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PERMANENCE AND STABILITY OF MULTI-SPECIES
NONAUTONOMOUS LOTKA–VOLTERRA COMPETITIVE

SYSTEMS WITH DELAYS AND FEEDBACK CONTROLS ON
TIME SCALES
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Abstract. We consider a multi-species Lotka–Volterra type competitive sys-
tem with delays and feedback controls on time scales. A general criteria on
the permanence is established, and then by constructing suitable Lyapunov
functionals, sufficient conditions are derived for the existence and uniform as-
ymptotic stability of unique positive almost periodic solution of the system.

1. Introduction

The mathematical models predator-prey, competition, and mutualism are most
suitable for real world situations in population dynamics for multiple species,
which can be expressed as a set of parameterized differential or difference equa-
tions, or dynamical systems. The Lotka–Volterra (LV) model is the most appro-
priated and frequently used in competition models. The n-dimensional nonau-
tonomous competitive LV model is described by the following system:

x′i(t) = xi(t)[ai(t)−
n∑

j=1

bijxj(t)], i = 1, 2, . . . , n, (1.1)

where xi(t) is the density of the ith species at time t, ai(t) represents the intrinsic
growth rate of species i at time t, and bij(t) are the competing coefficients between
species j and i at time t. In mathematical ecology, (1.1) describes an n-species
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dynamical system, in which each individual competes with others of the system
for the unique resources.

Moreover, the ecosystems in the real world are continuously distributed by
unpredictable forces, which can result in changes in the biological parameters
such as survival rates. In ecology, a question of practical interest is whether or
not an ecosystem can withstand those unpredictable disturbances that persist for
a finite period of time. In the language of control theory, we call the disturbance
functions as control variables. In 1993, Gopalsamy and Weng [3] introduced
a feedback control variable into the delayed logistic model and discussed the
asymptotic behavior of solutions in logistic models with feedback controls, in
which the control variables satisfy a certain differential equation. In the last
decade, much work has been done on the ecosystem with feedback controls (see
[3, 6, 8, 9, 14–17] and the references therein). In particular, Li and Liu [8], Lalli
and Yu [6], Li and Wang [9], Shi and chen [14], Shi et al. [15] have studied delay
equations with feedback controls.

The study of dynamical systems on time scales is now an active area of research.
This study reveals that the existence of positive almost periodic solutions of
population models is not worthwhile to establish results for differential equations
and again for difference equations separately. One can unify such problems in the
frame of dynamic equations on time scales [2, 10, 11, 13]. Recently, Prasad and
Khuddush [12] studied the 3-species Lotka–Volterra competition model on time
scales,

x∆1 (t) = r1(t)− exp{x1(t)} − α exp{x2(t)} − β exp{x3(t)},
x∆2 (t) = r2(t)− β exp{x1(t)} − exp{x2(t)} − α exp{x3(t)},
x∆3 (t) = r3(t)− α exp{x1(t)} − β exp{x2(t)} − exp{x3(t)},

and derived sufficient conditions for the existence and uniform asymptotic stabil-
ity of unique positive almost periodic solution of system. Motivated by aforemen-
tioned works in this paper, we study the permanence and positive almost periodic
solutions of the following n-species Lotka–Volterra system on time scales:

x∆i (t) = xi(t)
[
bi(t)− ai(t)x

σ
i (t)−

n∑
j=1

aij(t)xj
(
t− τij(t)

)
− ci(t)ui

(
t− δi(t)

)]
,

u∆i (t) = ri(t)− di(t)ui(t) + ei(t)xi
(
t− ηi(t)

)
, i = 1, 2, . . . , n,


(1.2)

where xi(t) represents the population density of the ith species at time t ∈
T+, ui(t) denotes indirect control variable [5, 7], of the ith species at time t ∈
T+

(
T+ is a nonempty closed subset of R+ = (0,∞)

)
, xσi (t) = xi(σ(t)), σ(t) is the

forward jump operator, and the functions ai, bi, ci, di, ei, δi, ηi, aij, τij, (i, j =
1, 2, . . . , n) are bounded positive almost periodic functions.

2. Preliminaries

For a function g(t) defined on T+, we set

gL = inf
{
g(t) : t ∈ T+

}
, gU = sup

{
g(t) : t ∈ T+

}
.
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Definition 2.1 ([1]). A time scale T is a nonempty closed subset of the real
numbers R. Also T has the topology that it inherits from the real numbers with
the standard topology. It follows that the jump operators σ, ρ : T → T and the
graininess µ : T → R+ defined, respectively, by

σ(t) = inf{τ ∈ T : τ > t}, ρ(t) = sup{τ ∈ T : τ < t}, and µ(t) = σ(t)− t,

(supplemented by inf ∅ := supT and sup ∅ := inf T) are well defined. The
point t ∈ T is left-dense, left-scattered, right-dense, and right-scattered if ρ(t) =
t, ρ(t) < t, σ(t) = t, and σ(t) > t, respectively. If T has a left-scattered maximum
m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered minimum m,
then Tk = T\{m}; otherwise Tk = T.

Definition 2.2 ([1]). A function f : T → R is called regressive provided 1 +
µ(t)f(t) ̸= 0 for all t ∈ Tk. The set of all regressive and rd-continuous functions
(a function g : T → R is called rd-continuous provided it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T)
f : T → R will be denoted by R = R(T,R). We define the set R+ = R+(T,R) =
{f ∈ R : 1 + µ(t)f(t) > 0, for all t ∈ T}.

Lemma 2.3 ([4]). Assume that a > 0, that b > 0, and that −a ∈ R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a

[
1 +

(ay(t0)
b

− 1
)
e(−a)(t, t0)

]
, t ∈ [t0,∞)T.

Lemma 2.4 ([4]). Assume that a > 0 and that b > 0. Then

y∆(t) ≤ (≥)y(t)
(
b− ay(σ(t))

)
, y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a

[
1 +

( b

ay(t0)
− 1

)
e(−b)(t, t0)

]
, t ∈ [t0,∞)T.

Definition 2.5 ([9]). A time scale T is called an almost periodic time scale if∏
= {τ ∈ R : t+ τ ∈ T, for all t ∈ T} ̸= {0}.

Definition 2.6 ([9]). Let T be an almost periodic time scale. A function x ∈
C(T,Rn) is called an almost periodic function if the ε-translation set of x, that
is,

E{ε, x} =
{
τ ∈

∏
: |x(t+ τ)− x(t)| < ε, for all t ∈ T

}
is a relatively dense set in T for all ε > 0, that is, for any given ε > 0, there
exists a constant l(ε) > 0 such that each interval of length l(ε) > 0 contains
τ(ε) ∈ E{ε, x} such that |x(t+ τ)−x(t)| < ε, for all t ∈ T. Moreover, τ is called
the ε-translation number of x(t), and l(ε) is called the inclusion length of E{ε, x}.
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Definition 2.7 ([9]). Let D be an open set in Rn and let T be a positive almost
periodic time scale. A function f ∈ C(T × D,Rn) is called an almost periodic
function in t ∈ T uniformly for x ∈ D if the ε-translation set of f

E{ε, f, S} =
{
τ ∈

∏
: |f(t+ τ)− f(t)| < ε, for all (t, x) ∈ T× S

}
is a relatively dense set in T for all ε > 0 and for each compact subset S of D, that
is, for any given ε > 0 and each compact subset S of D, there exists a constant
l(ε,S) > 0 such that each interval of length l(ε,S) contains τ(ε,S) ∈ E{ε, f, S}
such that

|f(t+ τ, x)− f(t, x)| < ε, for all (t, x) ∈ T× S.

Consider the following system:

x∆(t) = h(t, x), (2.1)

and its associate product system

x∆(t) = h(t, x), z∆(t) = h(t, z),

where h : T+×SB → Rn, SB = {x ∈ Rn : ∥x∥ < B} and h(t, x) is almost periodic
in t uniformly for x ∈ SB and is continuous in x.

Lemma 2.8 ([18]). Suppose that there exists a Lyapunov function V (t, x, z) de-
fined on T+ × SB × SB satisfying the following conditions:

(i) a(∥x− z∥) ≤ V (t, x, z) ≤ b(∥x− z∥), where a, b ∈ K,
K = {α ∈ C(R+,R+) : α(0) = 0 and α is increasing};

(ii) |V (t, x, z) − V (t, x1, z1)| ≤ L(∥x − x1∥ + ∥z − z1∥), where L > 0 is a
constant,

(iii) D+V ∆(t, x, z) ≤ −cV (t, x, z), where c > 0,−c ∈ R+.

Furthermore, if there exists a solution x(t) ∈ S of system (2.1) for t ∈ T+, where
S∪SB is a compact set, then there exist a unique almost periodic solution f(t) ∈ S
of system (2.1), which is uniformly asymptotically stable.

Definition 2.9. System (1.2) is said to be permanent if there exist positive
constants m,M such that m ≤ lim inft→∞ xi(t) ≤ lim supt→∞ xi(t) ≤ M, i =
1, 2, . . . , n, and m ≤ lim inft→∞ ui(t) ≤ lim supt→∞ ui(t) ≤ M, i = 1, 2, . . . , n, for
any solution

(
x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , un(t)

)
of (1.2).

For system (1.2), we introduce the following assumption. Let t0 ∈ T be a fixed
positive initial time.

(H1) ai(t), bi(t), ci(t), di(t), ei(t), δi(t), ηi(t), ri(t), τij(t), aij(t)(i, j = 1, 2, . . . , n)
are bounded almost periodic functions and satisfy 0 < aL ≤ ai(t) ≤
aUi , 0 < bLi ≤ bi(t) ≤ bUi , 0 < cLi ≤ ci(t) ≤ cUi , 0 < dLi ≤ di(t) ≤ dUi , 0 <
eLi ≤ ei(t) ≤ eUi , 0 < rLi ≤ ri(t) ≤ rUi , 0 < δL ≤ δi(t) ≤ δUi , 0 <
ηL ≤ ηi(t) ≤ ηUi , 0 < τLij ≤ τij(t) ≤ τUij , 0 < aLij ≤ aij(t) ≤ aUij for
i, j = 1, 2, 3, . . . , n.
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Define
Cn

rd+ [−τ, 0] =
{
ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn

rd[−τ, 0] : ϕi(s) ≥ 0

and ϕi(0) > 0 for all s ∈ [−τ, 0] and i = 1, 2, . . . , n
}
,

where τ = sup
{
δi(t), ηi(t), τij(t) : t ≥ t0, i = j = 1, 2, . . . , n

}
. Then Cn

rd[−τ, 0]T is
the Banach space of bounded rd-continuous functions ϕ : [−τ, 0]T → R+ with the
supremum norm defined by ∥ϕ∥c = sup−τ≤s≤0 |ϕ(s)|, where ϕ = (ϕ1, ϕ2, . . . , ϕn)
and |ϕ(s)| =

∑n
i=1 |ϕi(s)|. We know, for any (ϕ, ψ) ∈ Cn

rd[−τ, 0]×Cn
rd[−τ, 0], that

system (1.2) has a unique solution
Z(t, ϕ, ψ) =

(
x1(t, ϕ), x2(t, ϕ), . . . , xn(t, ϕ), u1(t, ψ), u2(t, ψ), . . . , un(t, ψ)

)
satisfying the initial condition Zt0(·, ϕ, ψ) = (ϕ, ψ).

Due to the biological background of system (1.2), positive solutions are only
meaningful. So, we restrict our attention to positive solutions of equation (1.2).
It is easy to see that the solution Z(t, ϕ, ψ) of system (1.2) is positive, if the initial
function (ϕ, ψ) is in Cn

rd+ [−τ, 0]× Cn
rd+ [−τ, 0].

3. Permanence of solutions

In this section, we derive the sufficient conditions for system (1.2) to be per-
manent.
Lemma 3.1. Suppose that assumption (H1) holds. Then for any positive solution
Z(t) =

(
x(t), u(t)

)
of system (1.2), there exist positive constants M and T such

that xi(t) < M and ui(t) < M(i = 1, 2, . . . , n) for t > T .
Proof. Let Z(t) =

(
x(t), u(t)

)
be any positive solution of system (1.2). From the

ith equation of system (1.2), we have x∆i (t) ≤ xi(t)
[
bUi − aLi xi

(
σ(t)

)]
. Hence, by

Lemma 2.4, there exist positive constantsM∗
i and T ∗

i such that for any positive so-
lution

(
x(t), u(t)

)
of system (1.2), we have xi(t) ≤ bUi /a

L
i :=M∗

i for all t ≥ T ∗
i . Let

M∗ = max1≤i≤n{M∗
i } and let T ∗ = max1≤i≤n{T ∗

i }. Then xi(t) ≤ M∗ for all t ≥
T ∗, i = 1, 2, . . . , n. Furthermore, from the (n+ i)th equation of system (1.2), we
have u∆i (t) ≤ (rUi +e

U
i M

∗)−dLi ui(t) for all t ≥ T ∗+τ. Hence, by Lemma 2.3, there
exist positive constants Mi∗ > 0 and Ti∗ > T ∗ + τ such that for any positive so-
lution

(
x(t), u(t)

)
of system (1.2), we have ui(t) ≤ (rUi +eUi M

∗)/dLi :=Mi∗ for all
t ≥ Ti∗. Now let M = max{M∗,Mi∗ : i = 1, 2, . . . , n} and let T = max{T ∗, Ti∗ :
i = 1, 2, . . . , n}. Then xi(t) ≤M and ui(t) ≤M for all t ≥ T, i = 1, 2, . . . , n. □
Lemma 3.2. Suppose that (H1) holds. Furthermore, for each i = 1, 2, . . . , n, if
bLi >

[∑n
j=1 a

U
ij + cUi

]
M, then system (1.2) is permanent.

Proof. Let Z(t) =
(
x(t), u(t)

)
be any positive solution of system (1.2). From

Lemma 3.1, there are positive constants M > 0 and T ≥ t0 such that 0 < xi(t) <
M and 0 < ui(t) < M for all t ≥ T, i = 1, 2, . . . , n. From the ith equation of
system (1.2), we have

x∆i (t) ≥ xi(t)
[
bLi −

n∑
j=1

aUijM − cUi M − aUi xi
(
σ(t)

)]
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for all t ≥ T + τ. Hence, from the hypothesis and Lemma 2.4, we can get a
constant m∗

1 > 0 such that for any positive solution
(
x(t), u(t)

)
of system (1.2),

there is T̂i > T + τ such that

xi(t) ≥
bLi −

(∑n
j=1 a

U
ij + cUi

)
M

aUi
:= m∗

i

for all t ≥ T̂i. Let m∗ = min1≤i≤n{m∗
i } and let T̂ ∗ = max1≤i≤n{T̂i}. Then xi(t) ≥

m∗ for all t ≥ T̂ ∗, i = 1, 2, . . . , n. Furthermore, from the above, assumption (H1),
and the (n+ i)th equation of system (1.2), we have u∆i (t) ≥ (rLi +e

L
i m

∗)−dUi ui(t)
for all t ≥ T̂ ∗ + τ. Hence, by Lemma 2.3, we can obtain a constant mi∗ > 0 such
that for any positive solution

(
x(t), u(t)

)
of system (1.2), there is T̂i∗ > T̂ ∗ + τ

such that

ui(t) ≥
rLi + eLi m

∗

dUi
:= mi∗ for all t ≥ T̂i∗.

Finally, let m = min{m∗,mi∗ : i = 1, 2, . . . , n} and let T̂ = max{T̂ ∗, T̂i∗ : i =

1, 2, . . . , n}. Then xi(t) ≥ m and ui(t) ≥ m for all t ≥ T̂ , i = 1, 2, . . . , n. □

Define

Ω =
{
Z(t) =

(
x(t), u(t)

)
:
(
x(t), u(t)

)
=

(
x1(t), . . . , xn(t), u1(t), . . . , un(t)

)
be a

solution of (1.2) and 0 < x∗ ≤ xi ≤ x∗, 0 < u∗ ≤ ui ≤ u∗, i = 1, . . . , n
}
.

It is clear that Ω is an invariant set of system (1.2) and by Lemma 3.2, we have
Ω ̸= ∅.

4. Uniform asymptotic stability

In this section, we establish sufficient conditions for the existence and uniform
asymptotic stability of the unique positive almost periodic solution to system
(1.2).

Theorem 4.1. Suppose that the hypothesis of Lemma 3.2 holds and that all delays
of the system (1.2) are constants. Furthermore, the following holds:
(H2) For i = 1, 2, . . . , n,

αi =(xUi )
2

[
bLi − cUi u

U
i −

n∑
j=1

aUijx
U
j

]
≥ 0, α∗

i =
dLi

(uLi )
2
− cUi σ

U(xUi )
2

xLi
≥ 0,

βi =(xUi )
2

[ n∑
j=1

aUij(x
U
i )

2

xLi
+

(1 + dUi µ
U)eUi

(uLi )
2

]
≥ 0, β∗

i =
(dUi )

2µU

(uLi )
2

≥ 0,

and B < A with −A,−B ∈ R+, where A = min{Γ1,Γ
∗
1} and B = max{Γ2,Γ

∗
2}

in which Γ1 = min
1≤i≤n

αi, Γ∗
1 = min

1≤i≤n
α∗
i , Γ2 = max

1≤i≤n
βi, and Γ∗

2 = max
1≤i≤n

β∗
i .

Then the dynamic system (1.2) has a unique almost periodic solution Z(t) =(
x(t), u(t)

)
∈ Ω and is uniformly asymptotically stable.
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Proof. According to Lemma 3.2, every solution Z(t) =
(
x(t), u(t)

)
of system

(1.2) satisfies that xLi ≤ xi ≤ xUi and that uLi ≤ ui ≤ uUi . Hence, |xi(t)| ≤ Ai and
|ui(t)| ≤ Bi, where Ai = max{|xi∗|, |x∗i |} and Bi = max{|ui∗|, |u∗i |} i = 1, 2, . . . , n.
Denote

∥Z∥ = ∥(x, u)∥ = sup
t∈T+

n∑
i=1

|xi(t)|+ sup
t∈T+

n∑
i=1

|ui(t)|.

Suppose that Z =
(
x(t), u(t)

)
and Ẑ =

(
x̂(t), û(t)

)
are two positive solutions of

(1.2). Then ∥Z∥ ≤ C and ∥Ẑ∥ ≤ C, where C =
∑n

i=1(Ai +Bi). In view of (1.2),
we have

x∆i (t) = xi(t)
[
bi(t)− ai(t)x

σ
i (t)−

n∑
j=1

aij(t)xj
(
t− τij

)
− ci(t)ui

(
t− δi

)]
,

u∆i (t) = ri(t)− di(t)ui(t) + ei(t)xi
(
t− ηi

)
,

x̂∆i (t) = x̂i(t)
[
bi(t)− ai(t)x̂

σ
i (t)−

n∑
j=1

aij(t)x̂j
(
t− τij

)
− ci(t)ûi

(
t− δi

)]
,

û∆i (t) = ri(t)− di(t)ûi(t) + ei(t)x̂i
(
t− ηi

)
, i = 1, 2, . . . , n.

Define the Lyapunov function V (t, Z, Ẑ) on T+ × Ω× Ω as

V (t, Z, Ẑ) =
n∑

i=1

∣∣∣∣xi(t)− x̂i(t)

∣∣∣∣+ n∑
i=1

∣∣∣∣ 1

ui(t)
− 1

ûi(t)

∣∣∣∣.
Then the following two norms are equivalent:

∥Z(t)− Ẑ(t)∥ = sup
t∈T+

n∑
i=1

∣∣∣∣xi(t)− x̂i(t)

∣∣∣∣+ sup
t∈T+

n∑
i=1

∣∣∣∣ 1

ui(t)
− 1

ûi(t)

∣∣∣∣.

∥Z(t)− Ẑ(t)∥∗ = sup
t∈T+

[
n∑

i=1

(xi(t)− x̂i(t))
2 +

n∑
i=1

(
1

ui(t)
− 1

ûi(t)

)2
]1/2

.

That is, there exist two constants η1, eta2 > 0 such that

η1∥Z(t)− Ẑ(t)∥ ≤ ∥Z(t)− Ẑ(t)∥∗ ≤ η2∥Z(t)− Ẑ(t)∥.

Hence,

(η1∥Z(t)− Ẑ(t)∥)2 ≤ V (t, Z, Ẑ) ≤ (η2∥Z(t)− Ẑ(t)∥)2.
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Let a, b ∈ C(R+,R+), let a(x) = η21x
2, and let b(x) = η22x

2. Then the assumption
(i) of Lemma 2.8 is satisfied. On the other hand, we have∣∣∣V (

t, Z(t), Ẑ(t)
)
− V

(
t, Z∗(t), Ẑ∗(t)

)∣∣∣
=

∣∣∣∣ n∑
i=1

∣∣∣∣xi(t)− x̂i(t)

∣∣∣∣+ n∑
i=1

∣∣∣∣ 1

ui(t)
− 1

ûi(t)

∣∣∣∣− n∑
i=1

∣∣∣∣x∗i (t)− x̂∗i (t)

∣∣∣∣
−

n∑
i=1

∣∣∣∣ 1

u∗i (t)
− 1

û∗i (t)

∣∣∣∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣xi(t)− x∗i (t)

∣∣∣∣+ n∑
i=1

∣∣∣∣ 1

ui(t)
− 1

u∗i (t)

∣∣∣∣+ n∑
i=1

∣∣∣∣x̂i(t)− x̂∗i (t)

∣∣∣∣
+

n∑
i=1

∣∣∣∣ 1

ûi(t)
− 1

û∗i (t)

∣∣∣∣
= L

(
∥Z − Z∗(t)∥+ ∥Ẑ(t)− Ẑ∗(t)∥

)
,

where L = 1, so condition (ii) of Lemma 2.8 is satisfied. Now consider a function

V̂ (t) =
n∑

i=1

Vi(t), Vi(t) = Vi1(t) + Vi2(t) + Vi3(t) + Vi4(t) for i = 1, 2, . . . , n, and

Vi1(t) = (xUi )
2

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣, Vi2(t) = 1

(uLi )
2

∣∣∣∣ui(t)− ûi(t)

∣∣∣∣,
Vi3(t) =

n∑
j=1

aUij(x
U
i )

2

xLi

∫ t

t−τij

|xj(s)− x̂j(s)|∆s

+
(1 + dUi µ

U)eUi
(uLi )

2

∫ t

t−ηi

|xi(s)− x̂i(s)|∆s,

Vi4(t) =
cUi (x

U
i )

2

xLi

∫ σ(t)

t−δi

|ui(s)− ûi(s)|∆s.

For i = 1, 2, . . . , n,

D+V ∆
i1 (t) = (xUi )

2

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣∆
=(xUi )

2sign
(
x̂σi (t)− xσi (t)

)[ 1

xi(t)
− 1

x̂i(t)

]∆
=(xUi )

2sign
(
x̂σi (t)− xσi (t)

)[
− x∆i (t)

xi(t)xσi (t)
+

x̂i
∆(t)

x̂i(t)x̂σi (t)

]
=(xUi )

2sign
(
x̂σi (t)− xσi (t)

)
×

{
− 1

xσi

[
bi(t)− ai(t)x

σ
i (t)−

n∑
j=1

aij(t)xj
(
t− τij

)
− ci(t)ui

(
t− δi

)]
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+
1

x̂σi

[
bi(t)− ai(t)x̂

σ
i (t)−

n∑
j=1

aij(t)x̂j
(
t− τij

)
− ci(t)ûi

(
t− δi

)]}

=(xUi )
2 sign

(
x̂σi (t)− xσi (t)

)
xσi (t)x̂i

σ(t)

{
bi(t)

[
xσi (t)− x̂i

σ(t)
]

−
n∑

j=1

aij(t)[x
σ
i (t)x̂j(t− τij)− xj(t− τij)x̂i

σ(t)]

− ci(t)[x
σ
i (t)ûi(t− δi)− x̂σi ui(t− δi)]

}
≤ (xUi )

2

xσi (t)x̂i
σ(t)

{
− bi(t)

∣∣x̂iσ(t)− xσi (t)
∣∣

+
n∑

j=1

aij(t)x
σ
i (t))

∣∣x̂j(t− τij)− xj(t− τij)
∣∣

+
n∑

j=1

aij(t)xj(t− τij)
∣∣x̂σi (t)− xσi (t)

∣∣
+ ci(t)x

σ
i (t)

∣∣ûi(t− δi)− ui(t− δi)
∣∣

+ ci(t)ui(t− δi)
∣∣x̂iσ(t)− xσi (t)

∣∣}
≤ (xUi )

2

xσi (t)x̂i
σ(t)

[
ci(t)ûi(t− δi)− bi(t) +

n∑
j=1

aij(t)x̂j(t− τij)
]

×
∣∣∣xσi (t)− x̂i

σ(t)
∣∣∣+ 1

x̂σi

[ n∑
j=1

aij(t)
∣∣x̂j(t− τij)− xj(t− τij)

∣∣
+ ci(t)

∣∣ui(t− δi)− ûi(t− δi)
∣∣]

≤ (xUi )
2

[
cUi u

U
i − bLi +

n∑
j=1

aUijx
U
j

]∣∣∣∣ 1xσi − 1

x̂σi

∣∣∣∣
+

(xUi )
2

xLi

n∑
j=1

aUij
∣∣xj(t− τij)− x̂j(t− τij)

∣∣
+
cUi (x

U
i )

2

xLi

∣∣ui(t− δi)− ûi(t− δi)
∣∣,

Let vi(t) = ui(t)− ûi(t); then

(uLi )
2D+V ∆

i2 (t) = sign
(
vσi (t)

)
v∆i (t)

= sign
(
vσi (t)

){
− di(t)vi(t) + ei(t)

[
xi(t− ηi)− x̂i(t− ηi)

]}
≤ − di(t)sign

(
vσi (t)

)
[vσi (t)− µ(t)v∆i (t)]

+ ei(t)
[
xi(t− ηi)− x̂i(t− ηi)

]
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≤− di(t)|vσi (t)|+ di(t)µ(t)|v∆i (t)|+ ei(t)
[
xi(t− ηi)− x̂i(t− ηi)

]
≤− di(t)|vσi (t)|+ d2i (t)µ(t)|vi(t)|
+ (1 + di(t)µ(t))ei(t)

[
xi(t− ηi)− x̂i(t− ηi)

]
.

So,

D+V ∆
i2 (t) ≤

−dLi
(uLi )

2
|uσi (t)− ûσi (t)|+

(dUi )
2µU

(uLi )
2

∣∣ui(t)− ûi(t)
∣∣

+
(1 + dUi µ

U)eUi
(uLi )

2

∣∣xi(t− ηi)− x̂i(t− ηi)
∣∣,

D+V ∆
i3 (t) ≤

n∑
j=1

aUij(x
U
i )

2

xLi

[
|xj(t)− x̂j(t)| − |xj(t− τij)− x̂j(t− τij)|

]
+

(1 + dUi µ
U)eUi

(uLi )
2

[
|xi(t)− x̂i(t)| − |xi(t− ηi)− x̂i(t− ηi)|

]
,

D+V ∆
i4 (t) ≤

cUi (x
U
i )

2

xLi

[
σU |uσi (t)− ûσi (t)| − |ui(t− δi)− ûi(t− δi)|

]
,

where σU = maxt∈T+ σ∆(t). Since∣∣∣∣xi(t)− x̂i(t)

∣∣∣∣ = xi(t)x̂i(t)

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣ ≤ (xUi )
2

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣
and ∣∣∣∣ 1

ui(t)
− 1

ûi(t)

∣∣∣∣ = 1

ui(t)ûi(t)

∣∣∣∣ui(t)− ûi(t)

∣∣∣∣ ≤ 1

(uLi )
2

∣∣∣∣ui(t)− ûi(t)

∣∣∣∣,
it follows that
D+V ∆(t) ≤D+V̂ ∆(t)

≤
n∑

i=1

{
(xUi )

2

[
cUi u

U
i − bLi +

n∑
j=1

aUijx
U
j

]∣∣∣∣ 1

xσi (t)
− 1

x̂σi (t)

∣∣∣∣
+
[ −dLi
(uLi )

2
+
cUi σ

U(xUi )
2

xLi

]
|uσi (t)− ûσi (t)|+

n∑
j=1

aUij(x
U
i )

2

xLi

∣∣xj(t)− x̂j(t)
∣∣

+
(1 + dUi µ

U)eUi
(uLi )

2

∣∣xi(t)− x̂i(t)
∣∣+ (dUi )

2µU

(uLi )
2

|ui(t)− ûi(t)|
}

≤−
n∑

i=1

(xUi )
2

[
bLi − cUi u

U
i −

n∑
j=1

aUijx
U
j

]∣∣∣∣ 1

xσi (t)
− 1

x̂σi (t)

∣∣∣∣
−

n∑
i=1

[ dLi
(uLi )

2
− cUi σ

U(xUi )
2

xLi

]
|uσi (t)− ûσi (t)|

+
n∑

i=1

[ n∑
j=1

aUij(x
U
i )

2

xLi
+

(1 + dUi µ
U)eUi

(uLi )
2

]∣∣xi(t)− x̂i(t)
∣∣
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+
(dUi )

2µU

(uLi )
2

|ui(t)− ûi(t)|

≤ −
n∑

i=1

(xUi )
2

[
bLi − cUi u

U
i −

n∑
j=1

aUijx
U
j

]∣∣∣∣ 1

xσi (t)
− 1

x̂σi (t)

∣∣∣∣
−

n∑
i=1

[ dLi
(uLi )

2
− cUi σ

U(xUi )
2

xLi

]
|uσi (t)− ûσi (t)|

+
n∑

i=1

[ n∑
j=1

aUij(x
U
i )

2

xLi
+

(1 + dUi µ
U)eUi

(uLi )
2

]
· (xUi )2

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣
+

(dUi )
2µU

(uLi )
2

|ui(t)− ûi(t)|

=− Γ1

n∑
i=1

∣∣∣∣ 1xσi − 1

x̂σi

∣∣∣∣− Γ∗
1

n∑
i=1

|uσi (t)− ûσi (t)|

+ Γ2

n∑
i=1

∣∣∣∣ 1

xi(t)
− 1

x̂i(t)

∣∣∣∣+ Γ∗
2

n∑
i=1

∣∣ui(t)− ûi(t)
∣∣

=− AV (σ(t)) +BV (t) = (B − A)V (t)− Aµ(t)D+V ∆(t).

It follows that D+V ∆(t) ≤ (B −A)/(1 +AµU)V (t) = −γV (t). By (H2), we have
γ = (A−B)/(1 +AµU) > 0 and −γ ∈ R+. Thus, the assumption (iii) of Lemma
2.8 is satisfied, and hence, it follows from Lemma 2.8 that there exists a unique
uniformly asymptotically stable almost periodic solution Z(t) =

(
x(t), u(t)

)
of

dynamic system (1.2) and that Z(t) ∈ Ω. □

5. Numerical simulations

Example 5.1. Consider the following system for T+ = Z+ :

xi(t+ 1) = xi(t)
[
1 + bi(t)− ai(t)xi(t+ 1)−

n∑
j=1

aij(t)xj
(
t− τij(t)

)
− ci(t)ui

(
t− δi(t)

)]
,

ui(t+ 1) = ri(t) + (1− di(t))ui(t) + ei(t)xi
(
t− ηi(t)

)
, i = 1, 2, 3,


(5.1)

in which, for i, j = 1, 2, 3,

τij(t) = δi(t) = ηi(t) = 1 and

 b1(t)
b2(t)
b3(t)

 =

 5
5
5

 ,
 c1(t)
c2(t)
c3(t)

 =

 0.5
0.5
0.5

 ,
 a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)
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=

 0.03 + 0.02| sin(t)| 0.02 + 0.01| cos(
√
3t)| 0.03 + 0.01| sin(

√
2t)|

0.02 + 0.01| sin(
√
7t)| 0.03 + 0.02| cos(

√
2t)| 0.02 + 0.01| cos(

√
5t)|

0.02 + 0.01| sin(
√
2t)| 0.02 + 0.01| cos(

√
5t)| 0.03 + 0.01| sin(

√
2t)|

 ,
 r1(t)
r2(t)
r3(t)

 =

 0.003 + 0.001 cos(πt)
0.004 + 0.002 cos(πt)
0.002 + 0.001 sin(πt)

 ,
 d1(t)
d2(t)
d3(t)

 =

 0.5 + 0.38 sin(πt)
0.6 + 0.36 sin(πt)
0.3 + 0.1 cos(πt)

 ,
 a1(t)
a2(t)
a3(t)

 =

 1 + 0.02| cos(
√
2t)|

1 + 0.01| sin(
√
3t)|

2 + 0.02| cos(t)|

 ,
 e1(t)
e2(t)
e3(t)

 =

 0.002 + 0.001 sin(πt)
0.003 + 0.002 sin(πt)
0.002 + 0.001 cos(πt)

 .
By a direct calculation, we get xU1 = xU2 = 5, xU3 = 2.5, uU1 = 0.15833,
uU2 = 0.12917, uU3 = 0.0525, xL1 = 1.86275, xL2 = 1.93069, xL3 = 1.73267,
uL1 = 0.004389, uL2 = 0.004094, uL3 = 0.006832,

bL1∑n
j=1 a

U
1j + cU1

= 8.06452,
bL2∑n

j=1 a
U
2j + cU2

= 8.19672,

bL3∑n
j=1 a

U
3j + cU3

= 8.06452, M = 5 <
bLi∑n

j=1 a
U
ij + cUi

, i = 1, 2, 3.

Therefore, system (5.1) is permanent. Furthermore, α1 = 4.42083, α2 = 4.46042,
α3 = 4.57375, α∗

1 = 0.14842, α∗
2 = 0.01897, α∗

3 = 0.08857, β1 = 1.75153, β2 =
1.66936, β3 = 0.38696, β∗

1 = 1.88, β∗
2 = 1.96, β∗

3 = 1.4. It follows that A =
4.57375 > 1.96 = B. It is easy to see that the conditions of Theorem 4.1 are
verified. Therefore, system (5.1) has a unique positive almost periodic solution,
which is uniformly asymptotic stable. Our numerical simulations support our
results. From Figure 1–14, it can be seen that for system (5.1), there exists a
positive almost periodic solution denoted by (x∗1(t), x

∗
2(t), x

∗
3(t)).

Figure 1. Positive al-
most periodic solution of
system (5.1). Time series
of x∗1(t) with initial value
x∗1(0) = 4.65 and t over
[0, 100].

Figure 2. Positive al-
most periodic solution of
system (5.1). Time series
of x∗2(t) with initial value
x∗1(0) = 4.834 and t over
[0, 100].
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Figure 3. Positive al-
most periodic solution of
system (5.1). Time series
of x∗3(t) with initial value
x∗1(0) = 2.45 and t over
[0, 100].

Figure 4. Positive al-
most periodic solution of
system (5.1). Time series
of u∗1(t) with initial value
u∗1(0) = 0.008 and t over
[0, 100].

Figure 5. Positive al-
most periodic solution of
system (5.1). Time series
of u∗2(t) with initial value
u∗2(0) = 0.0081 and t over
[0, 100].

Figure 6. Positive al-
most periodic solution of
system (5.1). Time series
of u∗3(t) with initial value
u∗3(0) = 0.0074 and t over
[0, 100].
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Figure 7. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗1(t), x

∗
2(t), x

∗
3(t))

with initial value
(x∗1(0), x

∗
2(0), x

∗
3(0))

= (4.39, 4.6, 2.29).

Figure 8. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗1(t), x

∗
2(t), u

∗
1(t))

with initial value
(x∗1(0), x

∗
2(0), u

∗
1(0))

= (4.5, 4.7, 0.027).

Figure 9. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗1(t), x

∗
2(t), u

∗
2(t))

with initial value
(x∗1(0), x

∗
2(0), u

∗
2(0)) =

(4.71, 4.58, 0.0298).

Figure 10. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗1(t), x

∗
3(t), u

∗
1(t))

with initial value
(x∗1(0), x

∗
3(0), u

∗
1(0))

= (4.5, 2.36, 0.027).
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Figure 11. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗1(t), x

∗
3(t), u

∗
3(t))

with initial value
(x∗1(0), x

∗
3(0), u

∗
3(0)) =

(4.6, 2.375, 0.037).

Figure 12. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗2(t), x

∗
3(t), u

∗
2(t))

with initial value
(x∗2(0), x

∗
3(0), u

∗
2(0)) =

(4.7, 2.36, 0.0285).

Figure 13. Positive al-
most periodic solution of
system (5.1). Time series
of (x∗2(t), x

∗
3(t), u

∗
3(t))

with initial value
(x∗2(0), x

∗
3(0), u

∗
3(0))

= (4.7, 2.36, 0.037).

Figure 14. Dynamic
behaviors of the system
(5.1) with initial values
(x∗1(0), x

∗
2(0), x

∗
3(0),

u∗1(0), u
∗
2(0), u

∗
3(0)) =

(0.1, 0.01, 0.5, 4, 1.5, 3),
(1.5, 2, 4.5, 1, 3.5, 0.1).
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