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PRIMENESS OF SIMPLE MODULES OVER PATH ALGEBRAS
AND LEAVITT PATH ALGEBRAS
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Communicated by A. Erfanian

Abstract. Let K be a field and let E be a directed graph, called quiver in
the following, and let A = KE be the path algebra that corresponds to E
with coefficients in K. An A-module M is a c-prime module in the sense that
rm = 0 for one m ∈ M and r ∈ A implies that either r annihilates all M or
m = 0. In this article, we prove that for any acyclic graph E, an A-module
M is c-prime if and only if it is simple. The primeness of simple modules over
Leavitt path algebras is also discussed. We prove that some classes of simple
modules over Leavitt path algebras, are not c-prime modules.

1. Introduction and preliminaries

The concept of primeness in algebraic structures was initially developed through
the ideal structure of the ring. The concept of a prime ideal was introduced in [12]
as the concept of a prime ring. The notion of a prime module was proposed in [9]
as a generalization of the prime ideal structure of a ring. Suppose that M is a left
module over the ring R (written R-module M). A proper submodule N of M is
said to be prime if rRm = 0 with r in R and m ∈ M implies m ∈ N or rM ⊆ N ;
see [9]. Various different contexts and examples have been studied in [13,20,22].
Irawati [10, 11] generalized the concept of the hereditary Noetherian prime ring
(HNP) into the concept of the HNP module. In addition, in [19, 21], it was dis-
cussed the characterization of prime submodules. A module M is said to be a
c-prime module over R if rm = 0 with r in R and m ∈ M implies rM = 0. We
prove that if M is a c-prime module, then M is a prime module. If R is a com-
mutative ring, then prime modules are c-prime modules. Ranggaswamy [16, 18]
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stated that a Leavitt path algebra behaves the same way as a commutative ring
based on its ideal and module structure. In this article, we see, however, that the
module structure of a Leavitt path algebra is not the same as module structure
of a commutative ring. The aim of this study is to explore the notion of c-prime
modules in the setting of path algebras and Leavitt path algebras.

A path algebra KE is an algebra over a field K whose basis is the set of all
paths in a quiver, E. A quiver E = (E0, E1, r, s) consists of two sets E0 (whose
elements are called vertices) and E1 (whose elements are called arrows), and two
maps r, s : E1 −→ E0, which associate to each arrow e ∈ E1, its source s(e) ∈ E0

and its range r(e) ∈ E0, respectively. An algebra can be represented in the form
of a quiver, and an algebra (path algebra) can be obtained from a quiver; see [7].
For any algebraically closed field K, each finite-dimensional algebra over K is
Morita equivalent to a path algebra modulo an admissible ideal. A Leavitt path
algebra is a specific type of path algebra, associated to a directed graph E modulo
some relations.

The Leavitt path algebras were introduced in [3,5] as algebraic analogues of C∗-
algebras and as natural generalizations of Leavitt algebras of type (1, n), which
were investigated by Leavitt [14]. The properties of these algebras, as algebras,
have been actively investigated in a series of articles [1–6, 8, 17]. In [1, 2, 4, 8, 17]
particularly the module theory of Leavitt path algebras has been studied.

Interestingly, in this article, we find that if KE is a path algebra, where E is
an acyclic quiver and M is a module over path algebra KE, then M is simple
if and only if it is c-prime. However, some simple modules over a Leavitt path
algebra L for more general directed graphs E are not c-prime modules.

In Section 2 of this article, we will give the basic definitions and notation that
will be used in this article. In Section 3, it is shown that a simple module over the
path algebra of an acyclic quiver is a c-prime module. In Section 4, the primeness
of a simple module over Leavitt path algebras is discussed.

2. Path Algebra, representation, and module

This section recalls some basic facts from the theory of path algebras. We refer
to [7, 15] for more details.

A quiver E = (E0, E1, r, s) consists of two sets E0 (whose elements are called
vertices) and E1 (whose elements are called arrows), and two maps
s : E1 → E0 and r : E1 → E0, which associate to each arrow α ∈ E1, its
source s(α) ∈ E0, and its range r(α) ∈ E0, respectively. An arrow α ∈ E1 of
source a = s(α) and range b = r(α) is usually denoted by α : a −→ b. A quiver
E = (E0, E1, r, s) is usually denoted by E = (E0, E1) or even simply by E. A
quiver E is said to be finite if E0 and E1 are finite sets. If s−1(v) is a finite set
for every v ∈ E0, then E is called row finite. A vertex v that emits no arrows is
called a sink. A vertex v that emits infinitely many arrows is called an infinite
emitter.

A path in the quiver E is a sequence of arrows p = e1e2 · · · en such that
r(ei) = s(ei+1) for all i. A finite path in quiver E is a finite sequence of ar-
rows p = e1e2 · · · en where r(ei) = s(ei+1) for all i. In this case, the path p is said
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to have length n, denoted by l(p) = n. If p is a path such that v = s(p) = r(p),
then p is called a closed path based at v. If r(p) = s(p) and s(ei) 6= s(ej) for
every i 6= j, then p is called a cycle. A quiver without cycles is called acyclic.
For an infinite path p = e1e2 · · · , for each n ≥ 1, define τ≤n(p) = e1e2 · · · en and
τ≥n(p) = en+1en+2 · · · . Two infinite paths p and q are said to be tail equivalent,
denoted by p ∼ q, if τ≥n(p) = τ≥m(q), for some integers m,n. Clearly this is an
equivalence relation. The tail-equivalence class that contains an infinite path p
is denoted by [p].

A path algebra A = KE is an algebra over a field K whose base is the set of
all paths in quiver E. Multiplication of two paths is given by concatenation if
this is defined, and 0 otherwise. Extending this bilinearly, one gets an algebra
structure. Note that A has a unit if and only if E has only finitely many vertices.
Let E be a finite connected quiver. The two-sided ideal of A generated by all
arrows in E is called an arrow ideal of A and is denoted by RE. A two-sided ideal
I of KE is said to be admissible if there exists m ≥ 2 such that

Rm
E ⊆ I ⊆ R2

E.

If I is an admissible ideal of A, then (E, I) is said to be a bound quiver. The
quotient algebra A/I is called a bound quiver algebra. If A is isomorphic to
a bound quiver (E, I), we visualize any (finite dimensional) A-module M as a
K-linear representation of (E, I), that is, a family of (finite-dimensional) K-
vector spaces Ma, with a ∈ E0 connected by K-linear maps φα : Ma → Mb

corresponding to arrows α : a → b in E and satisfying some relations induced by
I.

Let E be a finite quiver. A representation M of E is defined as follows: Each
vertex a ∈ E0 associates to a K-vector space Ma and each arrow α : a → b
in E1 associates to a K-linear map φα : Ma → Mb. Such a representation is
denoted as M = (Ma, φα)a∈E0,α∈E1 , or simply as M = (Ma, φα). It is called a
finite-dimensional representation if each vector space Ma is finite-dimensional.

Let M = (Ma, φα) and M
′
= (M

′
a, φ

′
α) be two representations of E. A mor-

phism (of representations) f : M → M
′ is a family f = (fa)a∈E0 of K-linear maps

(fa : Ma → M
′
a)a∈E0 that are compatible with the structure maps φα, that is, for

each arrow α : a → b, we have φ
′
αfa = fbφα or, equivalently, the following square

is commutative:

Ma
φα−→ Mb

↓ fa ↓ fb

M
′
a

φ
′
α−→ M

′

b

Let f : M → M
′ and g : M

′ → M” be two morphisms of representations of
E, where f = (fa)a∈E0 and g = (ga)a∈E0 . Their composition is defined to be the
family gf = (gafa)a∈E0 , then gf is easily seen to be a morphism from M to M”.

A category is a triple C = (Ob C,HomC , •), where Ob C is called the class
of objects of C, HomC is called the class of morphisms of C, and • is a partial
binary operation on morphisms of C satisfying the following conditions:
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(1) To each pair of objects X and Y of C, we associate a set HomC(X,Y ),
called the set of morphisms from X to Y , such that if (X,Y ) 6= (Z,U),
then the intersection of the sets HomC(X,Y ) and HomC(Z,U) is empty;

(2) For each triple of objects X,Y, Z of C, the operation • : HomC(Y, Z) ×
HomC(X,Y ) → HomC(X,Z), (g, f) 7−→ g ◦ f (called the composition of
f and g), is defined and has the following two properties: (i)h ◦ (g ◦ f) =
(h ◦ g) ◦ f , for every triple f ∈ HomC(X,Y ), g ∈ HomC(Y, Z), and
h ∈ HomC(Z,U) of morphisms; (ii) For each object X of C, there exists an
element 1X ∈ HomC(X,X), called the identity morphism on X, such that
if f ∈ HomC(X,Y ) and g ∈ HomC(Z,X), then f ◦1X = f and 1X ◦g = g.
We often write f : X → Y or X → Y instead of f ∈ HomC(X,Y ), and
we say that f is a morphism from X to Y . We also write X ∈ Ob C to
mean that X is an object of C. We say that a diagram in the category
C is commutative whenever the composition of morphisms along any two
paths with the same source and target are equal. For instance, we say
that the diagram is commutative if g ◦ f = i ◦ h.

X
f−→ Y

↓ h ↓ g

V
i−→ Z

For a commutative ring K, a category C is called K-linear if for all objects
X and Y , we get that HomC(X,Y ) is a K-module and that composition of
morphisms is K-bilinear.

A functor F : C → D relates two categories C and D in the following way:
(1) To each object X ∈ Ob C it associates an object F (X) ∈ Ob D.
(2) To each map f ∈ C(X,Y ), it associates a map Ff ∈ D(F (X), F (Y )) such

that the following properties hold: For each object X ∈ Ob C, F1X =
1FX , for a map g ∈ C(X,Y ) and f ∈ C(Z, Y ), we have F (f ◦g) = Ff ◦Fg.

Let F : C → D and G : C → D be two functors. Suppose that for every
object X ∈ C, we have a morphism ηX : C(X) → D(X) in D such that for every
morphism α : X → X

′ in C the diagram is commutative :

C(X)
ηX−→ D(X)

↓ C(α) ↓ D(α)

C(X
′
)

η
X

′
−−→ D(X

′
)

Then we call η a natural transformation from F to G and we write η : F → G.
Let C and D be arbitrary categories; then a functor F : C → D is a category

equivalence in this case, if there are a functor G : D → C and natural isomor-
phisms GF ∼= 1C and FG ∼= 1D. Two categories are equivalent in this case, if
there exists a category equivalence from one to the other. We write C ≈ D.

Furthermore, the following theorem explains that the category mod A whose
objects are finitely generated A-modules and whose morphisms are A-linear maps,
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is equivalent to the category repK(E, I) whose object is a K-linear representation
of E that is bounded by I and is finite-dimensional.
Theorem 2.1 (see [7, Theorem 1.6]). Let A = KE/I connected with finite quiver
E and I be an admissible ideal of KE. There exists a K-linear equivalence of
categories

F : mod A
≃−→ repK(E, I).

By using Theorem 2.1, we can give an interpretation of a simple, projective, and
injective module as bound representation. Let a ∈ E0 define the representation
(S (a)b , φα) of E, denoted by S (a), as follows:

S (a)b =

{
0
K

if b 6= a
if b = a,

φα = 0 for each α ∈ E1

Clearly, S (a) is a bound representation of (E, I). Let (E, I) be a bound quiver,
let A = KE/I, and let P (a) = eaA, where a ∈ E0. If P (a) = (P (a)b , φβ), then
P (a)b is the K-vector space with as basis the set of all ω = ω+I, with ω is a path
from a to b, and for an arrow β : b → c, the K-linear map φβ : P (a)b → P (a)c is
given by right multiplication by β = β + I. If I (a) = (I (a)b , φβ), then I (a)b is
the dual of K-vector space with as basis the set of all ω = ω+I, with ω is a path
from b to a and for an arrow β : b → c, the K-linear map φβ : I (a)b → I (a)c is
given by the dual of the left multiplication β = β + I.

3. Indecomposable c-Prime modules over path algebra of an
acyclic quiver

This section discusses c-prime modules over the path algebra of an acyclic
quiver.
Definition 3.1. Let M be a left A-module. We say that M is a c-prime module,
if rm = 0 for one m ∈ M and r ∈ A implies that either r annihilates all M or
m = 0.

Dauns [9] gave a general definition of the prime module.
Definition 3.2. Let M be a left R-module. Then M is a prime module if for all
r ∈ R and m ∈ M with rRm = 0, then rM = 0.

If R is a commutative ring, then Definition 3.1 is equivalent to Definition 3.2.
Proposition 3.3. If M is a c-prime module, then M is a prime module.
Proof. Suppose that M is a c-prime module, and let r ∈ R, m ∈ M , with
rRm = 0. Then it is clear that rm = 0. So rM = 0 and M is a prime
module. □
Remark 3.4. For the proof of this proposition, we need to assume that R has a
unit.

The goal of this section is to show that for the algebra A of an acyclic quiver,
an A-module M is a simple module if and only if it is c-prime.
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Theorem 3.5. Let A = KE be a path algebra and let M be an A-module,
with E is an acyclic quiver. Then M is c-prime if and only if it is simple.

Proof. Suppose that M is not a simple module, we will prove that M is not c-
prime, that is, there are 0 6= r ∈ R and m ∈ M with rm 6= 0 but r /∈ Ann M
and m 6= 0. Let M be one of the following cases as in Figures 1 and 2:

(1)

Figure 1. Line graph

(2)

Figure 2. Tree

Suppose that r ∈ KE and m ∈ M , where m = (m1,m2,m3, . . . ,ml) with rm =
0. Let m1 = (m(1,1),m(2,1), . . . ,m(a1,1)), m2 = (m(2,1),m(2,2), . . . ,m(a2,2)), and
ml = (m(l,1),m(l,2), . . . ,m(al,l)). Without loss of generality, if r = α, then φα(m1) =
0. Thus m1 ∈ ker (φα). If φα is injective, then m1 = 0. Suppose that m =
(0,m2,m3, . . . ,ml) 6= 0. Let m

′
1 /∈ ker(φα); then α(m

′
1, 0, 0, 0, . . . , 0) 6= 0. There-

fore r /∈ Ann M . If φα is not injective, then let 0 6= m1 ∈ ker (φα). Suppose that
m

′
= (m

′
1,m

′
2,m

′
3, . . . ,m

′

l), with m
′
1 /∈ ker (φα); then rm

′ 6= 0, such that
r /∈ Ann M . So M is not a c-prime module.
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Suppose that M is a simple module; then M = (0, 0, . . . , 0, K, 0, . . . , 0). Let
r ∈ KE, m ∈ M , where rm = 0. Let m = (0, 0, . . . , 0, k, 0, 0, . . . , 0) with k ∈ K,
where rm = 0; then rm = (0, 0, . . . , 0, rk, 0, 0, . . . , 0) such that φr(k) = 0. Thus
k ∈ ker(φr). If φr is injective, then k = 0, such that m = 0. If φr is not
injective and n ∈ M , where n = (0, 0, . . . , 0, s, 0, 0, . . . , 0), then rn = φr(n) =
(0, 0, . . . , 0, φr(s), 0, 0, . . . , 0) = 0. Therefore r ∈ Ann M . So M is a c-prime
module. □

Now, we state Theorem 3.6 that generalizes this section.

Theorem 3.6. Let K be a field and let A be a finite-dimensional K-algebra.
Then any finite-dimensional prime A-module has the form Sn for some integer n
and some simple A-module S. If in addition A is basic, then all these modules
are c-prime.

Proof. Suppose M is prime. In the first step, we show that M has to be semisim-
ple. If M is not semisimple, then there is a ∈ rad(A), the radical of A, with
a.M 6= 0. Indeed, M is semisimple if and only if rad(A).M = rad(M) = 0.
Hence, there is m ∈ M with a.m 6= 0. However, the socle of M , the sum of
the simple submodules of M , is not 0, that is, soc(M) 6= 0, and since soc(M) is
semisimple, rad(A).soc(M) = 0. Hence, for any nonzero element x ∈ soc(M), we
have ax = 0. Therefore M is not c-prime. So, M has to be semisimple.

If M is semisimple and S0 ≇ S1 are two nonisomorphic simple A-modules such
that S0 ⊕ S1 is a direct factor of M , then A/rad(A) =

∏n
i=1 Matni

(Di) for some
skew field Di and some integers ni. Hence there are two idempotents e0 and e1
of A (correspondent to the identity in two different matrix components in the
Wedderburn decomposition above) such that e0S0 = S0. However e0S1 = 0 and
e1S1 = S1 whereas e1S0 = 0. Hence, taking x nonzero in S1, then e0x = 0.
However e0M contains at least S0. Hence M is not c-prime.

Suppose now that A is a basic. Then ni = 1 for all i. Let M = Sn for some
simple A-module S and some integer n. Let e be the unit in the Wedderburn
decomposition that acts as identity on S and let π : A → Die = Di be the
projection of A onto this component. Then for any x ∈ M − 0, we get ax 6= 0
if and only if ϕ(x) 6= 0. Hence ax = 0 implies ϕ(a) = 0 and this implies a ∈
AnnA(M). □

4. Leavitt path algebras and primeness of simple modules over a
Leavitt path algebra

The graph (directed graph) E can be extended by adding arrows in the opposite
direction. The arrows in E1 are called the real edges while the edges in the
opposite direction from the real edges are called the ghost edges. The set of all
ghost edges in E is expressed as (E1)∗. A Leavitt path algebra can be identified
by using the extended graph E of the path algebra KE. Given E = (E0, E1, r, s),
the extended graph E as a new graph Ê = (E0, E1 ∪ (E1)∗, r

′
, s

′
) with (E1)∗ =

{e∗i |ei ∈ E1} and the functions r
′ and s

′ , is defined as follows: r
′ |E1 = r, s′|E1 =

s, r
′
(e∗i ) = s(ei), and s

′
(e∗i ) = r(ei).
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Following [17], we define the Leavitt path algebra of E with coefficients in K
as the K-algebra generated by sets {v : v ∈ E0} and {e, e∗ : e ∈ E1} that satisfy
the following relations:

(1) s(e)e = e = er(e), for all e ∈ E1,
(2) r(e)e∗ = e∗ = e∗s(e),for all e∗ ∈ E1,
(3) (CK1) e∗f = δefr(e) for all e, f ∈ E1,
(4) (CK2) v =

∑
{e∈E1|s(e)=v} ee

∗ whenever v ∈ E0 is not a sink.
This algebra is denoted by LK(E). The relations (3) and (4) are called the Cuntz
Krieger relations. For the sake of convenience in writing, the Leavitt path algebra
LK(E) will be abbreviated by L if no confusion may occur. Every element of L
can be written as a =

n∑
i=1

kiαiβi
∗, where ki 6= 0, ki ∈ K, and αi, βi are paths in

E.
As noted in [1], if M is a left L-module, then we may define for each m ∈ M ,

the L-homomorphism ρ : L → M , with ρm(r) = rm. By using ρ, Chen [8]
introduced a class of simple modules over Leavitt path algebras. We will describe
the general method used in [8,17,18] to construct simple modules over L by using
special vertices or cycles in the graph E.

Definition 4.1. Let u be a vertex in a graph E that is either a sink or an
infinite emitter. Let Au be the K-vector space having as basis the set B = {p :
p paths in E with r(p) = u}. We make A a left L-module as follows: Define, for
each vertex v and each edge e in E, linear transformations Pv, Se, and Se∗ on A
by defining their actions on basis B as follows:

(1) For all p ∈ B,

Pv(p) =

{
p if v = s(p),
0 others,

(2)

Se(p) =

{
ep if r(e) = s(p),
0 others,

(3)
Se∗(u) = 0,

(4)

Se∗(p) =

{
p
′

if p = ep
′
,

0 others.

Then it is straightforward to check that the endomorphisms
{Pu, Se, S

∗
e : u ∈ E0, e ∈ E1} satisfy the defining relations (1)–(4) of the Leavitt

path algebra L. This induces an algebra homomorphism ϕ from L to EndK(Sv∞),
mapping u to Pu, e to Se, and e∗ to Se∗ . Then Au can be made a left module
over L via the homomorphism ϕ.

Lemma 4.2. If the vertex u is either a sink or infinite emitter, then Au is a
simple left L-module.

By using Definition 4.1 and Lemma 4.2, we obtain the following theorem.
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Theorem 4.3. If u is a sink, then Au is not a c-prime module.
Proof. To prove this theorem, without loss of generality, we reduce the case to
a graph with three vertices and two edges as shown below. Let E be the graph
in Figure 3. The simple module Av2 is the module over L with basis as the

Figure 3. Graph E with the sink

set B = {p : p paths in E with r(p) = v2} and a sink v2, and B actually
only contains {v2, e1, e2}. Let r = −3v1 + 2v2 + 3e1 − 2e∗1 − 2e∗2, r ∈ L, and
m = v2 + e1 + e2,m ∈ Av2 . Then rm = 0. However, if we take m1 = e2 and
m1 ∈ Av2 , then rm1 6= 0. So r /∈ Ann Av2 . Therefore, there is no m 6= 0 and
r /∈ Ann Av2 such that rm = 0. Thus, Av2 is not a c-prime module.

The case for E with subgraph in Figure 4 has the same argument. □

Figure 4. Subgraph E with sink

Theorem 4.4. If v is an infinite emitter in E, then Av is not a c-prime module.
Proof. We reduce to the case with graph in Figure 5. The simple module Av2 is the
module over L with the set B = {p : p paths in E with r(p) = v2} as basis, and
v2 is an infinite emitter. It is clear B = {v2, e1, e2}. Let r = v1 + 2e1, r ∈ L, and
m = v2−2e1+e2,m ∈ Av2 . Thus rm = 0. However, if we take m1 = e1,m1 ∈ Av2 ,
then rm1 6= 0. So r /∈ Ann Av2 . Therefore, there is no m 6= 0 and r /∈ Ann Av2

such that rm = 0. Thus, Av2 is not a c-prime module.
The case where E has a subgraph F as in Figure 6, has the same argument.

□
Remark 4.5. Even if v2 is not infinite emitter, then the module Av2 is still not a
c-prime module.
Definition 4.6. (Chen simple module A[p]) Let [p] denote the tail equivalence
class of all infinite paths equivalent to p. Let A[p] denote the K-vector space with
[p] as basis. As in the definition of Au, for each vertex v and each edge e in E,
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Figure 5. Graph E with infinite emitter

Figure 6. Subgraph F with infinite emitter

define the linear transformations Pv, Se, and Se∗ on A by defining their actions
on basis [p] satisfying the conditions (1),(2),(3), but not (4), in Definition 4.1.
As before, they satisfy the defining relations of a Leavitt path algebra and thus
induce the homomorphism φ : L −→ A[p]. The vector space A[p] then becomes a
left L-module via the map φ.
Lemma 4.7. If p is an infinite path, then A[p] is a simple left L-module.
Theorem 4.8. Let E be the graph in Figure 7. If p is an infinite path, then A[p]

is not a c-prime module.
Proof. Let E be a graph A∞. Let r = 5v1 + 3v2 − 5e1 − 3(e1)

∗, r ∈ L,

Figure 7. Graph A∞

p1 = e1e2e3 · · · , p2 = e2e3e4 · · · , m = p1 + p2, and m ∈ A[p]. Then rm = 0.
However, if we take m1 = p1, then rm1 6= 0. So r /∈ Ann A[p]. Therefore, there
is no m 6= 0 and r /∈ Ann A[p] such that rm = 0. Thus, A[p] is not a c-prime
module. □
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Theorem 4.9. Let E be the graph in Figure 8. If p is a rational infinite path,

Figure 8. Loops with one exit

then A[α∞] is a c-prime module.

Proof. Suppose that B is the basis of A[α∞] and that B = {v, β, αβ, α2β, . . .},
with rm = x(k1α

∞) = 0. Then xA[α∞] = 0, r ∈ L, and m ∈ A[α∞]. Thus A[α∞] is
a c-prime module □
Theorem 4.10. Let E be a graph excluding a single vertex and loop. There exists
a simple module over Leavitt path algebras that is c-prime if and only if E is the
graph in Figure 9.

Figure 9. Loops with some exit

Proof. Suppose that M is a simple and c-prime module. Let r ∈ L and let m ∈ M ,
and define φ : L → M with φ(r) = rm. It is clear that φ is surjective because
M is a simple module, so L/AnnLM ∼= M is a division ring. Then AnnLM is
a maximal ideal; thus AnnLM = I is an ideal. Next we will show that if L/I
is a division ring, then E is a graph with a single vertex or a single loop. Since
I = AnnLM is an ideal of L, so I 6= L. Let u ∈ L and let u /∈ I. Let v ∈ L and
let u 6= v; then (I + u)(I + v) = I + uv = 0, so u ∈ I or v ∈ I. However u /∈ I,
so v ∈ I (because L/I is a division ring). So L/I has only one vertex. Let α and
β be loops at u. Consider u = αα∗ and u = ββ∗. Clearly α, α∗, β, β∗ /∈ I, but
(I + α∗)(I + β) = I + α∗β = 0. Because L/I is a division ring, α∗ ∈ I or β ∈ I
(contradiction). So L/I has only one loop. Because E is not only one loop and
there is no other loop at u, E is the graph in Figure 9.

Suppose that E is the graph in Figure 9. Let p be a rational infinite path in
graph E. By using Definition 4.6 and Lemma 4.7, it is clear that M is a simple
module over a Leavitt path algebra. Similarly, using Theorem 4.9, we can see
that M is a c-prime module. □
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