}\right)$-generated.

Theorem 2.8 ([24, Theorem 1.2]). Let G be a finite group and let l, m, and n be integers that are pairwise coprime. Then for any integer t coprime to n, we have

$$
\Delta_{G}(l x, m Y, n Z)=\Delta_{G}\left(l X, m Y,(n Z)^{t}\right)
$$

Moreover, G is $(l X, m Y, n Z)$-generated if and only if G is $\left(l X, m Y,(n Z)^{t}\right)$ generated.We see that $(11 A)^{-1}=11 B$ in A_{11}. As an application of the above theorem, the group A_{11} is $(p, q, 11 A)$-generated if and only if it is $(p, q, 11 B)$ generated. Therefore, it is sufficient to consider only the ($p, q, 11 A$)-generations of A_{11}.

3. The alternating group A_{11}

In this section, we apply the results discussed in Section 2 , to the group A_{11}. We determine all the (p, q, r)-generations of A_{11}, where p, q, and r are primes dividing the order of A_{11}.

The group A_{11} is a simple group of order $19958400=2^{7} \times 3^{4} \times 5^{2} \times 7 \times 11$. By the Atlas of finite groups [13], the group A_{11} has exactly 31 conjugacy classes of
its elements and 7 conjugacy classes of its maximal subgroups. Representatives of these classes of maximal subgroups can be taken as follows:

$$
\begin{array}{lll}
H_{1}=A_{10}, & H_{2}=S_{9}, & H_{3}=\left(A_{8} \times 3\right): 2, \\
H_{4}=\left(A_{7} \times A_{4}\right): 2, & H_{5}=\left(A_{6} \times A_{5}\right): 2, & H_{6}=M_{11}, \\
H_{7}=M_{11} . & &
\end{array}
$$

Throughout this paper, by G, we always mean the alternating group A_{11}, unless stated otherwise. From the electronic Atlas of finite group representations [33], we see that G can be generated in terms of permutations on 11 points. Generators g_{1} and g_{2} can be taken as follows:

$$
\begin{aligned}
& g_{1}=(1,2,3) \\
& g_{2}=(3,4,5,6,7,8,9,10,11)
\end{aligned}
$$

with $o\left(g_{1}\right)=3, o\left(g_{2}\right)=9$, and $o\left(g_{1} g_{2}\right)=11$.
In Table 1, we list the values of the cyclic structure for each conjugacy of G containing elements of prime order together with the values of both c_{i} and d_{i} obtained from Ree and Scotts theorems, respectively.

TABLE 1. Cycle structures of prime order conjugacy classes of G

$n X$	Cycle Structure	c_{i}	d_{i}
$2 A$	$1^{7} 2^{2}$	9	2
$2 B$	$1^{3} 2^{4}$	7	4
$3 A$	$1^{8} 3^{1}$	9	2
$3 B$	$1^{5} 3^{2}$	7	4
$3 C$	$1^{2} 3^{3}$	5	6
$5 A$	$1^{6} 5^{1}$	7	4
$5 B$	$1^{1} 5^{2}$	3	8
$7 A$	$1^{4} 7^{1}$	5	6
$11 A$	11^{1}	1	10
$11 B$	11^{1}	1	10

In Table 2, we list the representatives of classes of the maximal subgroups together with the orbits lengths of G on these groups and the permutation characters.

Table 2. Maximal subgroups of G

Maximal Subgroup	Order	Orbit Lengths	Character
H_{1}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	$[1,10]$	$1 a+10 a$
H_{2}	$2^{7} \cdot 3^{4} \cdot 5 \cdot 7$	$[2,9]$	$1 a+10 a+44 a$
H_{3}	$2^{7} \cdot 3^{3} \cdot 5 \cdot 7$	$[3,8]$	$1 a+10 a+44 a+110 a$
H_{4}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 7$	$[7,4]$	$1 a+10 a+44 a+110 a+165 a$
H_{5}	$2^{6} \cdot 3^{3} \cdot 5^{2}$	$[5,6]$	$1 a+10 a+44 a+110 a+132 a+165 \mathrm{a}$
H_{6}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$[11]$	$1 a+132 a+462 a+825 a+1100 a$
H_{7}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	$[11]$	$1 a+132 a+462 a+825 a+1100 a$

Table 3 gives the partial fusion maps of classes of maximal subgroups into the classes of G. These will be used in our computations.

Table 3. The partial fusion maps into G

$\begin{array}{r} \hline \hline H_{1} \text {-class } \\ \rightarrow G \\ h \end{array}$	$\begin{aligned} & \hline \hline 2 \mathrm{a} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \hline 2 \mathrm{~b} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \hline 3 \mathrm{a} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \hline 3 \mathrm{~b} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{c} \\ & \text { 3C } \end{aligned}$	$\begin{gathered} \hline \hline 5 \mathrm{a} \\ 5 \mathrm{~A} \\ 6 \end{gathered}$	$\begin{gathered} \hline \hline 5 \mathrm{~b} \\ 5 \mathrm{~B} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{a} \\ 7 \mathrm{~A} \\ 4 \\ \hline \end{gathered}$						
$\begin{array}{r} H_{2} \text {-class } \\ \rightarrow G \\ h \\ \hline \end{array}$	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{~b} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{c} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~d} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \mathrm{a} \\ & 3 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~b} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{c} \\ 3 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \hline 5 \mathrm{a} \\ & 5 \mathrm{~A} \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 7 \mathrm{a} \\ 7 \mathrm{~A} \\ 6 \end{gathered}$					
$\begin{array}{r} \hline H_{3} \text {-class } \\ \rightarrow G \\ h \end{array}$	$\begin{aligned} & \hline 2 \mathrm{a} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{~b} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{c} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{~d} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{a} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~b} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{c} \\ 3 \mathrm{C} \end{gathered}$	$\begin{aligned} & \hline 3 \mathrm{~d} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{e} \\ 3 \mathrm{~B} \end{gathered}$	$\begin{aligned} & 5 \mathrm{a} \\ & 5 \mathrm{~A} \\ & 20 \end{aligned}$	$\begin{gathered} \hline 7 \mathrm{a} \\ 7 \mathrm{~A} \\ 4 \end{gathered}$			
$\begin{array}{r} H_{4} \text {-class } \\ \rightarrow G \\ h \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \mathrm{a} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{~b} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{array}{r} \hline 2 \mathrm{c} \\ 2 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 2 \mathrm{~d} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{e} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{a} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~b} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{c} \\ 3 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \hline 3 \mathrm{~d} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{e} \\ 3 \mathrm{C} \end{gathered}$	$\begin{aligned} & \hline 5 \mathrm{a} \\ & 5 \mathrm{~A} \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7 \mathrm{a} \\ 7 \mathrm{~A} \\ 1 \\ \hline \end{gathered}$		
$\begin{array}{r} H_{5} \text {-class } \\ \rightarrow G \\ h \end{array}$	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~b} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{c} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~d} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \mathrm{e} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{a} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{~b} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{array}{r} \hline 3 \mathrm{c} \\ 3 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 3 \mathrm{~d} \\ & 3 \mathrm{~B} \end{aligned}$	$\begin{gathered} 3 \mathrm{e} \\ 3 \mathrm{C} \end{gathered}$	$\begin{gathered} 5 \mathrm{a} \\ 5 \mathrm{~A} \\ 1 \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{~b} \\ 5 \mathrm{~A} \\ 6 \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{c} \\ 5 \mathrm{~B} \\ 1 \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{~d} \\ 5 \mathrm{~B} \\ 1 \end{gathered}$
$\begin{array}{r} H_{6} \text {-class } \\ \rightarrow G \\ h \\ \hline \end{array}$	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 3 \mathrm{a} \\ & 3 \mathrm{C} \end{aligned}$	$\begin{gathered} 5 \mathrm{a} \\ 5 \mathrm{~B} \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \mathrm{a} \\ 11 \mathrm{~A} \\ 1 \end{gathered}$	$\begin{gathered} \hline 11 \mathrm{~b} \\ 11 \mathrm{~B} \\ 1 \\ \hline \end{gathered}$									
$\begin{array}{r} H_{7} \text {-class } \\ \rightarrow G \\ h \end{array}$	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~B} \end{aligned}$	$\begin{gathered} \hline 3 \mathrm{a} \\ 3 \mathrm{C} \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{a} \\ 5 \mathrm{~B} \\ 5 \end{gathered}$	$\begin{gathered} 11 \mathrm{a} \\ 11 \mathrm{~A} \\ 1 \end{gathered}$	$\begin{gathered} \hline 11 \mathrm{~b} \\ 11 \mathrm{~B} \\ 1 \end{gathered}$									

4. $(2, q, r)$-GENERATIONS

Let $p X, p \in\{2,3,5,7,11\}$, be a conjugacy class of G and c_{i} be the number of disjoint cycles in a representative of $p X$. The group G is not $(2 Y, 2 Z, p X)$ generated, for if G is $(2 Y, 2 Z, p X)$-generated, then G is a dihedral group and thus is not simple for all $Y, Z \in\{A, B\}$. Also we know that if G is (l, m, n) generated with $\frac{1}{l}+\frac{1}{m}+\frac{1}{n} \geq 1$ and G is simple, then $G \cong A_{5}$, but $G \cong A_{11}$ and $A_{11} \not \neq A_{5}$. Hence if G is (p, q, r)-generated, then we must have $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$. Now the $(2, q, r)$-generations of G comprise the cases $(2,3, r)-,(2,5, r)-,(2,7, r)$-, and ($2,11, r$)-generations.
4.1. $(2,3, r)$-generations. By using the condition $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$, the group G is $(2,3, r)$-generated if and only if $r \in\{7,11\}$. Thus we have to consider the cases $(2 X, 3 Y, 7 A)$ and $(2 X, 3 Y, 11 Z)$ for all $X, Z \in\{A, B\}, Y \in\{A, B, C\}$.

Proposition 4.1. The group G is not $(2 X, 3 Y, 7 A)$-generated, where $X \in\{A, B\}$, $Y \in\{A, B, C\}$.

Proof. If the group G is $(2 X, 3 Y, 7 A)$-generated then we must have $c_{2 X}+c_{3 Y}+$ $c_{7 A} \leq 13$ where $X \in\{A, B\}$ and $Y \in\{A, B, C\}$. By Table 1, we see that $c_{2 X} \in\{7,9\}$ and $c_{3 Y} \in\{5,7,9\}$, which follows that

$$
c_{2 X}+c_{3 Y}+c_{7 A}=9+c_{3 X}+5>13
$$

for $X \in\{A, B\}$ and $Y \in\{A, B, C\}$. Now using Ree's theorem, it follows that G is not $(2 X, 3 Y, 7 A)$-generated, where $X \in\{A, B\}$ and $Y \in\{A, B, C\}$.

Proposition 4.2. The group G is
(i) neither $(2 X, 3 Y, 11 Z)$ - nor $(2 A, 3 C, 11 Z)$-generated for all $X, Y, Z \in\{A, B\}$,
(ii) $(2 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$.

Proof. (i) Since by Table 4, we have $\Delta_{G}(2 A, 3 A, 11 X)=\Delta_{G}(2 A, 3 B, 11 X)=$ $\Delta_{G}(2 A, 3 C, 11 X)=\Delta_{G}(2 B, 3 A, 11 X)=\Delta_{G}(2 B, 3 B, 11 X)=0$, hence Lemma 2.4 implies that the group G is neither ($2 X, 3 Y, 11 Z$)- nor $(2 A, 3 C, 11 Z)$-generated for all $X, Y, Z \in\{A, B\}$.
(ii) From Table 3 we see H_{6} (or H_{7}) (two nonconjugate copies) is the only maximal subgroup containing elements of orders 2,3 and 11 . The intersection of H_{6} from one conjugacy class with H_{7} from a different conjugacy class has no element of order 11. We obtain that $\sum_{H_{6}}(2 a, 3 a, 11 x)=11$ and $h\left(11 X, H_{6}\right)=1$ (see $[19,35])$. Since by Table 4 we have $\Delta_{G}(2 B, 3 C, 11 X)=110$, we then obtain that $\Delta_{G}^{*}(2 B, 5 B, 11 X)=\Delta_{G}(2 B, 3 C, 11 X)-\sum_{H_{6}}(2 a, 3 a, 11 x)-\sum_{H_{6}}(2 a, 3 a, 11 x)=$ $110-11-11=88>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that the group G is $(2 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$, proving (ii).
4.2. $(2,5, r)$-generations. Using the condition $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1$, the group G is $(2,5, r)$-generated if and only if $r \in\{5,7,11\}$. Thus we have to consider the cases $(2 X, 5 Y, 5 Z),(2 X, 5 Y, 7 A)$ and $(2 X, 5 Y, 11 Z)$ for all $X, Y, Z \in\{A, B\}$.

Proposition 4.3. The group G is
(i) neither $(2 A, 5 B, 5 B)$ - nor $(2 X, 5 A, 5 Y)$-generated for all $X, Y \in\{A, B\}$,
(ii) $(2 B, 5 B, 5 B)$-generated.

Proof. (i) If G is $(2 A, 5 B, 5 B)$-generated group, then we must have $c_{2 A}+c_{5 B}+$ $c_{5 B} \leq 13$. For $r \in\{5 A, 5 B\}$, then by Table 1, we have $c_{r} \in\{3,7\}$ and it follows that

$$
\begin{gathered}
c_{2 A}+c_{5 A}+c_{r}=9+7+c_{r}>13, \\
c_{2 A}+c_{5 B}+c_{r}=9+3+c_{r}>13, \\
c_{2 B}+c_{5 A}+c_{r}=7+7+c_{r}>13 .
\end{gathered}
$$

Now using Ree's theorem [29], it follows that G is not $(2 A, 5 B, 5 B)$-generated. The same applies to $(2 X, 5 A, 5 Y)$ for all $X, Y \in\{A, B\}$. Thus G is neither $(2 A, 5 B, 5 B)$ - nor $(2 X, 5 A, 5 Y)$-generated for all $X, Y \in\{A, B\}$, proving (i).
(ii) From Table 3, we can see that all the maximal subgroups of G have elements of order 5 . Let T be the set of all maximal subgroups of G. We are looking at various intersections of these maximal subgroups to determine their contributions in the calculations of $\Delta_{G}^{*}(2 B, 5 B, 5 B)$. We have the following:

- The intersection of any 6 or 7 maximal subgroups of T does not contain elements of order 5 .
- Although some of the intersections of any 3,4 , or 5 maximal subgroups of T contains elements of order 5 , they will be no contributions because none of their elements of order 5 fuses to $5 B$.
- The intersection of any two maximal subgroups of T having contributions here is only $H_{1} \cap H_{6} \cong A_{6} \cdot 2$ (or $H_{1} \cap H_{7} \cong A_{6} \cdot 2$) and $\left(H_{5}\right) \cap H_{6} \cong 5: 4$
(or $H_{5} \cap H_{7} \cong 5: 4$), because their elements of orders 2 and 5 fuse to $2 B$ and $5 B$, respectively.
We see that $H_{1}, H_{5}, H_{6}\left(\right.$ or $\left.H_{7}\right), H_{1} \cap H_{6}$, and $H_{5} \cap H_{6}$ (or $H_{5} \cap H_{7}$) are the only subgroups having their elements of orders 2 and 5 fusing to $2 B$ and $5 B$, respectively. By Table 4, we have $\Delta_{G}(2 B, 5 B, 5 B)=825$ and we also obtain that $\sum_{H_{1}}(2 b, 5 b, 5 b)=225, \sum_{H_{5}}(2 c, 5 x, 5 y)=\Delta_{H_{5}}(2 c, 5 c, 5 c)+\Delta_{H_{5}}(2 c, 5 c, 5 d)+$ $\Delta_{H_{5}}(2 c, 5 d, 5 d)=50+50+50=150, \sum_{H_{6}}(2 a, 5 a, 5 a)=45, \sum_{H_{1} \cap H_{6}}(2 a, 5 a, 5 a)=$ 53 and $\Delta_{H_{5} \cap H_{6}}(2 a, 5 a, 5 a)=3$. We find that $h\left(5 B, H_{1}\right)=1=h\left(5 B, H_{5}\right)$, and $h\left(5 B, H_{6}\right)=h\left(5 B, H_{1} \cap H_{6}\right)=h\left(5 B, H_{5} \cap H_{6}\right)=5$. It then follows that

$$
\begin{aligned}
\Delta_{G}^{*}(2 B, 5 B, 5 B)= & \Delta_{G}(2 B, 5 B, 5 B)-\sum_{H_{1}}(2 b, 5 b, 5 b)-\sum_{H_{5}}(2 c, 5 x, 5 y) \\
& -5 \cdot \sum_{H_{6}}(2 a, 5 a, 5 a)-5 \cdot \sum_{H_{7}}(2 a, 5 a, 5 a) \\
& +5 \cdot \sum_{H_{1} \cap H_{6}}(2 a, 5 a, 5 a)+5 \cdot \sum_{H_{1} \cap H_{7}}(2 a, 5 a, 5 a) \\
& +5 \cdot \sum_{H_{5} \cap H_{6}}(2 a, 5 a, 5 a)+5 \cdot \sum_{H_{5} \cap H_{7}}(2 a, 5 a, 5 a) \\
= & 825-1(225)-1(150)-5(45)-5(45) \\
& +5(53)+5(53)+5(3)+5(3)=560>0 .
\end{aligned}
$$

Hence the group G is $(2 B, 5 B, 5 B)$-generated, proving (ii).
Proposition 4.4. The group G is not $(2 X, 5 Y, 7 A)$-generated for all $X, Y \in$ $\{A, B\}$.

Proof. If G is a $(2 X, 5 Y, 7 A)$-generated group, then we must have $c_{2 X}+c_{5 Y}+c_{7 A} \leq$ 13 for all $X, Y \in\{A, B\}$. From Table 1, we see that

$$
\begin{aligned}
& c_{2 A}+c_{5 A}+c_{7 A}=9+7+5>13 \\
& c_{2 A}+c_{5 B}+c_{7 A}=9+3+5>13 \\
& c_{2 B}+c_{5 A}+c_{7 A}=7+7+5>13 \\
& c_{2 B}+c_{5 B}+c_{7 A}=7+3+5>13
\end{aligned}
$$

It follows by Ree's theorem that G is not $(2 X, 5 Y, 7 A)$-generated for all $X, Y \in$ $\{A, B\}$.

Proposition 4.5. The group G is
(i) not $(2 X, 5 A, 11 Y)$-generated for all $X, Y \in\{A, B\}$,
(ii) $(2 X, 5 B, 11 Y)$-generated for all $X, Y \in\{A, B\}$.

Proof. (i) By Table 4, we see that $\Delta_{G}(2 X, 5 A, 11 Y)=0$ and by Lemma 2.4, G is not $(2 X, 5 A, 11 Y)$-generated for all $X, Y \in\{A, B\}$ and (i) is complete.
(ii) From Table 3, we see that H_{6} (or H_{7}) (two nonconjugate copies) is the only maximal subgroup containing elements of orders 2, 5, and 11. The intersection of H_{6} from one conjugacy class with H_{7} from a different conjugacy class has no element of order 11. No element of order 2 from this maximal subgroup
fuses to the class $2 A$ of G. By Table 4, we then obtain that $\Delta_{G}^{*}(2 A, 5 B, 11 X)=$ $\Delta_{G}(2 A, 5 B, 11 X)=44>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that the group G is $(2 A, 5 B, 11 X)$-generated for $X \in\{A, B\}$. Also, we obtain that $\sum_{H_{6}}(2 a, 5 a, 11 x)=33$ and we find that $h\left(11 X, H_{6}\right)=1$ (or $h\left(11 X, H_{7}\right)=$ 1). Since by Table 4 , we have $\Delta_{G}(2 B, 5 B, 11 X)=660$, we then obtain that $\Delta_{G}^{*}(2 B, 5 B, 11 X)=\Delta_{G}(2 B, 5 B, 11 X)-\sum_{H_{6}}(2 a, 5 a, 11 x)-\sum_{H_{7}}(2 a, 5 a, 11 x)=$ $660-33-33=594>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that the group G is $(2 B, 5 B, 11 X)$-generated for $X \in\{A, B\}$.
4.3. $(2,7, r)$-generations. Here we have to check the generation of G through the triples $(2 A, 7 A, 7 A)-,(2 A, 7 A, 11 A)-,(2 A, 7 A, 11 B)_{-},(2 B, 7 A, 7 A)-$, $(2 B, 7 A, 11 A)$-, and $(2 B, 7 A, 11 B)$-generation.

Proposition 4.6. The group G is
(i) $(2 A, 7 A, 7 A)$-generated,
(ii) not $(2 B, 7 A, 7 A)$-generated.

Proof. (i) From Table 3, we find only four maximal subgroups of G each have an element of order 7 , namely, H_{1}, H_{2}, H_{3}, and H_{4}. We have $H_{1} \cap H_{2} \cong A_{9}$, $H_{1} \cap H_{3} \cong S_{8} \cong A_{8}: 2, H_{1} \cap H_{4} \cong C_{3}: S_{7}, H_{2} \cap H_{3} \cong S_{8}, H_{2} \cap H_{4} \cong C_{2}: S_{7}$, $H_{3} \cap H_{4} \cong A_{7}: S_{3}, H_{1} \cap H_{2} \cap H_{3} \cong A_{8}, H_{1} \cap H_{2} \cap H_{4} \cong S_{7}, H_{1} \cap H_{3} \cap H_{4} \cong$ $S_{7}, H_{2} \cap H_{3} \cap H_{4} \cong S_{7}$, and $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \cong A_{7}$. By Table 4 we have $\Delta_{G}(2 A, 7 A, 7 A)=175$. We obtain that

$$
\begin{aligned}
\sum_{H_{1}}(2 a, 7 a, 7 a) & =140, \\
\sum_{H_{2}}(2 x, 7 a, 7 a) & =\Delta_{H_{2}}(2 a, 7 a, 7 a)+\Delta_{H_{2}}(2 c, 7 a, 7 a)=105+0=105, \\
\sum_{H_{3}}(2 x, 7 a, 7 a) & =\Delta_{H_{3}}(2 b, 7 a, 7 a)+\Delta_{H_{3}}(2 c, 7 a, 7 a)=70+0=70, \\
\sum_{H_{4}}(2 x, 7 a, 7 a) & =\Delta_{H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{4}}(2 b, 7 a, 7 a)+\Delta_{H_{4}}(2 d, 7 a, 7 a) \\
& =0+35+0=35, \\
\sum_{H_{1} \cap H_{2}}(2 b, 7 a, 7 a) & =105, \\
\sum_{H_{1} \cap H_{3}}(2 x, 7 a, 7 a) & =\Delta_{H_{1} \cap H_{3}}(2 a, 7 a, 7 a)+\Delta_{H_{1} \cap H_{3}}(2 c, 7 a, 7 a) \\
& =35+0=35, \\
\sum_{H_{1} \cap H_{4}}(2 x, 7 a, 7 a) & =\Delta_{H_{1} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{1} \cap H_{4}}(2 c, 7 a, 7 a) \\
& =35+0=35, \\
\sum_{H_{2} \cap H_{3}}(2 x, 7 a, 7 a) & =\Delta_{H_{2} \cap H_{3}}(2 a, 7 a, 7 a)+\Delta_{H_{2} \cap H_{3}}(2 b, 7 a, 7 a)=70+0=70,
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{H_{2} \cap H_{4}}(2 x, 7 a, 7 a)= \Delta_{H_{2} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{2} \cap H_{4}}(2 b, 7 a, 7 a) \\
&+\Delta_{H_{2} \cap H_{4}}(2 c, 7 a, 7 a)+\Delta_{H_{2} \cap H_{4}}(2 d, 7 a, 7 a) \\
&= 0+0+0+35=35, \\
& \sum_{H_{3} \cap H_{4}}(2 x, 7 a, 7 a)= \Delta_{H_{3} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{3} \cap H_{4}}(2 c, 7 a, 7 a) \\
&= 0+35=35, \\
& \sum_{H_{1} \cap H_{2} \cap H_{3}}(2 b, 7 x, 7 y)= \Delta_{H_{1} \cap H_{2} \cap H_{3}}(2 b, 7 a, 7 a)+\Delta_{H_{1} \cap H_{2} \cap H_{3}}(2 b, 7 a, 7 b) \\
&+\Delta_{H_{1} \cap H_{2} \cap H_{3}}(2 b, 7 b, 7 b)=28+42+28=98, \\
& \sum_{H_{1} \cap H_{2} \cap H_{4}}(2 x, 7 a, 7 a)= \Delta_{H_{1} \cap H_{2} \cap H_{4}}(2 b, 7 a, 7 a)+\Delta_{H_{1} \cap H_{2} \cap H_{4}}(2 c, 7 a, 7 a) \\
&= 35+0=35, \\
& \sum_{H_{1} \cap H_{3} \cap H_{4}}(2 x, 7 a, 7 a)= \Delta_{H_{1} \cap H_{3} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{1} \cap H_{3} \cap H_{4}}(2 c, 7 a, 7 a) \\
&= 0+35=35, \\
& \sum_{H_{2}}(2 x, 7 a, 7 a)= \Delta_{H_{2} \cap H_{3} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{2} \cap H_{3} \cap H_{4}}(2 b, 7 a, 7 a) \\
&= 35+0=35, \\
& H_{2} \cap H_{3} \cap H_{4} \\
& \sum_{H_{2}}(2 a, 7 x, 7 x)= \Delta_{H_{1} \cap H_{2} \cap H_{3} \cap H_{4}}(2 a, 7 a, 7 a)+\Delta_{H_{1} \cap H_{2} \cap H_{3} \cap H_{4}}(2 a, 7 a, 7 b) \\
&+\Delta_{H_{1} \cap H_{2} \cap H_{3} \cap H_{4}}(2 a, 7 b, 7 b) \\
&= 7+28+7=42 .
\end{aligned}
$$

We find that

$$
\begin{aligned}
h\left(7 A, H_{1}\right) & =h\left(7 A, H_{3}\right)=h\left(7 A, H_{1} \cap H_{4}\right)=h\left(7 A, H_{3} \cap H_{4}\right)=4, \\
h\left(7 A, H_{2}\right) & =h\left(7 A, H_{2} \cap H_{4}\right)=6, \quad h\left(7 A, H_{4}\right)=1, \\
h\left(7 A, H_{1} \cap H_{2}\right) & =h\left(7 A, H_{1} \cap H_{3}\right)=h\left(7 A, H_{2} \cap H_{3}\right)=h\left(7 A, H_{1} \cap H_{2} \cap H_{3}\right) \\
& =h\left(7 A, H_{1} \cap H_{2} \cap H_{4}\right)=h\left(7 A, H_{1} \cap H_{3} \cap H_{4}\right) \\
& =h\left(7 A, H_{2} \cap H_{3} \cap H_{4}\right)=h\left(7 A, H_{1} \cap H_{2} \cap H_{3} \cap H_{4}\right)=12 .
\end{aligned}
$$

We then obtain that

$$
\begin{aligned}
\Delta_{G}^{*}(2 A, 7 A, 7 A)= & \Delta_{G}(2 A, 7 A, 7 A)-4 \cdot \sum_{H_{1}}(2 a, 7 a, 7 a)-6 \cdot \sum_{H_{2}}(2 x, 7 a, 7 a) \\
& -4 \cdot \sum_{H_{3}}(2 x, 7 a, 7 a)-\sum_{H_{4}}(2 x, 7 a, 7 a) \\
& +12 \cdot \sum_{H_{1} \cap H_{2}}(2 b, 7 a, 7 a)+12 \cdot \sum_{H_{1} \cap H_{3}}(2 x, 7 a, 7 a)
\end{aligned}
$$

$$
\begin{aligned}
& +12 \cdot \sum_{H_{1} \cap H_{4}}(2 x, 7 a, 7 a)+12 \cdot \sum_{H_{2} \cap H_{3}}(2 x, 7 a, 7 a) \\
& +12 \cdot \sum_{H_{2} \cap H_{4}}(2 x, 7 a, 7 a)+12 \cdot \sum_{H_{3} \cap H_{4}}(2 x, 7 a, 7 a) \\
& -12 \cdot \sum_{H_{1} \cap H_{2} \cap H_{3}}(2 b, 7 a, 7 a)-12 \cdot \sum_{H_{1} \cap H_{2} \cap H_{4}}(2 x, 7 a, 7 a) \\
& -12 \cdot \sum_{H_{1} \cap H_{3} \cap H_{4}}(2 x, 7 a, 7 a)-12 \cdot \sum_{H_{2} \cap H_{3} \cap H_{4}}(2 x, 7 a, 7 a) \\
& \quad+12 \cdot \sum_{H_{1} \cap H_{2} \cap H_{3} \cap H_{4}}(2 a, 7 x, 7 y) \\
& =175-4(140)-6(105)-4(70)-1(35)+12(105)+12(70) \\
& \quad+4(35)+12(70)+6(35)+4(35)-12(98)-12(35)-12(35) \\
& \quad+12(42)=588>0,
\end{aligned}
$$

proving that G is $(2 A, 7 A, 7 A)$-generated.
(ii) We compute the structure constant $\Delta_{A_{11}}=\Delta_{A_{11}}(2 B, 7 A, 7 A)=644$. The only maximal subgroups of A_{11} that can potentially contribute to the structure constant $\Delta_{A_{11}}$ are isomorphic to $A_{10}, S_{9},\left(A_{8} \times 3\right): 2$, and $\left(A_{7} \times A_{4}\right): 2$. We calculate now contribution from each these maximal subgroups to $\Delta_{A_{11}}$.

First, we consider the group $\Sigma_{\left(A_{7} \times A_{4}\right): 2}$. The $2 B$-class of A_{11} does not meet the group A_{7}. We have $\Sigma_{A_{7}}=0$. Further, as $\Sigma_{\left(A_{7} \times A_{4}\right): 2}=\Sigma_{A_{7}}$, we have $\Sigma_{\left(A_{7} \times A_{4}\right): 2}^{*}=$ 0 . This means that the maximal subgroup $\left(A_{7} \times A_{4}\right): 2$ does not contribute to $\Delta_{A_{11}}$.

For the group $\left(A_{8} \times 3\right): 2$, we calculate $\Sigma_{\left(A_{8} \times 3\right): 2}=\Sigma_{A_{8}}=35$. Up to isomorphism, A_{7} and $2^{3}: L_{3}(2)$ (two nonconjugate copies) are the only maximal subgroups of A_{8}. From the above case, we know that $\Sigma_{A_{7}}=0$. Next consider the subchain of groups $2^{3}: 7<\left(2^{3}: 7\right): 3<2^{3}: L_{3}(2)$. We compute that $\Sigma_{2^{3}: 7}^{*}=\Sigma_{2^{3}: 7}=7$ and $\Sigma_{\left(2^{3}: 7\right): 3}=7=\Sigma_{2^{3}: L_{3}(2)}$. As $\left|N_{\left(2^{3}: 7\right): 3}\left(2^{3}: 7\right)\right|=\left(2^{3}: 7\right): 3=N_{2^{3}: L_{3}(2)}\left(2^{3}: 7\right)$, we obtain that a fixed $z \in 7 A$ is contained in a unique copy of each of $\left(2^{3}: 7\right): 3-$ conjugate of $2^{3}: 7$ and $2^{3}: L_{3}(2)$ groups. Thus we obtain $\Sigma_{\left(2^{3}: 7\right): 3}^{*}=\Sigma_{\left(2^{3}: 7\right): 3}-\Sigma_{2^{3}: 7}=$ $7-7=0$ and $\Sigma_{\left(2^{3}: L_{3}(2)\right)}^{*}=\Sigma_{2^{3}: L_{3}(2)}-\Sigma_{2^{3}: 7}=7-7=0$. Observe that, the only contribution toward $\Sigma_{A_{8}}$ so far is coming from a unique conjugate of $2^{3}: 7$. As there are two nonconjugate copies of $2^{3}: L_{3}(2)$, we compute

$$
\Sigma_{A_{8}}^{*}=\Sigma_{A_{8}}-2 \Sigma_{2^{3}: 7}=35-2(7)=21
$$

Next, we treat the maximal group S_{9}. We compute $\Sigma_{S_{9}}=\Sigma_{A_{9} .2}=\Sigma_{A_{9}}=$ 154. From the list of maximal subgroups of A_{9}, observe that the $(2 B, 7 A, 7 A)$ generated proper subgroups of A_{11} are contained in the subgroups isomorphic to S_{7}, A_{8}, or $2^{3}: L_{2}(8)$ (two nonconjugate copies). From above, we have $\Sigma_{S_{7}}=$ $\Sigma_{A_{7} .2}=0$ as $A_{7} \cap 2 B=\emptyset$. Also $\Sigma_{A_{8}}^{*}=21$. We investigate contribution from $L_{2}(8): 3$ to $\Delta_{A_{11}}$. We calculate $\Sigma_{L_{2}(8): 3}=\Sigma_{L_{2}(8)}=28$ and $\Sigma_{2^{3}: 7}^{*}=7$. Since $2^{3}: 7<L_{2}(8)$ and a fixed element $z \in 7 A$ lies in two $L_{2}(8)$-conjugates of $2^{3}: 7$, we
have

$$
\Sigma_{L_{2}(8)}^{*}=\Sigma_{L_{2}(8)}-2 \Sigma_{2^{3}: 7}=28-2(7)=14 .
$$

We now collect the total contribution coming from A_{9} to $\Delta_{A_{11}}$. Note that a fixed element z of order 7 (in A_{11}) lies in two, two and four A_{9}-conjugates of groups $A_{8}, L_{2}(8)$, and $2^{3}: 7$, respectively. We obtain

$$
\begin{aligned}
\Sigma_{A_{9}}^{*} & =\Sigma_{A_{9}}-2 \Sigma_{A_{8}}^{*}-2 \Sigma_{L_{2}(8)}^{*}-4 \Sigma_{2^{3}: 7}^{*} \\
& =154-2(28)-2(14)-4(7)=56
\end{aligned}
$$

Finally, it remains to compute contribution from the group A_{10}. We calculate $\Sigma\left(A_{10}\right)=644$. From the list of maximal subgroups of A_{10}, the groups that may contain $(2 B, 7 A, 7 A)$-generated proper subgroups, up to isomorphism, are A_{9}, S_{8}, and $\left(A_{7} \times 3\right): 2$. In fact, we have already contributions from these groups as $\Sigma_{S_{8}}=\Sigma_{A_{8} .2}=\Sigma_{A_{8}}, \Sigma_{A_{9}}^{*}=56$, and $\Sigma_{\left(A_{7} \times 3\right): 2}=\Sigma_{A_{7}}=0$. As, $N_{A_{10}}\left(A_{8}\right)=S_{8}$, $N_{A_{10}}\left(L_{2}(8)\right)=3: L_{2}(8), N_{A_{10}}\left(2^{3}: 7\right)=\left(2^{3}: 7\right): 3$, and A_{9} is self normalized in A_{10} being maximal in A_{10}. A fixed element $z \in 7 B$ is contained in three, three, six and six A_{10}-conjugates of groups $A_{9}, A_{8}, L_{2}(8)$, and $2^{3}: 7$, respectively. We calculate that

$$
\begin{aligned}
\Sigma_{A_{10}}^{*} & =\Sigma_{A_{10}}-3 \Sigma_{A_{9}}^{*}-3 \Sigma_{A_{8}}^{*}-6 \Sigma_{L_{2}(8)}^{*}-6 \Sigma_{2^{3}: 7} \\
& =357-3(56)-3(21)-6(14)-6(7)=0 .
\end{aligned}
$$

To summarize, the only proper $(2 B, 7 A, 7 A)$-subgroups of A_{11} are $A_{9}, A_{8}, 2^{3}: 7$, and $L_{2}(8)$. As the respective numbers of A_{11}-conjugates of these subgroups containing a fixed element $z \in 7 A$ are six, four, six and twelve, we obtain

$$
\begin{aligned}
\Delta_{A_{11}}^{*} & \leq \Delta_{A_{11}}-6 \Sigma_{A_{9}}^{*}-4 \Sigma_{A_{8}}^{*}-6 \Sigma_{2^{3}: 7}-12 \Sigma_{L_{2}(8)}^{*} \\
& =644-6(56)-4(21)-6(7)-12(14) \\
& =14<84=\left|C_{A_{11}}(7 A)\right|
\end{aligned}
$$

which establishes that A_{11} is not $(2 B, 7 A, 7 A)$-generated.
Proposition 4.7. The group G is
(i) $\operatorname{not}(2 A, 7 A, 11 X)$-generated for $X \in\{A, B\}$,
(ii) $(2 B, 7 A, 11 X)$-generated for $X \in\{A, B\}$.

Proof. (i) Table 4 gives that $\Delta_{G}(2 A, 7 A, 11 X)=0$ for $X \in\{A, B\}$ and thus the result holds.
(ii) By Table 3, we see that none of the maximal subgroups of G have elements of orders 7 and 11. By Table 4, we obtain that $\Delta_{G}^{*}(2 B, 7 A, 11 X)=$ $\Delta_{G}(2 B, 7 A, 11 X)=55>0$ for $X \in\{A, B\}$.
4.4. $(2,11, r)$-generations. Also here we have to check for the generation of G through the triples $(2 A, 11 A, 11 A)-,(2 A, 11 A, 11 B)-(2 A, 11 B, 11 B)-$,
$(2 B, 11 A, 11 A)-,(2 B, 11 A, 11 B)$ - and $(2 B, 11 B, 11 B)$-generation. We handle all these cases in the following proposition.

Proposition 4.8. The group G is $(2 X, 11 Y, 11 Z)$-generated for all $X, Y, Z \in$ $\{A, B\}$.

Proof. As in Proposition 4.5, the two noncojugate copies of $H_{6}\left(\right.$ or $\left.H_{7}\right)$ contain elements of orders 2 and 11. No maximal subgroup of G meets the classes $2 A$, $11 A$, and $11 B$ of G. Thus $\Delta_{G}^{*}(2 A, 11 A, 11 B)=\Delta_{G}(2 A, 11 A, 11 B)=220>0$, $\Delta_{G}^{*}(2 A, 11 A, 11 A)=\Delta_{G}(2 A, 11 A, 11 A)=110>0$, and $\Delta_{G}^{*}(2 A, 11 B, 11 B)=$ $\Delta_{G}(2 A, 11 B, 11 B)=110>0$. This proves that G is $(2 A, 11 A, 11 B)-$, $(2 A, 11 A, 11 A)$-, and $(2 A, 11 B, 11 B)$-generated.

We obtain that $\sum_{H_{6}}(2 a, 11 x, 11 y)=\sum_{H_{7}}(2 a, 11 x, 11 y)=11$ for all $x, y \in$ $\{a, b\}$, and we have $h\left(11 X, H_{6}\right)=1$ or $\left(h\left(11 X, H_{7}\right)=1\right)$ for $X \in\{A, B\}$. By Table 4 , we have $\Delta_{G}(2 B, 11 A, 11 B)=1320$ and $\Delta_{G}(2 B, 11 A, 11 A)=2145=$ $\Delta_{G}(2 B, 11 B, 11 B)$. It renders that $\Delta_{G}^{*}(2 B, 11 A, 11 B)=1320-11-11=1298>0$ and $\Delta_{G}^{*}(2 B, 11 A, 11 A)=\Delta_{G}^{*}(2 B, 11 B, 11 B)=2145-11-11=2123>0$, proving that G is $(2 B, 11 A, 11 B)-,(2 B, 11 A, 11 A)$-, and $(2 B, 11 B, 11 B)$-generated.

5. $(3, q, r)$-GENERATIONS

In this section, we handle all the possible ($3, q, r$)-generations, namely $(3 X, 3 Y, 5 A)-,(3 X, 3 Y, 5 B)-,(3 X, 3 Y, 7 A)-,(3 X, 3 Y, 11 A)-,(3 X, 3 Y, 11 B)-$, $(3 X, 5 A, 5 A)-,(3 X, 5 A, 5 B)-,(3 X, 5 A, 7 A)-,(3 X, 5 A, 11 A)-,(3 X, 5 A, 11 B)-$, $(3 X, 5 B, 5 B)-,(3 X, 5 B, 7 A)-,(3 X, 5 B, 11 A)-,(3 X, 5 B, 11 B)-,(3 X, 7 A, 7 A)-$, $(3 X, 7 A, 11 A)-,(3 X, 7 A, 11 B)-,(3 X, 11 A, 11 A)-,(3 X, 11 A, 11 B)-$, and $(3 X, 11 B, 11 B)$-generations.

5.1. ($3,3, r$)-generations.

Proposition 5.1. The group G is neither $(3 X, 3 Y, 5 Z)$ - nor $(3 X, 3 Y, 7 A)$-generated group for all $X, Y \in\{A, B, C\}$ and $Z \in\{A, B\}$.

Proof. The group G acts on a 10 -dimensional irreducible complex module \mathbb{V}. Applying Scott's theorem to the module \mathbb{V} and using the Atlas of finite groups, we get

$$
\begin{aligned}
& d_{3 A}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(3 A)\right)=\frac{2(10-7)}{3}=2, \\
& d_{3 B}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(3 B)\right)=\frac{2(10-4)}{3}=4, \\
& d_{3 C}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(3 C)\right)=\frac{2(10-1)}{3}=6, \\
& d_{5 A}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(5 A)\right)=\frac{4(10-5)}{5}=4, \\
& d_{5 B}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(5 B)\right)=\frac{4(10-0)}{5}=8, \\
& d_{7 A}=\operatorname{dim}\left(\mathbb{V} / C_{\mathbb{V}}(7 A)\right)=\frac{6(10-3)}{7}=6
\end{aligned}
$$

For the cases $(3 A, 3 A, n X)$, we get $d_{3 A}+d_{3 A}+d_{n X}=2 \times 2+d_{n X}<2 \times 10$ and hence by Scott's theorem, G is not $(3 A, 3 A, n X)$-generated for all $n X \in\{5 A, 5 B, 7 A\}$. We get nongenerations when Scott's theorem is applied to the following cases $(3 A, 3 B, n X),(3 A, 3 C, n X),(3 B, 3 B, n X),(3 B, 3 C, n X)$, and $(3 C, 3 C, n X)$ for all $n X \in\{5 A, 5 B, 7 A\}$.

Proposition 5.2. The group G is
(i) neither $(3 A, 3 X, 11 Y)$ - nor $(3 B, 3 B, 11 Y)$-generated for $X \in\{A, B, C\}$ and $Y \in\{A, B\}$,
(ii) $(3 B, 3 C, 11 X)$ - and $(3 C, 3 C, 11 X)$-generated for $X \in\{A, B\}$.

Proof. (i) By Table 5, we see that $\Delta_{G}(3 A, 3 X, 11 Y)=0=\Delta_{G}(3 B, 3 B, 11 Y)$ for $X \in\{A, B, C\}$ and $Y \in\{A, B\}$. Hence, G is neither $(3 A, 3 X, 11 Y)$ - nor $(3 B, 3 B, 11 Y)$-generated for $X \in\{A, B, C\}$ and $Y \in\{A, B\}$.
(ii) No maximal subgroup of G meets the classes $3 B, 3 C$, and $11 A$ or $11 B$ of G. By Table 5, we then obtain that $\Delta_{G}^{*}(3 B, 3 C, 11 X)=\Delta_{G}(3 B, 3 C, 11 X)=66>0$, proving that G is $(3 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$. Now we prove that G is $(3 C, 3 C, 11 X)$-generated for $X \in\{A, B\}$. By Proposition 4.2, we prove that G is $(2 B, 3 C, 11 X)$-generated for $X \in\{A, B\}$. It follows by Theorem 2.7 that G is $\left(3 C, 3 C,(11 A)^{2}\right)$ - and $\left(3 C, 3 C,(11 B)^{2}\right)$-generated. By GAP, we see that $(11 A)^{2}=11 B$ and $(11 B)^{2}=11 A$, and thus G is $(3 C, 3 C, 11 X)$-generated for $X \in\{A, B\}$.

5.2. ($3,5, r$)-generations.

Proposition 5.3. The group G is
(i) neither $(3 X, 5 A, 5 Y)$ - nor $(3 A, 5 B, 5 B)$ generated for $X \in\{A, B, C\}$ and $Y \in\{A, B\}$, while G is,
(ii) $(3 X, 5 B, 5 B)$-generated for $X \in\{B, C\}$.

Proof. (i) If G is a $(3 X, 5 A, 5 Y)$-generated group, then we must have $c_{3 X}+c_{5 A}+$ $c_{5 Y} \leq 13$ where $X \in\{A, B, C\}$ and $Y \in\{A, B\}$. Since by Table 1, we have $c_{3 X} \in\{5,7,9\}$ for $X \in\{A, B, C\}$, we then obtain by the same Table 1 that

$$
\begin{aligned}
c_{3 X}+c_{5 A}+c_{5 A} & =c_{3 X}+7+7>13 \\
c_{3 X}+c_{5 A}+c_{5 B} & =c_{3 X}+7+3>13
\end{aligned}
$$

Now using Ree's theorem, it follows that G is not $(3 X, 5 A, 5 Y)$-generated for $X \in\{A, B, C\}$ and $Y \in\{A, B\}$. Again by Table 1, we have $c_{3 A}+c_{5 B}+c_{5 B}=$ $9+3+3>13$ and by Ree's theorem, the group G is not $(3 A, 5 B, 5 B)$-generated.
(ii) We show that G is $(3 X, 5 B, 5 B)$-generated for $X \in\{B, C\}$. We firstly consider the triple $(3 B, 5 B, 5 B)$. By Table 5 , we have $\Delta_{G}(3 B, 5 B, 5 B)=1080$. We notice that the elements of order 3 for both H_{6} and $H_{1} \cap H_{6}$ do not fuse to $3 B$, and also $H_{5} \cap H_{6}$ does not have elements of order 3. Therefore there is no any contributions here. We obtain that $\sum_{H_{1}}(3 b, 5 b, 5 b)=650$ and $\sum_{H_{5}}(3 b, 5 x, 5 y)=$ $\Delta_{H_{5}}(3 b, 5 c, 5 c)+\Delta_{H_{5}}(3 b, 5 c, 5 d)+\Delta_{H_{5}}(3 b, 5 d, 5 d)=5+10+5=20$. We then obtain that

$$
\begin{aligned}
\Delta_{G}^{*}(3 B, 5 B, 5 B) & =\Delta_{G}(3 B, 5 B, 5 B)-\sum_{H_{1}}(3 b, 5 b, 5 b)-\sum_{H_{5}}(3 b, 5 x, 5 y) \\
& =1080-1(650)-1(20)=410>0
\end{aligned}
$$

We turn to the other case, namely, the triple $(3 C, 5 B, 5 B)$. In order to show that $(3 C, 5 B, 5 B)$ is a generating triple of A_{11}, we consider its 10 -dimensional irreducible representation over \mathbb{F}_{2} (see [33]). The group $A_{11}=\langle a, b\rangle$ is generated by its standard generators a and b, where a and b are 10×10 matrices over \mathbb{F}_{2} with
orders 3 and 9 , respectively such that a is in class $3 A$ and $a b$ has order 11. Then via GAP, we produce $c=a b^{3} a^{-1} b^{2}(b a)^{3} b^{3} a b a^{-1}$ and $d=a b^{-1} a b^{2} a^{-1} b^{4} a b^{-1} a^{-1} b^{2} a b^{2}$ such that c and d are in $5 B$ and $c d \in 12 A$. Set $y=c$ and $x=d c^{-1}$; then we see that $P=\langle x, y\rangle$ and such that $x \in 3 C, y \in 5 B$ and $x y \in 5 B$. Moreover, there are elements of order 5,7 , and 11 in P. As A_{11} has no proper subgroup divisible by $5 \times 7 \times 11$, we have $A_{11}=\langle x, y\rangle=P$, as claimed. Hence (ii) follows.

Proposition 5.4. The group G is
(i) neither $(3 X, 5 Y, 7 A)$ - nor $(3 C, 5 A, 7 A)$-generated for all $X, Y \in\{A, B\}$,
(ii) $(3 C, 5 B, 7 A)$-generated.

Proof. (i) Since by Table 5, we have $\Delta_{G}(3 A, 5 A, 7 A)=7<84=\left|C_{A 11}(7 A)\right|$ and $\Delta_{G}(3 A, 5 B, 7 A)=0$, it follows that G is not $(3 A, 5 X, 7 A)$-generated for $X \in\{A, B\}$. By Proposition 5.1, we see that $d_{3 B}=4, d_{3 C}=6, d_{5 A}=4, d_{5 B}=8$, and $d_{7 A}=6$. Thus $d_{3 B}+d_{5 X}+d_{7 A}=4+d_{5 X}+6<20$ and $d_{3 C}+d_{5 A}+d_{7 A}=$ $6+4+6<20$ for $X \in\{A, B\}$. By Scott's theorem the group G is not $(3 B, 5 X, 7 A)$ and ($3 C, 5 A, 7 A$)-generated for $X \in\{A, B\}$.
(ii) By Table 5 , we have $\Delta_{G}(3 C, 5 B, 7 A)=5376$. The only maximal subgroup meeting the classes $3 C, 5 B$, and $7 A$ of G is H_{1}. We obtain that $\sum_{H_{1}}(3 c, 5 b, 7 a)$ $=882$ and $h\left(7 A, H_{1}\right)=4$. It then follows that $\Delta_{G}^{*}(3 C, 5 B, 7 A)=5376-4(882)=$ $1848>0$, proving (ii).

Proposition 5.5. The group G is
(i) $\operatorname{not}(3 X, 5 A, 11 Y)$-generated for all $X, Y \in\{A, B\}$,
(ii) $(3 C, 5 A, 11 Y)$ - and $(3 X, 5 B, 11 Y)$-generated for $X \in\{A, B, C\}$ and $Y \in$ $\{A, B\}$.

Proof. (i) Since $c_{3 X} \in\{7,9\}$, by Table 1, it follows that $c_{3 X}+c_{5 A}+c_{11 Y}=$ $c_{3 X}+7+1>13$ for all $X, Y \in\{A, B\}$ and the result follows.
(ii) From Table 3, we see that two nonconjugate copies of $H_{6}\left(\right.$ or $\left.H_{7}\right)$ are the only two maximal subgroups containing elements of orders 3,5 , and 11 . The intersection of H_{6} from one conjugacy class with H_{7} from a different conjugacy class has no element of order 11. By Table 5, we have $\Delta_{G}(3 C, 5 A, 11 X)=22$ for $X \in\{A, B\}$. No element of order 5 from these two maximal subgroups fuses to the class $5 A$ of G. We then obtain that $\Delta_{G}^{*}(3 C, 5 A, 11 X)=\Delta_{G}(3 C, 5 A, 11 X)=22>$ $11=\left|C_{G}(11 X)\right|$, proving that G is $(3 C, 5 A, 11 X)$-generated for $X \in\{A, B\}$. Similarly, we have $\Delta_{G}(3 A, 5 B, 11 X)=11$ for $X \in\{A, B\}$. From Table 3, we see that no maximal subgroup of G meets the classes $3 A, 5 B$, and $11 A$ or $11 B$ of G. It follows that $\Delta_{G}^{*}(3 A, 5 B, 11 X)=\Delta_{G}(3 A, 5 B, 11 X)=11>0$, proving that G is $(3 A, 5 B, 11 X)$-generated for $X \in\{A, B\}$. By the same Table 5 , we have $\Delta_{G}(3 B, 5 B, 11 X)=704$ for $X \in\{A, B\}$. No element of order 3 from these two maximal subgroups fuses to the class $3 B$ of G. Therefore we get $\Delta_{G}^{*}(3 B, 5 B, 11 X)=\Delta_{G}(3 B, 5 B, 11 X)=704>11=\left|C_{G}(11 X)\right|$, proving that G is $(3 B, 5 B, 11 X)$-generated for $X \in\{A, B\}$. For the other argument, the computations show that $\sum_{H_{6}}(3 a, 5 a, 11 x)=\Delta_{H_{6}}(3 a, 5 a, 11 a)+\Delta_{H_{6}}(3 a, 5 a, 11 b)=$ $99+99=198$ and $h\left(11 X, H_{6}\right)=1$. Similarly $\sum_{H_{7}}(3 a, 5 a, 11 x)=198$. Since by Table 5 , we have $\Delta_{G}(3 C, 5 B, 11 X)=4928$, and we obtain that $\Delta_{G}^{*}(3 C, 5 B, 11 X)=$
$\Delta_{G}(3 C, 5 B, 11 X)-\sum_{H_{6}}(3 a, 5 a, 11 x)-\sum_{H_{7}}(3 a, 5 a, 11 x)=4928-198-198=$ $4532>11=\left|C_{G}(11 X)\right|$ for $X \in\{A, B\}$. This proves that G is $(3 C, 5 B, 11 X)-$ generated for $X \in\{A, B\}$.
5.3. $(3,7, r)$ - and $(3,11, r)$-generations. In this subsection we discuss the cases $(3,7, r)$ - and $(3,11, r)$-generations. This comprises of 18 cases: $(3 A, 7 A, 7 A)$-,
$(3 A, 7 A, 11 A)-,(3 A, 7 A, 11 B)_{-},(3 B, 7 A, 7 A)-,(3 B, 7 A, 11 A)-,(3 B, 7 A, 11 B)_{-}$,
$(3 C, 7 A, 7 A)-,(3 C, 7 A, 11 A)-,(3 C, 7 A, 11 B)-,(3 A, 11 A, 11 A)-,(3 A, 11 A, 11 B)-$,
$(3 A, 11 B, 11 B)_{-},(3 B, 11 A, 11 A)-,(3 B, 11 A, 11 B)_{-},(3 B, 11 B, 11 B)-$,
$(3 C, 11 A, 11 A)-,(3 C, 11 A, 11 B)-$ and $(3 A, 11 B, 11 B)$-generation.
Proposition 5.6. The group G is not $(3 X, 7 A, 7 A)$-generated for $X \in\{A, B, C\}$.
Proof. This is a direct application of Ree's theorem. Since by Table 1, we see that $c_{3 X} \in\{5,7,9\}$, it then follows that $c_{3 X}+c_{7 A}+c_{7 A}=c_{3 X}+5+5>13$, which implies that G is not ($3 X, 7 A, 7 A$)-generated for $X \in\{A, B, C\}$.

Proposition 5.7. The group G is
(i) $\operatorname{not}(3 A, 7 A, 11 X)$-generated for $X \in\{A, B\}$,
(ii) $(3 Y, 7 A, 11 X)$-generated for $X \in\{A, B\}$ and $Y \in\{B, C\}$.

Proof. (i) Since by Table 5, we have $\Delta_{G}(3 A, 7 A, 11 X)=0$, it follows that G is not $(3 A, 7 A, 11 X)$-generated for $X \in\{A, B\}$.
(ii) No maximal subgroup of G contains both elements of orders 3, 7, and 11. Therefore $\Delta_{G}^{*}(3 B, 7 A, 11 X)=\Delta_{G}(3 B, 7 A, 11 X)=33>0$ and
$\Delta_{G}^{*}(3 C, 7 A, 11 X)=\Delta_{G}(3 C, 7 A, 11 X)=990>0$.
Proposition 5.8. The group G is $(3 X, 11 Y, 11 Z)$-generated for $X \in\{A, B, C\}$ and $Y, Z \in\{A, B\}$.

Proof. By Table 3, we see that no elements of the maximal subgroups of G meet the classes $3 A, 11 A$, and $11 B$ of G. Then by Table 5, we have $\Delta_{G}^{*}(3 A, 11 A, 11 A)=$ $\Delta_{G}(3 A, 11 A, 11 A)=110>0, \Delta_{G}^{*}(3 A, 11 B, 11 B)=\Delta_{G}(3 A, 11 B, 11 B)=110>$ 0 , and $\Delta_{G}^{*}(3 A, 11 A, 11 B)=\Delta_{G}(3 A, 11 A, 11 B)=55>0$, proving that G is $(3 A, 11 X, 11 Y)$-generated for all $X, Y \in\{A, B\}$. Again, by Table 3, we see that no elements of the maximal subgroups of G meet the classes $3 B, 11 A$, and $11 B$ of G. Then by Table 5 , we have $\Delta^{*}(3 B, 11 X, 11 X)=\Delta_{G}(3 B, 11 X, 11 X)=$ $3212>0$ and $\Delta_{G}^{*}(3 B, 11 A, 11 B)=\Delta_{G}(3 B, 11 A, 11 B)=2332>0$, proving that G is $(3 B, 11 X, 11 Y)$-generated for all $X, Y \in\{A, B\}$. By Table 5, we have $\Delta(3 C, 11 X, 11 Y)=12760$ for all $X, Y \in\{A, B\}$. Only two nonconjugate copies of H_{6} (or H_{7}) meet the classes $3 C, 11 A$ and $11 B$ of G. We obtain that $\sum_{H_{6}}(3 a, 11 a, 11 b)=22, \sum_{H_{6}}(3 a, 11 a, 11 a)=77=\sum_{H_{6}}(3 a, 11 b, 11 b)$, and $h\left(11 X, H_{6}\right)=1$ for $X \in\{A, B\}$. Similarly $\sum_{H_{7}}(3 a, 11 a, 11 b)=22$, $\sum_{H_{7}}(3 a, 11 a, 11 a)=77=\sum_{H_{7}}(3 a, 11 b, 11 b)$, and $h\left(11 X, H_{7}\right)=1$ for $X \in$ $\{A, B\}$. Therefore $\Delta_{G}^{*}(3 C, 11 A, 11 B)=\Delta_{G}(3 C, 11 A, 11 B)-\sum_{H_{6}}(3 a, 11 a, 11 b)-$ $\sum_{H_{7}}(3 a, 11 a, 11 b)=12760-77-77=12606>0$ and $\Delta_{G}^{*}(3 C, 11 A, 11 A)=$ $\Delta_{G}(3 C, 11 A, 11 A)-\sum_{H_{6}}(3 a, 11 a, 11 a)-\sum_{H_{7}}(3 a, 11 a, 11 a)=12760-22-22=$ $12716>0$. Similarly $\Delta_{G}^{*}(3 C, 11 B, 11 B)=12716$. Hence G is $(3 C, 11 X, 11 Y)$ generated for all $X, Y \in\{A, B\}$.

6. Other Results

In this section, we handle all the remaining cases, namely, the $(5, q, r)-,(7, q, r)$-, and ($11, q, r$)-generations.
6.1. $(5,5, r)$-generations. We have to check for the generation of G through the triples $(5 A, 5 A, 5 A)-,(5 A, 5 A, 5 B)-,(5 A, 5 A, 7 A)-,(5 A, 5 A, 11 A)-$, $(5 A, 5 A, 11 B)-,(5 A, 5 B, 5 B)-,(5 A, 5 B, 7 A)-,(5 A, 5 B, 11 A)-,(5 A, 5 B, 11 B)-$, $(5 B, 5 B, 5 B)-,(5 B, 5 B, 7 A)-,(5 B, 5 B, 11 A)$-, and $(5 A, 5 A, 11 B)$-generation.

Proposition 6.1. The group G is
(i) $\operatorname{not}(5 A, 5 A, 5 X)$-generated for $X \in\{A, B\}$,
(ii) $(5 X, 5 B, 5 B)$-generated for $X \in\{A, B\}$.

Proof. (i) Since by Table 6, we have that $\Delta_{G}(5 A, 5 A, 5 A)=428<1800=$ $\left|C_{G}(5 A)\right|$ and $\Delta_{G}(5 A, 5 A, 5 B)=2<25=\left|C_{G}(5 B)\right|$, it follows by Lemma 2.4 that G is not $(5 A, 5 A, 5 X)$-generated for $X \in\{A, B\}$.
(ii) From Table 3, we can see that all the maximal subgroups of G have elements of order 5 . Let T be the set of all maximal subgroups of G. We are looking at various intersections of these maximal subgroups to determine their contributions in the calculations of $\Delta_{G}^{*}(5 A, 5 B, 5 B)$. We have the following:

- The intersection of any 6 or 7 maximal subgroups of T does not contain elements of order 5 .
- Although some of the intersections of any $2,3,4$, or 5 maximal subgroups of T contains elements of order 5 , they will not contribute here because none of their elements of order 5 fuse to both $5 A$ and $5 B$.
Out of all the subgroups of G, only H_{1} and H_{5} have contributions in the calculations of $\Delta_{G}^{*}(5 A, 5 B, 5 B)$ because they both meet $5 A$ and $5 B$ classes of G. The computations render $\sum_{H_{1}}(5 a, 5 b, 5 b)=316$ and $\sum_{H_{5}}(5 x, 5 c, 5 y)=\Delta_{H_{5}}(5 a, 5 c, 5 c)$ $+\Delta_{H_{5}}(5 a, 5 c, 5 d)+\Delta_{H_{5}}(5 b, 5 c, 5 c)+\Delta_{H_{5}}(5 b, 5 c, 5 d)=6+2+31+22=61$. We find that $h\left(5 B, H_{1}\right)=h\left(5 B, H_{5}\right)=1$. Since by Table 6, we have $\Delta_{G}(5 A, 5 B, 5 B)=$ 456, we have $\Delta_{G}^{*}(5 A, 5 B, 5 B)=\Delta_{G}(5 A, 5 B, 5 B)-\sum_{H_{1}}(5 a, 5 b, 5 b)-$ $\sum_{H_{5}}(5 x, 5 c, 5 y)=456-316-61=79>25=\left|C_{G}(5 B)\right|$. This proves that G is $(5 A, 5 B, 5 B)$-generated. Now we prove that G is $(5 B, 5 B, 5 B)$-generated. By Proposition 4.3, we prove that G is $(2 B, 5 B, 5 B)$-generated. It follows by Theorem 2.7 that G is $\left(5 B, 5 B,(5 B)^{2}\right)$-generated. By GAP, we see that $(5 B)^{2}=5 B$ so that G becomes $(5 B, 5 B, 5 B)$-generated as required.

Proposition 6.2. The group G is
(i) $\operatorname{not}(5 A, 5 X, 7 A)$-generated for $X \in\{A, B\}$,
(ii) $(5 B, 5 B, 7 A)$-generated.

Proof. (i) If G is $(5 A, 5 X, 7 A)$-generated group, then we must have $c_{5 A}+c_{5 X}+$ $c_{7 A} \leq 13$, where $X \in\{A, B\}$. Since by Table 1 , we have $c_{5 X} \in\{3,7\}$, we then obtain by the same Table 1 that $c_{5 A}+c_{5 X}+c_{7 A}=7+c_{5 X}+5>13$ for $X \in\{A, B\}$. By Ree's theorem, G is not ($5 A, 5 X, 7 A$)-generated for $X \in\{A, B\}$.
(ii) As in Proposition 4.6, only four maximal subgroups of G have an element of order 7 , namely, H_{1}, H_{2}, H_{3}, and H_{4}. By Table 6, we have that
$\Delta_{G}(5 B, 5 B, 7 A)=32256$. Out of all subgroups having elements of order 7, only H_{1} will have contributions here because it is the only maximal subgroup meeting the classes $5 B$ and $7 A$ of G. We obtain that $\sum_{H_{1}}(5 b, 5 b, 7 a)=3654$ and $h\left(7 A, H_{1}\right)=4$. We have $\Delta_{G}^{*}(5 B, 5 B, 7 A)=\Delta_{G}(5 B, 5 B, 7 A)-4 \cdot \sum_{H_{1}}(5 b, 5 b, 7 a)=$ $32256-4(3654)=17640>0$ and G is a $(5 B, 5 B, 7 A)$-generated group.
Proposition 6.3. The group G is
(i) $\operatorname{not}(5 A, 5 A, 11 X)$-generated for $X \in\{A, B\}$,
(ii) $(5 X, 5 B, 11 Y)$-generated for all $X, Y \in\{A, B\}$.

Proof. (i) By Table 6, we have $\Delta_{G}(5 A, 5 A, 11 X)=0$.
(ii) As in Proposition 4.5, we see that two nonconjugate copies of H_{6} (or H_{7}) contain elements of orders 5 and 11 . None of these two maximal subgroups meet the classes $5 A$ and $11 A$ or $11 B$ of G. It follows that $\Delta_{G}^{*}(5 A, 5 B, 11 X)=$ $\Delta_{G}(5 A, 5 B, 11 X)=440>0$, proving that G is $(5 A, 5 B, 11 X)$-generated for $X \in\{A, B\}$. We now prove that G is $(5 B, 5 B, 11 X)$-generated for $X \in\{A, B\}$. By Proposition 4.5, the group G is $(2 X, 5 B, 11 Y)$-generated, it follows by Theorem 2.7 that G is $(5 B, 5 B, 11 X)$-generated for all $X, Y \in\{A, B\}$.
Proposition 6.4. The group G is
(i) $\operatorname{not}(5 A, 7 A, 7 A)$-generated,
(ii) $(5 B, 7 A, 7 A)$-generated.

Proof. (i) The group G acts on a 10 -dimensional irreducible complex module \mathbb{V}. By applying Scott's theorem [30] to the module \mathbb{V} and using the Atlas of finite groups, we get $d_{5 A}+d_{7 A}+d_{7 A}=4+6+6=16<2 \times 10$, and hence by Scott's theorem, G is not $(5 A, 7 A, 7 A)$-generated.
(ii) By Table 6, we have that $\Delta_{G}(5 B, 7 A, 7 A)=8736$. As in Proposition 6.2, only the maximal subgroup H_{1} will have contributions here because it is the only one meeting of the classes $5 B$ and $7 A$ of G. We have $\sum_{H_{1}}(5 b, 7 a, 7 a)=1974$ and $h\left(7 A, H_{1}\right)=4$. We then obtain $\Delta_{G}^{*}(5 B, 7 A, 7 A)=\Delta_{G}(5 B, 7 A, 7 A)-4$. $\sum_{H_{1}}(5 b, 7 a, 7 a)=8736-4(1974)=840>0$, and hence G is a $(5 B, 7 A, 7 A)$ generated group.
Proposition 6.5. The group G is a $(5 X, 7 A, 11 Y)$-generated group for all X, Y, Z $\in\{A, B\}$.
Proof. By Table 3, we see there is no maximal subgroup whose order is divisible by $(5 \times 7 \times 11)$. Since there is no contribution from any of the maximal subgroups, by Table 6, we have $\Delta_{G}^{*}(5 A, 7 A, 11 X)=\Delta_{G}(5 A, 7 A, 11 X)=11>0$ and $\Delta_{G}^{*}(5 B, 7 A, 11 X)=\Delta_{G}(5 B, 7 A, 11 X)=9504>0$ for $X \in\{A, B\}$. Hence G is ($5 A, 7 A, 11 X$)- and $(5 B, 7 A, 11 X)$-generated for $X \in\{A, B\}$.
Proposition 6.6. The group G is $(5 X, 11 Y, 11 Z)$-generated for all $X, Y, Z \in$ $\{A, B\}$.

Proof. As in Proposition 4.5, H_{6} (or H_{7}) (two nonconjugate copies) is the only maximal subgroup of G that contains elements of order 11. Since none of them meet the classes $5 A, 11 A$, and $11 B$ of G, by Table 6 , we have $\Delta_{G}^{*}(5 A, 11 A, 11 B)=$ $\Delta_{G}(5 A, 11 A, 11 B)=1804, \Delta_{G}^{*}(5 A, 11 A, 11 A)=\Delta_{G}(5 A, 11 A, 11 A)=1892$ and
$\Delta_{G}^{*}(5 A, 11 B, 11 B)=\Delta_{G}(5 A, 11 B, 11 B)=1892$. Hence G is $(5 A, 11 A, 11 B)-$, $(5 A, 11 A, 11 A)$, and $(5 A, 11 B, 11 B)$-generated.

By the same Table 6 , we have $\Delta_{G}(5 B, 11 A, 11 B)=69696$ and $\Delta_{G}(5 B, 11 A, 11 A)$ $=\Delta_{G}(5 B, 11 B, 11 B)=76032$. We have $\sum_{H_{6}}(5 a, 11 a, 11 b)=\sum_{H_{7}}(5 a, 11 a, 11 b)=$ $99, h\left(11 b, H_{6}\right)=h\left(11 b, H_{7}\right)=1$. We also have $\sum_{H_{6}}(5 a, 11 a, 11 a)$ $=\sum_{H_{6}}(5 a, 11 b, 11 b)=198, \sum_{H_{7}}(5 a, 11 a, 11 a)=\sum_{H_{7}}(5 a, 11 b, 11 b)=198$, $h\left(11 x, H_{6}\right)=h\left(11 x, H_{6}\right)=1$ for $x \in\{a, b\}$. It follows that $\Delta_{G}^{*}(5 B, 11 A, 11 B)=$ $\Delta_{G}(5 B, 11 A, 11 B)-\sum_{H_{6}}(5 a, 11 a, 11 b)-\sum_{H_{7}}(5 a, 11 a, 11 b)=69696-99-99=$ $69498>0$ and $\Delta_{G}^{*}(5 B, 11 A, 11 A)=\Delta_{G}(5 B, 11 A, 11 A)-\sum_{H_{6}}(5 a, 11 a, 11 a)-$ $\sum_{H_{7}}(5 a, 11 a, 11 a)=76032-198-198=75636>0$. Similarly $\Delta_{G}^{*}(5 B, 11 A, 11 A)$ $=75636$. Hence G is $(5 B, 11 A, 11 B)$ - and $(5 B, 11 X, 11 X)$-generated for $X \in$ $\{A, B\}$.

6.2. ($7,7, r$)-generations.

Proposition 6.7. The group G is a $(7 A, 7 A, 7 A)$-generated group.
Proof. By Proposition 4.6, we prove that G is $(2 A, 7 A, 7 A)$-generated. It follows by Theorem 2.7 that G is $\left(7 A, 7 A,(7 A)^{2}\right)$ - generated. Since there is only one class of element 7 , it follows that $(7 A)^{2}=7 A$, so that G becomes $(7 A, 7 A, 7 A)$ generated.
Proposition 6.8. The group G is a $(7 A, 7 A, 11 X)$-generated group.
Proof. By Proposition 4.7, we prove that G is $(2 B, 7 A, 11 X)$-generated for $X \in$ $\{A, B\}$. It follows by Theorem 2.7 that G is $\left(7 A, 7 A,(11 A)^{2}\right)$ - and $\left(7 A, 7 A,(11 B)^{2}\right)$ generated. By GAP, we see that $(11 A)^{2}=11 B$ and $(11 B)^{2}=11 A$ so that G becomes $(7 A, 7 A, 11 X)$-generated for $X \in\{A, B\}$.

Proposition 6.9. The group G is $(7 A, 11 X, 11 Y)$-generated for all $X, Y \in$ $\{A, B\}$.
Proof. Since H_{6} (or H_{7}) (two nonconjugate copies) is the only maximal subgroup of G whose order is divisible by 11 and H_{6} (or H_{7}) does not have elements of order 7 , then by Table 7 , we have $\Delta_{G}^{*}(7 A, 11 X, 11 Y)=\Delta_{G}(7 A, 11 X, 11 Y)=29700>0$, proving that G is $(7 A, 11 X, 11 Y)$-generated for all $X, Y \in\{A, B\}$.
6.3. ($11,11, r$)-generations. We conclude our investigation on the (p, q, r) generation of the alternating group G by considering the (11, 11, 11)-generations. Thus we will be looking at the cases $(11 A, 11 A, 11 A)-,(11 A, 11 A, 11 B)-$, $(11 A, 11 B, 11 B)$-, and $(11 B, 11 B, 11 B)$-generation.
Proposition 6.10. The group G is a $(11 A, 11 A, 11 A)-$, $(11 A, 11 A, 11 B)-$, $(11 A, 11 B, 11 B)$ - and $(11 B, 11 B, 11 B)$-generated group.

Proof. The cases $(11 A, 11 A, 11 A),(11 A, 11 A, 11 B)$ and $(11 B, 11 B, 11 B)$ follow by Proposition 4.8 together with the applications of Theorem 2.7. Since by Proposition 4.2, $H_{6}\left(\right.$ or $\left.H_{7}\right)$ (two nonconjugate copies) is the only maximal subgroup of G whose order is divisible by 11. we have $\sum_{H_{6}}(11 a, 11 b, 11 b)=35$ and $h\left(11 b, H_{6}\right)=1$. Similarly $\sum_{H_{7}}(11 a, 11 b, 11 b)=35$ and $h\left(11 b, H_{7}\right)=1$. Since by Table 7 , we have $\Delta_{G}(11 A, 11 B, 11 B)=1476600$, we then obtain that
$\Delta_{G}^{*}(11 A, 11 B, 11 B)=\Delta_{G}(11 A, 11 B, 11 B)-\sum_{H_{6}}(11 a, 11 b, 11 b)-$
$\sum_{H_{7}}(11 a, 11 b, 11 b)=1476600-35-35=1476530>0$, proving that G is a $(11 A, 11 B, 11 B)$-generated group.

TABLES : Structure constants of G

TABLE 4. The structure constants $\Delta_{G}(2 X, q Y, r Z)$

$p X$	2 A	2 B	3 A	3 B	3 C	5 A	5 B	7 A	11 A	11 B
$\Delta_{G}(2 A, 2 A, p X)$	44	6	84	9	0	5	0	0	0	0
$\Delta_{G}(2 A, 2 B, p X)$	105	24	0	0	0	0	0	0	0	0
$\Delta_{G}(2 A, 3 A, p X)$	28	0	24	0	0	5	0	0	0	0
$\Delta_{G}(2 A, 3 B, p X)$	168	0	0	39	0	30	0	14	0	0
$\Delta_{G}(2 A, 3 C, p X)$	0	0	0	0	45	0	0	0	0	0
$\Delta_{G}(2 A, 5 A, p X)$	56	0	168	18	0	95	0	14	0	0
$\Delta_{G}(2 A, 5 B, p X)$	0	0	0	0	0	0	90	0	44	44
$\Delta_{G}(2 A, 7 A, p X)$	0	0	0	180	0	300	0	175	0	0
$\Delta_{G}(2 A, 11 A, p X)$	0	0	0	0	0	0	100	0	110	220
$\Delta_{G}(2 A, 11 B, p X)$	0	0	0	0	0	0	100	0	220	110
$\Delta_{G}(2 B, 2 B, p X)$	420	84	1260	165	54	225	25	42	0	0
$\Delta_{G}(2 B, 3 A, p X)$	0	24	0	0	0	0	0	0	0	0
$\Delta_{G}(2 B, 3 B, p X)$	0	176	0	180	0	0	25	28	0	0
$\Delta_{G}(2 B, 3 C, p X)$	0	384	0	0	216	0	100	84	110	110
$\Delta_{G}(2 B, 5 A, p X)$	0	144	0	0	0	0	0	28	0	0
$\Delta_{G}(2 B, 5 B, p X)$	0	1152	0	1080	648	0	825	504	660	660
$\Delta_{G}(2 B, 7 A, p X)$	0	576	0	360	162	600	150	644	55	55
$\Delta_{G}(2 B, 11 A, p X)$	0	0	0	0	1620	0	1500	420	2145	1320
$\Delta_{G}(2 B, 11 B, p X)$	0	0	0	0	1620	0	1500	420	1320	2145
$\left\|C_{G}(p X)\right\|$	20160	1152	60480	1080	162	1800	25	84	11	11

TABLE 5. The structure constants $\Delta_{G}(3 X, q Y, r Z)$

$p X$	2 A	2 B	3 A	3 B	3 C	5 A	5 B	7 A	11 A	11 B
$\Delta_{G}(3 A, 3 A, p X)$	8	0	25	2	0	5	0	0	0	0
$\Delta_{G}(3 A, 3 B, p X)$	0	0	112	32	3	30	0	7	0	0
$\Delta_{G}(3 A, 3 C, p X)$	0	0	0	20	21	0	0	0	0	0
$\Delta_{G}(3 A, 5 A, p X)$	56	0	168	18	0	40	0	7	0	0
$\Delta_{G}(3 A, 5 B, p X)$	0	0	0	0	0	0	30	0	11	11
$\Delta_{G}(3 A, 7 A, p X)$	0	0	0	90	0	150	0	63	0	0
$\Delta_{G}(3 A, 11 A, p X)$	0	0	0	0	0	0	25	0	110	55
$\Delta_{G}(3 A, 11 B, p X)$	0	0	0	0	0	0	25	0	55	110
$\Delta_{G}(3 B, 3 B, p X)$	728	192	1792	440	42	380	25	168	0	0
$\Delta_{G}(3 B, 3 C, p X)$	0	0	1120	280	390	600	100	224	66	66
$\Delta_{G}(3 B, 5 A, p X)$	336	0	1008	228	54	540	0	140	0	0
$\Delta_{G}(3 B, 5 B, p X)$	0	1152	0	1080	648	0	1080	504	704	704
$\Delta_{G}(3 B, 7 A, p X)$	3360	384	5040	2160	432	3000	150	1428	33	33
$\Delta_{G}(3 B, 11 A, p X)$	0	0	0	0	972	0	1600	252	3212	2332
$\Delta_{G}(3 B, 11 B, p X)$	0	0	0	0	972	0	1600	252	2332	3212
$\Delta_{G}(3 C, 3 C, p X)$	5600	1536	7840	2600	1198	2000	900	840	660	660
$\Delta_{G}(3 C, 5 A, p X)$	0	0	0	360	180	0	100	168	22	22
$\Delta_{G}(3 C, 5 B, p X)$	0	4608	0	4320	5832	7200	440	5376	4928	4928
$\Delta_{G}(3 C, 7 A, p X)$	0	1152	0	2880	1620	3600	1600	3024	990	990
$\Delta_{G}(3 C, 11 A, p X)$	0	11520	0	6480	9720	3600	11200	7560	12760	12760
$\Delta_{G}(3 C, 11 B, p X)$	0	11520	0	6480	9720	3600	11200	7560	12760	12760
$\|C G(p X)\|$	20160	1152	60480	1080	162	1800	25	84	11	11

TABLE 6. The structure constants $\Delta_{G}(5 X, q Y, r Z)$

$p X$	2 A	2 B	3 A	3 B	3 C	5 A	5 B	7 A	11 A	11 B
$\Delta_{G}(5 A, 5 A, p X)$	1064	0	1344	324	0	428	2	112	0	0
$\Delta_{G}(5 A, 5 B, p X)$	0	0	0	0	648	144	456	336	440	440
$\Delta_{G}(5 A, 7 A, p X)$	3360	384	5040	1800	324	2400	100	1092	11	11
$\Delta_{G}(5 A, 11 A, p X)$	0	0	0	0	324	0	1000	84	1892	1804
$\Delta_{G}(5 A, 11 B, p X)$	0	0	0	0	324	0	1000	84	1804	1892
$\Delta_{G}(5 B, 5 B, p X)$	72576	38016	72576	46656	28512	32832	33984	32256	31680	31680
$\Delta_{G}(5 B, 7 A, p X)$	0	6912	0	6480	10368	7200	9600	8736	9504	9504
$\Delta_{G}(5 B, 11 A, p X)$	80640	69120	60480	69120	72576	72000	72000	72576	76032	69696
$\Delta_{G}(5 B, 11 B, p X)$	80640	69120	60480	69120	72576	72000	72000	72576	69696	76032
$\left\|C_{G}(p X)\right\|$	20160	1152	60480	1080	162	1800	25	84	11	11

TABLE 7. The structure constants $\Delta_{G}(7 A, q Y, r Z)$ and $\Delta_{G}(11 X, q Y, r Z)$

$p X$	2 A	2 B	3 A	3 B	3 C	5 A	5 B	7 A	11 A
	11 B								
$\Delta_{G}(7 A, 7 A, p X)$	42000	8832	45360	18360	5832	23400	2600	11996	825
$\Delta_{G}(7 A, 11 A, p X)$	0	5760	0	3240	14580	1800	21600	6300	29700
29700									
$\Delta_{G}(7 A, 11 B, p X)$	0	5760	0	3240	14580	1800	21600	6300	29700
$\Delta_{G}(11 A, 11 A, p X)$	403200	138240	302400	228960	187920	295200	158400	226800	147600
$\Delta_{G}(11 A, 11 B, p X)$	201600	224640	604800	315360	187920	309600	172800	226800	147600
147600									
$\Delta_{G}(11 B, 11 B, p X)$	403200	138240	302400	228960	187920	295200	158400	226800	162000
$\left\|C_{G}(p X)\right\|$	20160	1152	60480	1080	162	1800	25	84	11

Acknowledgement. The authors would like to thank the referee for his/her valuable comments, corrections and suggestions, which improved the manuscript significantly.

References

1. F. Ali, M.A.F. Ibrahim and A. Woldar, (3, q, r)-generations of Fischers sporadic group $F i_{24}^{\prime}$, J. Group Theory 22 (2019) 453-489.
2. F. Ali, M.A.F. Ibrahim and A. Woldar, On (2, 3)-generations of Fischers largest sporadic simple group $\mathrm{Fi}_{24}^{\prime}$, C. R. Acad. Sci. Paris, Ser. I, 357 (2019) 401-412.
3. A.R. Ashrafi, Generating pairs for the Held group He, J. Appl. Math. Comput. 10 (2002) 167-174.
4. A.R. Ashrafi, (p, q, r)-generations of the sporadic group HN, Taiwanese J. Math. 10 (2006), no. 3, 613-629.
5. A.B.M. Basheer, The ranks of the classes of A_{10}, Bull. Iranian Math. Soc. 43 (2017), no. 7, 2125-2135.
6. A.B.M. Basheer and J. Moori, On the ranks of finite simple groups, Khayyam J. Math. 2 (2016), no. 1, 18-24.
7. A.B.M. Basheer and J. Moori, A survey on some methods of generating finite simple groups, in: Groups St. Andrews 2017 in Birmingham, PP. 106-118, London Math. Soc. Lecture Note Ser. 455, Cambridge University Press, Cambridge, 2019.
8. A.B.M. Basheer, J. Motalane and T.T. Seretlo, The (p, q, r)-generations of the Mathieu group M_{23}, submitted.
9. A.B.M. Basheer and T.T. Seretlo, On two generation methods for the simple linear group $\operatorname{PSL}(3,5)$, Khayyam J. Math. 5 (2019), no. 1, 125-139.
10. A.B. M. Basheer and T.T. Seretlo, The (p, q, r)-generations of the alternating group A_{10}, Quaest. Math. 43 (2020), no. 3, 395-408.
11. A.B.M. Basheer and T. T. Seretlo, (p, q, r)-generations of the Mathieu group M_{22}, Southeast Asian Bull. Math. (to appear).
12. M.D.E. Conder, Some results on quotients of triangle groups, Bull. Aust. Math. Soc. 30 (1984) 167-174.
13. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985.
14. M.R. Darafsheh, A.R. Ashrafi, Generating pairs for the sporadic group Ru, J. Appl. Math. Comput. 12 (2003), no. 1-2, 143-154.
15. M.R. Darafsheh, A.R. Ashrafi and G.A. Moghani, (p, q, r)-generations of the Conway group $C o_{1}$, for odd p, Kumamoto J. Math. 14 (2001) 1-20.
16. M.R. Darafsheh, A.R. Ashrafi and G.A. Moghani, (p, q, r)-generations of the sporadic group $O^{\prime} N$, in: Groups St. Andrews 2001 in Oxford. Vol. I, pp. 101-109, London Math. Soc. Lecture Note Ser. 304, Cambridge University Press, Cambridge, 2003.
17. M.R. Darafsheh, A.R. Ashrafi and G.A. Moghani, (p, q, r)-generations and $n X$ complementary generations of the sporadic group Ly, Kumamoto J. Math. 16 (2003), 13-25.
18. S. Ganief, 2-Generations of the Sporadic Simple Groups, PhD thesis, University of KwaZuluNatal, Pietermaritzburg, 1997.
19. S. Ganief and J. Moori, ($2,3, t$)-generations for the Janko group J_{3}, Comm. Algebra 23 (1995), no. 12, 4427-4437.
20. S. Ganief and J. Moori, 2-generations of the smallest Fischer group Fi i_{22}, Nova J. Math. Game Theory Algebra 6 (1997), no. 2-3, 127-145.
21. S. Ganeif and J. Moori, (p, q, r)-generations and $n X$-complementary generations of the sporadic groups HS and McL., J. Algebra 188 (1997), no. 2, 531-546.
22. S. Ganief and J. Moori, (p, q, r)-generations of the smallest Conway group Co ${ }_{3}$, J. Algebra 188 (1997), no. 2, 516-530.
23. S. Ganief and J. Moori, Generating pairs for the Conway groups Co_{2} and Co_{3}, J. Group Theory 1 (1998), no. 3, 237-256.
24. S. Ganief and J. Moori, 2-generations of the fourth Janko group J4, J. Algebra 212 (1999), no. 1, 305-322.
25. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.10.2; 2019. http: //www.gap-system.org
26. L. Di Martino, M. Pellegrini and A. Zalesski, On generators and representations of the sporadic simple groups, Comm. Algebra 42 (2014), 880-908.
27. J. Moori, (p, q, r)-generations for the Janko groups J_{1} and J_{2}, Nova J. Algebra Geom. 2 (1993), no. 3, 277-285.
28. J. Moori, ($2,3, p$)-generations for the Fischer group F_{22}, Comm. Algebra, 2 (1994), no. 11, 4597-4610.
29. R. Ree, A theorem on permutations, J. Combbin. Theory Sr. A, 10 (1971) 174-175.
30. L.L. Scott, Matrices and cohomolgy, Ann. Math. 105 (1977), no. 3, 67-76.
31. R. Vincent and A.E. Zalesski, Non-Hurwitz classical groups, LMS J. Comput. Math. 10 (2007), 21-82.
32. J. Ward, Generation of Simple Groups by Conjugate Involutions, PhD Thesis, University of London, 2009.
33. R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbott, Atlas of finite group representations, http://brauer.maths.qmul. ac.uk/Atlas/v3/
34. A.J. Wodlar, Sporadic simple groups which are Hurwitz, J. Algebra 144 (1991) 443-450.
35. A.J. Woldar, 3/2-generarion of the sporadic simple groups, Comm. Algebra 22, (1994), no. 2, 675-685.
${ }^{1}$ School of Mathematical and Computer Sciences, University of Limpopo (Turfloop), P Bag X1106, Sovenga 0727, South Africa

Email address: ayoubbasheer@gmail.com; john.motalane@ul.ac.za;
thekisoseretlo@gmail.com, thekiso.seretlo@ul.ac.za

[^0]: Date: Received: 19 October 2019; Revised: 13 August 2020; Accepted: 15 August 2020.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 20C15; Secondary 20C40; 20D08.
 Key words and phrases. Conjugacy classes, generation, simple groups, structure constants, alternating groups.

