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ISBELL CONVEXITY IN FUZZY QUASI-METRIC SPACES

HOPE SABAO1* AND OLIVIER OLELA OTAFUDU2

Communicated by L. Hola

Abstract. We introduce the concept of Isbell convexity in fuzzy quasi-metric
spaces, which we call fuzzy Isbell convexity. This idea extends Isbell convexity
(or q-hyperconvexity) in quasi-metric spaces to fuzzy quasi-metric spaces. We
show that fuzzy Isbell convexity is preserved by certain F -bounded subsets and
the space of nonnegative function pairs of the fuzzy quasi-metric space.

1. Introduction

Fuzzy metric spaces were introduced by Kramosil and Michalek [6]. This con-
cept is related to the class of probabilistic metric spaces (or generalized Menger
spaces). George and Veeramani [2, 3] studied a stronger form of fuzziness. After
that, some authors examined this concept for fuzzy metric spaces by using the
definition of fuzzy metric introduced by George and Veeremani. Due to many ap-
plications of quasi-metric spaces in theoretical computer science, approximation
theory, and topological algebra, different researchers have studied the concept of
a fuzzy quasi-metric space. For example, Gregori and Romaguera [4] introduced
two definitions of fuzzy quasi-metric spaces that generalize the corresponding
notions of fuzzy metric spaces by Kramosil and Michalek and by George and
Veeraamani to the framework of quasi-metric spaces, and several properties were
obtained.

The notion of a hyperconvex metric space is due to Aronszajn and Panich-
pakdi [1]. In 1979, Sine [11] and Soardi [12] proved, independently, that the fixed
point property for nonexpansive mappings holds in bounded hyperconvex spaces.
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Since then, the theory of hyperconvex metric spaces has been widely studied and
many results have been obtained. Furthermore, a number of results in hyper-
convex metric spaces have found applications in many fields of mathematics like
geometry, topology, and operator theory. These applications are not only limited
to mathematics, but also to other areas such as the study of phylogenetic trees
in biology and medicine. They have been motivations of extending results on
hyperconvexity from the metric setting to the quasi-metric setting (see [5,7–10])
and, is still, a motivation of extending the results from the quasi-metric setting
to the fuzzy quasi-metric setting. Also, since hyperconvexity plays an important
role in the study of fixed point and best approximation theorems in metric and
quasi-metric spaces, it is our hope that this article forms a basis of such studies
in fuzzy quasi-metric spaces. Therefore, it only seems natural first to establish
the theory of hyperconvexity in fuzzy quasi-metric spaces.

In this article, we start by investigating the concept of Isbell convexity in fuzzy
quasi-metric spaces, which we call fuzzy Isbell convexity. We are aware that this
idea was studied in fuzzy metric spaces by Yiǵit and Efe [13], and they called it
fuzzy hyperconvexity. We show that the set of real numbers equipped with the
standard fuzzy quasi-metric is fuzzy Isbell convex (see Theorem 2.12). However,
the set of real numbers equipped with the standard fuzzy metric is not fuzzy Isbell
convex (see Example 2.13), but it is fuzzy hyperconvex in the sense of [13]. It
should be pointed out that the concept of Isbell convexity in quasi-pseudometric
spaces has been extensively studied in [5, 7, 9]. Thus we will adapt some of the
results from these articles in our study.

We start by introducing the concept of fuzzy metric convexity in fuzzy quasi-
pseudo-metric spaces; thereafter, we introduce the concept of fuzzy Isbell hy-
percompleteness. We show that a fuzzy quasi-pseudometric space is fuzzy Isbell
convex if and only if it is fuzzy metrically convex and fuzzy Isbell hypercomplete.
Thereafter, we introduce the concept of fuzzy admissible subsets and show that
every fuzzy admissible subset of a fuzzy Isbell convex quasi-metric space is fuzzy
Isbell convex. Finally, we introduce the concept of a space of nonnegative func-
tion pairs of a fuzzy quasi-metric space and show that this space is fuzzy Isbell
convex.

2. Isbell-convexity in fuzzy quasi-metric spaces

In this section, we introduce the concept of Isbell convexity in fuzzy quasi-
metric spaces, which we call fuzzy Isbell convexity. For more details on fuzzy
quasi-metric spaces, we refer the reader to [4]. We begin this section by intro-
ducing two important concepts; fuzzy metric convexity and fuzzy Isbell hyper-
completeness and show how they are related to our concept of Isbell convexity in
fuzzy quasi-metric spaces.

In order to understand the definition of fuzzy metric convexity in fuzzy quasi-
pseudometric spaces, we need the following lemma.

Lemma 2.1 (Compare [13, Lemma 1]). Let (X,M, ∗) be a fuzzy quasi-pseudometric
space, let x, y ∈ X, let r1, s2 ∈ (0, 1), and let t1, t2 ∈ (0,∞). If CM(x, r1, t1) ∩
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CM−1(y, s2, t2) ̸= ∅, then M(x, y, t1 + t2) ≥ (1 − r1) ∗ (1 − s2) for any x, y ∈ X
and each pair r1, t1 > 0 and s2, t2 > 0.
Proof. Let CM(x, r1, t1) ∩ CM−1(y, s2, t2) ̸= ∅. Then there exists z ∈ X such
that z ∈ CM(x, r1, t1) ∩ CM−1(y, s2, t2). This implies z ∈ CM(x, r1, t1) and z ∈
CM−1(y, s2, t2). Therefore, M(x, z, t1) ≥ 1− r1 and M−1(y, z, t2) = M(z, y, t2) ≥
(1− s2). Thus M(x, z, t1) ∗M(z, y, t2) ≥ (1− r1) ∗ (1− s2). This implies that

M(x, y, t1 + t2) ≥ M(x, z, t1) ∗M(z, y, t2) ≥ (1− r1) ∗ (1− s2).

□
Definition 2.2 (Compare [13, Definition 11]). Let (X,M, ∗) be a fuzzy quasi-
pseudometric space. We say that (X,M, ∗) is fuzzy-metrically convex if for any
points x, y ∈ X and for each pair r1, t1 > 0 and s2, t2 > 0 (r1, s2 ∈ (0, 1) and
t1, t2 ∈ (0,∞)), such that

M(x, y, t1 + t2) ≥ (1− r1) ∗ (1− s2),

there exists z ∈ X such that M(x, z, t1) ≥ (1−r1) and M−1(y, z, t2) = M(z, y, t2) ≥
(1− s2) or equivalently

z ∈ CM(x, r1, t1) ∩ CM−1(y, s2, t2).

Example 2.3 (Compare [13, Example 5]). Let (X, d) be a metrically convex T0-
quasi-metric space and let a ∗ b = a · b for all a, b ∈ [0, 1] be a continuous t-norm.
Let M be the fuzzy set on X ×X × (0,∞) defined as follows:

M(x, y, t) = e
−d(x,y)

t .

Then one can easily check that (X,M, ∗) is a fuzzy quasi-metric space. We show
that (X,M, ∗) is fuzzy metrically convex.

Since (X, d) is metrically convex, then for any x, y ∈ X and α, β ∈ (0,∞) such
that d(x, y) ≤ α + β, there exists z ∈ X such that d(x, z) ≤ α and d(z, y) ≤ β.
Take α = −t1 ln(1− r1) and β = −t2 ln(1− s2). Then

M(x, y, t1 + t2) ≥ M(x, z, t1) ∗M(z, y, t2)

≥ e
−d(x,z)

t1 ∗ e
−d(z,y)

t2

= eln(1−r1) ∗ eln(1−s2)

= (1− r1) ∗ (1− s2)

is satisfied and also r1, s2 ∈ (0, 1). By the metric convexity of (X, d), we have
d(x, z) ≤ −t1 ln(1− r1) and d(z, y) ≤ −t2 ln(1− s2)

=⇒ −d(x, z)

t1
≥ ln(1− r1) and −d(z, y)

t2
≥ ln(1− s2)

=⇒ e
−d(x,z)

t1 ≥ eln(1−r1) and e
−d(z,y)

t2 ≥ eln(1−s2)

=⇒ M(x, z, t1) ≥ (1− r1) and M(z, y, t2) ≥ (1− s2).

This implies that
z ∈ CM(x, r1, t1) ∩ CM−1(y, s2, t2).

Therefore, (X,M, ∗) is fuzzy metrically convex.
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Proposition 2.4. Let (X,M, ∗) be a fuzzy quasi-metric space. If (X,M, ∗) is
fuzzy metrically convex, then (X,M−1, ∗) is fuzzy metrically convex.

Proof. Assume that (X,M, ∗) is fuzzy metrically convex. Let x, y ∈ X, r1, s2 ∈
(0, 1), and t1, t2 ∈ (0,∞) be such that M−1(x, y, t1 + t2) ≥ (1− r1) ∗ (1− s2). By
the fuzzy metric convexity of (X,M, ∗) and M(y, x, t1+ t2) = M−1(x, y, t1+ t2) ≥
(1− r1) ∗ (1− s2), we have

CM(y, s2, t2) ∩ CM−1(x, r1, t1) ̸= ∅.

Hence (X,M−1, ∗) is fuzzy metrically convex. □

Definition 2.5. Let (X,M, ∗) be a fuzzy quasi-pseudometric space. A family of
double balls (CM(xi, ri, ti), CM−1(xi, si, ti))i∈I , where ri, si ∈ (0, 1) and ti ∈ (0,∞)
whenever i ∈ I, is said to have a mixed binary intersection property if for all
indices i, j ∈ I,

CM(xi, ri, ti) ∩ CM−1(xj, sj, tj) ̸= ∅.

Definition 2.6. Let (X,M, ∗) be a fuzzy quasi-pseudometric space. Then
(X,M, ∗) is said to be fuzzy-Isbell hypercomplete if for every family of dou-
ble balls (CM(xi, ri, ti), CM−1(xi, si, ti))i∈I , where ri, si ∈ (0, 1) and ti ∈ (0,∞)
whenever i ∈ I, with mixed binary intersection property has∩

i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti) ̸= ∅.

Proposition 2.7. Let (X,M, ∗) be a fuzzy quasi-pseudometric space. If (X,M, ∗)
is fuzzy Isbell hypercomplete, then (X,M−1, ∗) and (X,M i, ∗) are fuzzy Isbell
hypercomplete and fuzzy hypercomplete, respectively.

Proof. Assume that (X,M, ∗) is fuzzy-Isbell hypercomplete. Let a family of balls
(CM(xi, ri, ti), CM−1(xi, si, ti))i∈I be given with mixed binary intersection prop-
erty. Since (X,M, ∗) is fuzzy-Isbell hypercomplete,
(CM(xi, si, ti), CM−1(xi, ri, ti))i∈I has∩

i∈I

CM(xi, si, ti) ∩ CM−1(xi, ri, ti) ̸= ∅.

Then (X,M−1, ∗) is fuzzy Isbell hypercomplete.
Also, suppose that (X,M, ∗) is fuzzy Isbell hypecomplete. Let the family

(CM i(xi, ri, ti))i∈I have the binary intersection property. Then
(CM(xi, ri, ti), CM−1(xi, ri, ti))i∈I has the mixed binary intersection property.
Thus,

∅ ̸=
∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, ri, ti)

=
∩
i∈I

CM i(xi, ri, ti).

Therefore, (X,M i, ∗) is fuzzy hypercomplete.
□
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Definition 2.8 (Compare [13, Definition 13]). A fuzzy quasi-pseudometric space
(X,M, ∗) is said to be fuzzy Isbell convex if for any family of points (xi)i∈I in X,
families (ri)i∈I and (si)i∈I of points in (0, 1), and the family of points (ti)i∈I in
(0,∞) satisfying

M(xi, xj, ti + tj) ≥ (1− ri) ∗ (1− sj),

whenever i, j ∈ I, we have∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti) ̸= ∅.

Proposition 2.9. Let (X,M, ∗) be a fuzzy quasi-pseudometric space. If (X,M, ∗)
is fuzzy-Isbell convex, then (X,M−1, ∗) is fuzzy Isbell convex and (X,M i, ∗) is
fuzzy hyperconvex.

Proof. Assume that (X,M, ∗) is fuzzy-Isbell convex. Let (xi)i∈I be a family of
points in X, (ri)i∈I , let (si)i∈I be families of points in (0, 1), and let (ti)i∈I be
families of points in (0,∞) such that

M−1(xi, xj, ti + tj) ≥ (1− ri) ∗ (1− sj),

whenever i, j ∈ I. Find x ∈ CM(xi, ri, ti) ∩ CM−1(xi, si, ti) for any i ∈ I. By
the fuzzy-Isbell convexity of (X,M, ∗), M−1(xi, xj, ti + tj) = M(xj, xi, ti + tj) ≥
(1− ri) ∗ (1− sj) whenever i, j ∈ I implies that there exists x0 ∈ CM(xi, si, ti) ∩
CM−1(xi, ri, ti). Take x = x0, and then (X,M−1, ∗) is Isbell convex.

Also, let us assume that (X,M, ∗) is fuzzy Isbell convex. Let (xi)i∈I be a family
of points in X, (ri)i∈I , let (si)i∈I be a family of points in (0, 1), and let (ti)i∈I be
a family of points in (0,∞) such that

M i(xi, xj, ti + tj) ≥ (1− ri) ∗ (1− sj),

whenever i, j ∈ I. By the fuzzy Isbell convexity of (X,M, ∗), we have

∅ ̸=
∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, ri, ti)

=
∩
i∈I

CM i(xi, ri, ti).

It follows that (X,M i, ∗) is fuzzy hyperconvex in the sense of [13]. □
Corollary 2.10. Each fuzzy Isbell-convex quasi-metric space (X,M, ∗) is bicom-
plete.

Proof. By Proposition 2.9, (X,M i, ∗) is fuzzy hyperconvex. Since fuzzy hyper-
convex spaces are complete by [13, Theorem 4], (X,M i, ∗) is bicomplete. □
Lemma 2.11. Let (X,M, ∗) be a fuzzy quasi-pseudometric space. Then (X,M, ∗)
is fuzzy Isbell convex if and only if (X,M, ∗) is fuzzy metrically convex and fuzzy
Isbell hypercomplete.

Proof. Suppose that (X,M, ∗) is fuzzy Isbell convex. Let x1, x2 ∈ X, r1, s2 ∈
(0,∞), and t1, t2 ∈ (0,∞) be such that

M(x1, x2, t1 + t2) ≥ (1− r1) ∗ (1− s2).
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By the fuzzy Isbell convexity of (X,M, ∗), we have

CM(x1, r1, t1) ∩ CM−1(x2, s2, t2) ̸= ∅.

This implies that

M(x1, z, t1) ≥ 1− r1 and M−1(x2, z, t2) = M(z, x2, t2) ≥ 1− s2.

So (X,M, ∗) is fuzzy metrically convex. Let (CM(xi, ri, ti), CM−1(xi, si, ti))i∈I
have a mixed binary intersection property. Thus

M(xi, xj, ti + tj) ≥ (1− ri) ∗ (1− sj),

whenever i, j ∈ I. Then∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti) ̸= ∅,

by the fuzzy Isbell convexity of (X,M, ∗).
Conversely, suppose that (X,M, ∗) is fuzzy metrically convex and fuzzy Isbell

hypercomplete. Suppose that (xi)i∈I is a family of points in X, that (ri)i∈I and
(si)i∈I are families of points in (0, 1), and that (ti)i∈I is a family of points in
(0,∞) such that

M(xi, xj, ti + tj) ≥ (1− ri) ∗ (1− sj),

whenever i, j ∈ I. Then (CM(xi, ri, ti), CM−1(xi, si, ti))i∈I has a mixed binary
intersection property by the fuzzy metric convexity of (X,M, ∗). Therefore,∩

i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti) ̸= ∅.

Hence (X,M, ∗) is fuzzy Isbell convex. □

Theorem 2.12 (Compare [13, Theorem 3]). Let X be the set of real numbers
equipped with the T0 quasi-metric d(x, y) = max{x− y, 0} for any x, y ∈ X. Let
(X,M, ∗) be a fuzzy quasi-metric space, where ∗ is a continuous t-norm defined
by a ∗ b = a · b for all a, b ∈ [0, 1] and M is a fuzzy set in X ×X × (0,∞) defined
by

M(x, y, t) =
t

t+ d(x, y)
,

whenever x, y ∈ X and t ∈ (0,∞). Then (X,M, ∗) is fuzzy Isbell convex.

Proof. It is known that X equipped with d(x, y) = max{x− y, 0} is Isbell convex
(see [9, Example 3.1.1]). Thus for any family (xi)i∈I of points in X and families of
nonnegative real numbers (ri)i∈I and (si)i∈I satisfying d(xi, xj) ≤ ri+sj whenever
i, j ∈ I, we have ∩

i∈I

Cd(xi, ri) ∩ Cd−1(xi, si) ̸= ∅.

Let
Ri =

ri
ti + ri

and Si =
si

ti + si
,
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where (ti)i∈I is a family of points in (0,∞). Then (Ri)i∈I and (Si)i∈I are families
of points in (0, 1). Also, using the metric convexity of (X, d), a calculation shows
that

M(xi, xj, ti + tj) ≥ M(xi, z, ti) ∗M(z, xj, tj)

=

(
ti

ti + d(xi, z)

)
∗
(

tj
tj + d(z, xj)

)
≥

(
ti

ti + ri

)
∗
(

tj
tj + sj

)
= (1−Ri) ∗ (1− Sj),

whenever i, j ∈ I is satisfied. Also, by the Isbell convexity of (X, d), we have∩
i∈I

Cd(xi, ri) ∩ Cd−1(xi, si) ̸= ∅.

Then there exists z ∈
∩

i∈I Cd(xi, ri) ∩ Cd−1(xi, si) such that d(xi, z) ≤ ri and
d(z, xi) ≤ si for all i ∈ I. Therefore, we have

ti + d(xi, z) ≤ ti + ri and ti + d(z, xi) ≤ ti + si

=⇒ ti
ti + d(xi, z)

≥ ti
ti + ri

and ti
ti + d(z, xi)

≥ ti
ti + si

=⇒ M(xi, z, ti) ≥ 1−Ri and M(z, xi, ti) ≥ 1− Si.

This implies that z ∈ CM(xi, Ri, ti) ∩ CM−1(xi, Si, ti) for all i ∈ I and so∩
i∈I

CM(xi, Ri, ti) ∩ CM−1(xi, Si, ti) ̸= ∅.

Therefore, (X,M, ∗) is fuzzy Isbell convex. □
Example 2.13. Let R be equipped with its standard metric ds(x, y) = |x − y|
whenever x, y ∈ R. Then (R, ds) is not Isbell convex by [5, Example 2]. Let
(R,M, ∗) be a fuzzy quasi-metric space, where ∗ is a continuous t-norm defined
by a ∗ b = a · b for all a, b ∈ [0, 1] and M is a fuzzy set in R×R× (0,∞) defined
by

M(x, y, t) =
t

t+ d(x, y)
,

whenever x, y ∈ R, t ∈ (0,∞), and d(x, y) = max{x − y, 0}. Then (R,M i, ∗),
where

M i(x, y, t) =
t

t+ ds(x, y)

in which ds(x, y) = |x − y| whenever x, y ∈ R, is a fuzzy set in R × R × (0,∞);
therefore, (R,M i, ∗) is a fuzzy metric space. We show that (R,M i, ∗) is not fuzzy
Isbell convex.

For any i ∈ [0, 1], set ri =
1
4

and si =
3
4
. If t = 1, then we define Ri and Si by

Ri =
1
4

1 + 1
4

=
1

5
and Si =

3
4

1 + 3
4

=
3

7
.
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Thus for any i, j ∈ [0, 1], we have

M i(i, j, 1 + 1) =
2

2 + ds(i, j)
≥ 2

3
>

(
1− 1

5

)
·
(
1− 3

7

)
=

16

35
.

Moreover,∩
i∈[0,1]

CM i(i, Ri, ti) ∩ CM i(i, Si, ti) ⊆ CM i

(
0,

1

5
, 1

)
∩ CM i

(
1,

1

5
, 1

)

=

[
− 1

4
,
1

4

]
∩
[
3

4
,
5

4

]
= ∅.

Hence, (R,M i, ∗) is not fuzzy Isbell convex.

Remark 2.14. Note that (R,M i, ∗), where ∗ is a continuous t-norm defined by
a ∗ b = a · b for all a, b ∈ [0, 1] and M is a fuzzy set in R×R× (0,∞) defined by

M i(x, y, t) =
t

t+ |x− y|
,

whenever x, y ∈ R and t ∈ (0,∞), is fuzzy hyperconvex by [13, Theorem 3].
Therefore, (R,M, ∗) is an example of a space for which (R,M i, ∗) is fuzzy hyper-
convex but not fuzzy Isbell convex.

3. Fuzzy admissible subsets

In this section, we introduce the concept of fuzzy admissible subsets and show
that every fuzzy admissible subset of a fuzzy Isbell convex quasi-metric space is
fuzzy Isbell convex.

Definition 3.1. Let (X,M, ∗) be a fuzzy quasi-metric space and let A be a subset
of X. Then A is said to be F -bounded if there exist t > 0 and r ∈ (0, 1) such
that

M(x, y, t) > 1− r

for all x, y ∈ A.

Let (X,M, ∗) be a fuzzy quasi-metric space and let A ⊂ X be F -bounded.
Then
cov(A)M =

∩
{CM (x, r, t) : A ⊆ CM (x, r, t), x ∈ X, r ∈ (0, 1) and t ∈ (0,∞)}, and

cov(A)M−1 =
∩

{CM−1(x, s, t) : A ⊆ CM−1(x, s, t), x ∈ X, s ∈ (0, 1) and t ∈ (0,∞)}.

Also, bicov(A) = cov(A)M ∩ cov(A)M−1 .

Definition 3.2. Let (X,M, ∗) be a fuzzy metric space. An F -bounded subset D
of X is said to be fuzzy admissible if D = bicov(D).

The collection of all fuzzy admissible subsets of a fuzzy metric space (X,M, ∗)
will be denoted by AM(X).
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Remark 3.3. A subset of X is fuzzy admissible if and only if it can be written as
the intersection of a family of sets of the form

CM(x, r, t) ∩ CM−1(x, s, t),

where r, s ∈ (0, 1), t ∈ (0,∞) and x ∈ X. For this reason, the family AM(X) is
closed under nonempty intersections.
Proposition 3.4. (Compare [9, Proposition 4.1.1]) Suppose that (X,M, ∗) is a
fuzzy Isbell convex quasi-metric space. Then D ∈ AM(X) is fuzzy Isbell convex.
Proof. Since D ∈ AM(x), then

D =
∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti) ̸= ∅,

where xi ∈ X, ri, si ∈ (0, 1), and ti ∈ (0,∞) whenever i ∈ I. Let
(CM(xα, rα, tα), CM−1(xα, sα, tα))α∈A, where xα ∈ D, rα, sα ∈ (0, 1), and tα ∈
(0,∞) whenever α ∈ A and M(xα, xβ, tα + tβ) ≥ (1 − rα) ∗ (1 − sβ) whenever
α, β ∈ A. Then by the fuzzy Isbell convexity of X, we have∩

α∈A

CM(xα, rα, tα) ∩ CM−1(xα, sα, tα) ̸= ∅.

Now consider the family of balls
[(CM(xα, rα, tα))α∈A, (CM−1(xα, sα, tα))α∈A, (CM(xi, ri, ti))i∈I , (CM−1(xi, si, ti))i∈I ].
We have for each α ∈ A and i ∈ I,

M(xα, xi, tα + ti) ≥ M(xα, z, tα) ∗M(z, xi, ti)

≥ (1− rα) ∗ (1− si)

and
M(xi, xα, ti + tα) ≥ M(xi, z, ti) ∗M(z, xα, tα)

≥ (1− ri) ∗ (1− sα)

for some z ∈ D. Furthermore, for all i, j ∈ I, ti, tj ∈ (0,∞), we have
M(xi, xj, ti + tj) ≥ M(xi, xα, ti) ∗M(xα, xj, tj)

≥ (1− ri) ∗ (1− sj).

It follows from the fuzzy Isbell convexity of X that( ∩
α∈A

CM (xα, rα, tα) ∩ CM−1(xα, sα, tα)

)
∩

(∩
i∈I

CM (xi, ri, ti) ∩ CM−1(xi, si, ti)

)
=

( ∩
α∈A

CM (xα, rα, tα) ∩ CM−1(xα, sα, tα)

)
∩ D ̸= ∅.

Hence the subspace D of X is fuzzy Isbell convex. □
Definition 3.5. Let (X,M, ∗) be a fuzzy quasi-metric space. For a fuzzy quasi-
metric subspace A of X, we define for ϵ1, ϵ2 ∈ (0, 1) and t ∈ (0,∞) the ϵ1, ϵ2-
parallel set of A as

Nϵ1,ϵ2(A) =
∪
a∈A

CM(a, ϵ1, t) ∩ CM−1(a, ϵ2, t).
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Lemma 3.6 (Compare [9, Lemma 4.2.1]). Let (X,M, ∗) be a fuzzy Isbell-convex
fuzzy convex fuzzy quasi-metric space. Let A be a fuzzy admissible subset of X,
that is, ∅ ̸=

∩
i∈I CM(xi, ri, ti) ∩ CM−1(xi, si, ti) with xi ∈ X, ri, si ∈ (0, 1) and

ti ∈ (0,∞) whenever i ∈ I. Then for each ϵ1, ϵ2 ∈ (0, 1) and t ∈ (0,∞), we have

Nϵ1,ϵ2(A) =
∩
i∈I

CM(xi, ri + ϵ2, t+ ti) ∩ CM−1(xi, si + ϵ1, t+ ti).

Proof. Suppose y ∈ Nϵ1,ϵ2(A). Then
M(a, y, t) ≥ (1− ϵ2) and M(y, a, t) ≥ (1− ϵ2)

for some a ∈ A and for every t ∈ (0,∞). Therefore
M(xi, y, t+ ti) ≥ M(xi, a, ti) ∗M(a, y, t)

≥ (1− ri) ∗ (1− ϵ2)

≥ (1− (ri + ϵ2))

and
M(y, xi, ti + t) ≥ M(y, a, t) ∗M(a, xi, ti)

≥ (1− ϵ1) ∗ (1− si)

≥ (1− (si + ϵ1)).

Then for each i ∈ I, we have y ∈ CM(xi, ri + ϵ2, t + ti) and y ∈ CM−1(xi, si +
ϵ1, t+ ti). So

Nϵ1,ϵ2(A) ⊆
∩
i∈I

CM(xi, ri + ϵ2, t+ ti) ∩ CM−1(xi, si + ϵ1, t+ ti).

Conversely, suppose

y ∈
∩
i∈I

CM(xi, ri + ϵ2, t+ ti) ∩ CM−1(xi, si + ϵ1, t+ ti).

Then
M(xi, y, t+ ti) ≥ 1− (ri + ϵ2) and M(y, xi, t+ ti) ≥ 1− (si + ϵ1).

Since A is nonempty and by the definition of A, we must have for any i, j ∈ I,
M(xi, xj, ti + tj) ≥ M(xi, a, ti) ∗M(a, xj, tj)

≥ (1− ri) ∗ (1− sj)

≥ (1− (ri + sj)).

So by the fuzzy Isbell convexity of X, we have

∅ ̸=
(∩

i∈I

CM(xi, ri, ti) ∩ CM(y, ϵ1, t)

)
∩
(
CM−1(xi, si, ti) ∩ CM−1(y, ϵ2, t)

)
=

(∩
i∈I

CM(xi, ri, ti) ∩ CM−1(xi, si, ti)

)
∩ (CM(y, ϵ1, t) ∩ CM−1(y, ϵ2, t))

= A ∩ CM(y, ϵ1, t) ∩ CM−1(y, ϵ2, t).
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Therefore, a ∈ A such that

M(y, a, t) ≥ 1− ϵ1 and M(a, y, t) ≥ 1− ϵ2.

Hence y ∈ Nϵ1,ϵ2(A). □

4. A space of nonnegative function pairs of a fuzzy quasi-metric
space (X,M, ∗)

In this section, we introduce the concept of a space of nonnegative function pairs
of a fuzzy quasi-metric space and show that this space is fuzzy Isbell convex.

Definition 4.1. Let (X, d) be a quasi-pseudo-metric space and let FP(X, d) be
the set of functions f = (f1, f2), where fi : X → [0,∞), i = 1, 2. We define a
T0-quasi-metric D on FP(X, d) as follows:

D(f, g) = sup
x∈X

(f1(x)−̇g1(x)) ∨ sup
x∈X

(g2(x)−̇f2(x)).

Definition 4.2. Let (X,M, ∗) be a fuzzy quasi-metric space and let FP(X,M, ∗)
be the set of functions f = (f1, f2), where fi : X → [0,∞), i = 1, 2, and ∗ is
the binary operation a ∗ b = a · b for any a, b ∈ [0, 1]. We define a fuzzy set in
FP(X,M, ∗)×FP(X,M, ∗)× (0,∞) as follows:

M(f, g, t) =
t

t+D(f, g)
.

Theorem 4.3. Let (X, d) be a T0-quasi-metric space and FP(X, d). If FP(X, d)
is Isbell convex, then FP(X,M, ∗) is a fuzzy Isbell convex quasi-metric space,
where ∗ is the binary operation a ∗ b = a · b for any a, b ∈ [0, 1] and M is a fuzzy
set on FP(X,M, ∗)×FP(X,M, ∗)× (0,∞) defined by

M(f, g, t) =
t

t+D(f, g)
.

Proof. Since FP(X, d) is Isbell convex, then for any family ((fi)1, (fi)2)i∈I of
points in FP(X, d) and families (ri)i∈I and (si)i∈I of nonnegative real numbers
such that
D(((fi)1, (fi)2), ((fj)1, (fj)2)) ≤ ri + sj whenever i, j ∈ I, we have∩

i∈I

CM(((fi)1, (fi)2), ri) ∩ CM−1(((fi)1, (fi)2), si) ̸= ∅.

Let Ri =
ri

ti+ri
and Si =

si
ti+si

, where (ti)i∈I is a family of points in (0,∞). Then
(Ri)i∈I and (Si)i∈I are families of points in (0, 1). Using the metric convexity of
FP(X, d), we find that M(((fi)1, (fi)2), ((fj)1, (fj)2), ti+ tj) ≥ (1−Ri) ∗ (1−Sj)
whenever i, j ∈ I, is satisfied. Also, by the Isbell convexity of FP(X, d), we have

(g1, g2) ∈
∩
i∈I

CM(((fi)1, (fi)2), ri) ∩ CM−1(((fi)1, (fi)2), si).
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Thus D(((fi)1, (fi)2), (g1, g2)) ≤ ri and D(((g1, g2), (fi)1, (fi)2)) ≤ si, whenever
i ∈ I. Therefore, we have

ti +D(((fi)1, (fi)2), (g1, g2)) ≤ ti + ri

=⇒ ti
ti +D(((fi)1, (fi)2), (g1, g2))

≥ ti
ti + ri

=⇒ M(((fi)1, (fi)2), (g1, g2), ti) ≥ 1−Ri

and

ti +D((g1, g2), ((fi)1, (fi)2)) ≤ ti + si

=⇒ ti
ti +D((g1, g2), ((fi)1, (fi)2)), (g1, g2))

≥ ti
ti + si

=⇒ M((g1, g2), ((fi)1, (fi)2), ti) ≥ 1− Si.

This implies that (g1, g2) ∈ CM(((fi)1, (fi)2), Ri, ti) ∩ CM−1(((fi)1, (fi)2), Si, ti)
for all i ∈ I and so

∩
i∈I CM(((fi)1, (fi)2), Ri, ti) ∩ CM−1(((fi)1, (fi)2), Si, ti) ̸= ∅.

Therefore, FP(X,M, ∗) is fuzzy Isbell convex. □
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