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METALLIC STRUCTURES ON THE TANGENT BUNDLE OF
P-SASAKIAN MANIFOLDS

SHAHROUD AZAMI1

Communicated F.H. Ghane

Abstract. In this article, we introduce some metallic structures on the tan-
gent bundle of a P-Sasakian manifold by the complete lift, horizontal lift, and
vertical lift of a P-Sasakian structure (ϕ, η, ξ) on a tangent bundle. Then we
investigate the integrability and parallelity of these metallic structures.

1. Introduction

The lift of geometrical objects, vector fields, and forms, has an important role in
differential geometry. By the method of lift, we can generalize the differentiable
structure on any manifold to its tangent bundle and any other bundles on mani-
fold; see [7,8,10]. In this article, we study the metallic structures on the tangent
bundle of a P-Sasakian Riemannian manifold. The metallic structure is a gen-
eralization of the almost product structure. A metallic structure is a polynomial
structure as defined by Goldenberg et al. [2, 3]. In [5, 6], the authors introduced
the notation of metallic structure on a Riemannian manifold. Suppose that p and
q are two positive integers. The positive solution of the equation x2− px− q = 0,
among other common characteristics, is a member of the metallic means family.
This number is shown by σp,q =

p+
√

p2+4q

2
, where it is a generalization of golden

proportions.

Definition 1.1. Let M be a manifold. A metallic structure on M is a (1, 1)
tensor field J that satisfies the equation J2 = pJ + qI, where p and q are positive
integers and I is the identity operator on the Lie algebra X (M) of vector fields

Date: Received: 3 August 2020; Revised: 22 January 2021; Accepted: 22 January 2021.
1991 Mathematics Subject Classification. Primary 53C15; Secondary 53C25, 53C21.
Key words and phrases. P-Sasakian manifold, complete lift, metallic structure, integrability.

298



METALLIC STRUCTURES ON THE TANGENT BUNDLE 299

on M . If g is a Riemannian metric on M , then we say that g is J-compatible
whenever

g(JX, Y ) = g(X, JY ), for all X,Y ∈ X (M),

or equivalently
g(JX, JY ) = pg(X, JY ) + qg(X,Y ), for all X,Y ∈ X (M).

In this case, (M,J, g) is named a metallic Riemannian manifold (see [6]).

Let J be a metallic structure on M . Then the Nijenhuise tensor NJ of J is a
tensor field of type (1, 2) and given by

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X,Y ],

for X,Y ∈ X (M).
On the other hand, at first time, Sato in [9] introduced the P-Sasakian structure

on manifolds and studied several properties of these manifolds. An n-dimensional
smooth manifold M is called an almost paracontact manifold if it admits an almost
paracontact structure (ϕ, η, ξ), consisting of a (1, 1) tensor field ϕ, a 1-form η, and
a vector field ξ that satisfy the conditions

ϕ2 = I − η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0.

Let g be a Riemannian metric compatible with (ϕ, η, ξ), that is,
g(X,Y ) = g(ϕX, ϕY ) + η(X)η(Y ), for all X,Y ∈ X (M),

or equivalently
g(X,ϕY ) = g(ϕX, Y ), g(X, ξ) = η(X), for all X,Y ∈ X (M),

where X (M) is the collection of all smooth vector fields on M . Then, M is said
to be an almost paracontact Riemannian manifold.
An almost paracontact Riemannian manifold (M, g) is called a P-Sasakian man-
ifold if it satisfies

(∇Xϕ)(Y ) = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (1.1)
where ∇ is the Levi-Civita connection of the Riemannain manifold. We have

∇Xξ = ϕX, (∇Xη)(Y ) = g(ϕX, Y ) = (∇Y η)(X), for all X,Y ∈ X (M).

1.1. Lifts of geometric structure on tangent bundle. Let (M, g) be a
smooth n-dimensional Riemannian manifold, and let TM denote its tangent
bundle. We denote the natural projection by π : TM → M , where it defines
the natural bundle structure of TM over M and denote the set of all ten-
sor fields of the type (k, l) in M by T k

l (M). For any point (x, y) ∈ TM , let
Vy = ker{π∗(y) : Ty(TM) → TxM} and V TM = ∪y∈TMVy. Also, suppose that
HTM is a complement of V TM in TM , that is,

TTM = V TM ⊕HTM.

Also, V TM and HTM are called vertical distribution and horizontal distribution,
respectively. Suppose that the space M is covered by a system of coordinate
neighborhood (U,φ) = (U, x1, x2, . . . , xn). Then the corresponding induced local
chart on TM is (π−1(U), x1, x2, . . . , xn, y1, y2, . . . , yn). If in any point of x ∈ M ,
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Γh
ki(x) is the Christoffel symbols of g, then the sets of vector fields { ∂

∂y1
, . . . , ∂

∂yn
}

and { δ
δx1 , . . . ,

δ
δxn} on π−1(U) define local frame fields for V TM and HTM , re-

spectively, where δ
δxi =

∂
∂xi − ykΓl

ki
∂
∂yl

. Note that the set { ∂
∂yi

, δ
δxj } defines a local

frame on TM . In the following, we recall from [7, 10] some lifts of geometrical
objects of a manifold to its tangent bundle.

1.1.1. Vertical lifts. Let f be a function on M . Then the vertical lift of f to TM
is the function f v on TM given by f v = f ◦ π. For any vector field X ∈ X (M),
we define a vector field Xv in TM by Xv(ιω) = (ω(X))v, where ω is an arbitrary
1-form in M , so we call Xv the vertical lift of X. Note, Xv ∈ V TM , and for all
function on M , we define Xv(df) = X.f . Let F be a tensor field of type (1, r) or
(0, r), r ≥ 1, on M . Then, the vertical lift of F on TM is defined by

F v
y (X̃1, X̃2, . . . , X̃r) =

(
Fy

(
π⋆(X̃1), π⋆(X̃2), . . . , π⋆(X̃r)

))v

,

where X̃1, X̃2, . . . , X̃r ∈ Ty(TM), y ∈ TxM, x ∈ M . Hence, for any X1, . . . , Xr ∈
X (M), we have

F v(Xv
1 , X

v
2 , . . . , X

v
r ) = 0, F v(Xc

1, X
c
2, . . . , X

c
r) =

(
F (X1, X2, . . . , Xr

))v

.

1.1.2. Complete lifts. If f is a function on M , then the complete lift of f is the
function f c on TM and defined by

f c(x, y) = df(x)(y), y ∈ TxM, x ∈ M.

Also, the complete lift of a vector field X = X i ∂
∂xi on M is defined by

Xc = X i ∂

∂xi
− yj

∂X i

∂xj

∂

∂yi
.

Therefore, we obtain ( ∂
∂xi )

c = ∂
∂xi and Xcf c = (Xf)c for any function f on M .

Suppose that ω is a 1-form on M . The complete lift of ω on TM is defined by
ωc(Xc) = (ω(X))c, ωc(Xv) = (ω(X))v, for each X ∈ X (M). In general case,
the complete lift of a tensor field F of type (1, r) or (0, r), r ≥ 1, on M is defined
by F c(Xc

1, . . . , X
c
r) = (F (X1, . . . , Xr))

c for any X1, . . . , Xr ∈ X (M). Then the
complete lift of a Riemannian metric g is defined by

gc =

(
yk

∂gij
∂xk gij
gij 0

)
.

From [7] and [10], we have the following result.

Proposition 1.2. Let M be a manifold with a Riemannain metric g. For any
X,Y ∈ X (M), f ∈ C∞(M), and (1, 1) tensor field F , we have

• Xvf v = 0, Xvf c = Xcf v = (Xf)v, Xcf c = (Xf)c,
• F c(Xv) = (F (X))v,
• gc is a semi-Riemannian metric and

gc(Xv, Y c) = gc(Xc, Y v) = (g(X,Y ))v, gc(Xv, Y v) = 0,

gc(Xc, Y c) = (g(X,Y ))c,

• if P (x) is a polynomial in one variable x, then P (F c) = (P (F ))c.
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We define the complete lift of a linear connection ∇ to TM as the unique linear
connection ∇c on TM as ∇c

XcY c = (∇XY )c for X,Y ∈ X (M). Therefore

∇c
∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
+ yl

∂Γk
ij

∂xl

∂

∂yk
, ∇c

∂

∂yi

∂

∂yj
= 0,

∇c
∂

∂xi

∂

∂yj
= Γk

ij

∂

∂yk
, ∇c

∂

∂yi

∂

∂xj
= Γk

ij

∂

∂yk
.

Proposition 1.3 (see [7,10]). Let T and R be the torsion and curvature tensors
of ∇, respectively. Then T c and Rc are the torsion and curvature tensors of ∇c,
respectively, and

• ∇ is symmetric if and only if ∇c is symmetric,
• ∇ is flat if and only if ∇c is flat.

Proposition 1.4 (see [7, 10]). Let F be a tensor field of type (1, r) or (0, r),
r ≥ 1, on M and let X,Y ∈ X (M). Then

∇c
XvY v = (∇XY )v, ∇c

XcY c = (∇XY )c, ∇c
XvY c = ∇c

XcY v = (∇XY )v,

∇cF v = (∇F )v, ∇cF c = (∇F )c.

1.1.3. Horizontal lifts. The horizontal lift fh of a function f on M is given by
fh = f c −∇γf , where ∇γf = γ(∇f), and for any tensor field F of type (1, r) or
(0, r), r ≥ 1, on M , γXF = (FX)

v and FX(X1, . . . , Fr−1) = F (X1, . . . , Xr−1, X).
For any vector field X = X i ∂

∂xi on M , there exists a unique vector Xh ∈ HVM

such that π∗X
h = X, that is, if X = X i ∂

∂xi , then Xh = X i ∂
∂xi − yjX iΓl

ij
∂
∂yl

.
We call Xh the horizontal lift of X in the point (x, y) ∈ TM . Let ω be a 1-
form on M . Then the horizontal lift ωh of ω is defined by ωh = ωc − ∇γω.
Then for any X ∈ X (M), we have ωh(Xh) = 0 and ωh(Xv) = (ω(X))v. The
horizontal lift of a (1, 1) tensor field F on M is defined by F h(Xh) = (FX)h and
F h(Xv) = (FX)v. The horizontal lifts of a Riemannian metric g is defined by
gh = gijθ

i ⊗ ηj + gijη
i ⊗ θj, where θi = dxi, ηi = yjΓi

jkdx
k + dyi.

From [7, 10], we have the following result.

Proposition 1.5. Let M be a manifold with a Riemannain metric g. For any
X,Y ∈ X (M), f ∈ C∞(M), and (1, 1) tensor field F , we have

• gh is a semi-Riemannian metric and gh(Xv, Y h) = (g(X,Y ))v,
gh(Xv, Y v) = gh(Xh, Y h) = 0,

• if P (x) is a polynomial in one variable x, then P (Jh) = (P (J))h,
• gh = gc if and only if ∇g = 0,
• [Xv, Y v] = 0, [Xv, Y c] = [X,Y ]v, [Xc, Y c] = [X,Y ]c,
[Xv, Y h] = −(∇YX)v, [Xh, Y h] = [X,Y ]h − γR(X,Y ), where R is a
curvature tensor of g and the vertical vector lift γF is defined by (γF )(y) =
(F (y))v.

Let ∇ be a linear connection on M . Then we define the horizontal lift of ∇ to
TM as the unique linear connection ∇h on TM given by

∇h
XvY v = ∇h

XvY h = 0, ∇h
XhY

v = (∇XY )v, ∇h
XhY

h = (∇XY )h,
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for X,Y ∈ X (M). Hence ∇h
XcY c = (∇XY )c − γR(· , X, Y ), where

R(· , X, Y )Z = R(Z,X, Y ).

2. Metallic structures on the tangent bundle of a P-Sasakian
manifold

In [1,4], the authors have studied some geometric structures on tangent bundle.
Let M be an n-dimensional P-Sasakian manifold with structure tensor (ϕ, η, ξ, g).
In this part of this section, we introduce a metallic structure induced on TM by
the complete lift of a P-Sasakian structure, and then we show that this metallic
structure is integrable.

Proposition 2.1. On the tangent bundle of a P-Sasakian manifold with structure
tensor (ϕ, η, ξ, g), there exists a metallic structure given by

J =
p

2
I − (

2σp,q − p

2
)(ϕc + ηv ⊗ ξv + ηc ⊗ ξc). (2.1)

Proof. From the definition of the almost paracontact structure of a P-Sasakian
manifold, we obtain the following relations:

(ϕc)2 = (ϕ2)c = I − ηc ⊗ ξv − ηv ⊗ ξc,

ηv(ξc) = ηc(ξv) = 1, ηv(ξv) = ηc(ξc) = 0,

ϕc(ξv) = ϕc(ξc) = 0, ηv ◦ ϕc = ηc ◦ ϕc = 0.

Therefore, using these relations for any X̃ ∈ X (TM), we have

J(ξv) =
p

2
I(ξv)− (

2σp,q − p

2
)(ϕc + ηv ⊗ ξv + ηc ⊗ ξc)(ξv)

=
p

2
ξv − (

2σp,q − p

2
)(ϕc(ξv) + ηv(ξv)ξv + ηc(ξv)ξc)

=
p

2
ξv − 2σp,q − p

2
ξc.

Similarly, we get

J(ξc) =
p

2
ξc − 2σp,q − p

2
ξv,

J(ϕcX̃) =
p

2
ϕcX̃ − 2σp,q − p

2
(X̃ − ηc(X̃)ξv − ηc(X̃)ξc).

Now, we obtain

J(X̃) =
p

2
X̃ − 2σp,q − p

2
(ϕcX̃ + ηv(X̃)ξv + ηc(X̃)ξc)

and

J2(X̃) =
p

2
J(X̃)− 2σp,q − p

2
(J(ϕcX̃)+ηv(X̃)J(ξv)+ηc(X̃)J(ξc)) = pJ(X̃)+ qX̃,

which completes the proof. □
Proposition 2.2. If M is a P-Sasakian manifold with structure tensor (ϕ, η, ξ, g)
and J is defined by (2.1), then

gc(JX̃, JỸ ) = pgc(X̃, JỸ ) + qgc(X̃, Ỹ ), for all X̃, Ỹ ∈ X (TM).
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Proof. For any X,Y ∈ X (M), we have

gc(Xv, Y v) = 0, gc(Xv, ξc) = (g(X, ξ))v = (η(X))v,

gc((ϕX)v, ξc) = (g(ϕX, ξ))v = (g(X,ϕξ))v = 0,

gc(ξc, ξc) = (g(ξ, ξ))c = 0.

Therefore,

gc(JXv, JY v) = −(2σp,q − p)p

2
(ηX)v(ηY )v

and

gc(Xv, JY v) = −2σp,q − p

2
(ηX)v(ηY )v.

Thus,

gc(JXv, JY v) = pgc(Xv, JY v) + qgc(Xv, Y v).

Also, using gc(Xv, Y c) = (g(X,Y ))v and gc(Xc, Y c) = (g(X,Y ))c, we have

gc(JXv, JY c) = (
p2

2
+ q)(g(X,Y ))v − (2σp,q − p)p

2
[(g(X,ϕY ))v − (ηX)v(ηY )v]

and

gc(Xv, JY c) =
p

2
(g(X,Y ))v − (2σp,q − p)p

2
[(g(X,ϕY ))v − (ηX)v(ηY )v].

Hence,

gc(JXv, JY c) = pgc(Xv, JY c) + qgc(Xv, Y c).

The other cases are similar. □

Theorem 2.3. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g) and let J be defined by (2.1). Then the metallic structure J is in-
tegrable.

Proof. The 1-form η defines an (n− 1)-dimensional distribution D by

for all p ∈ M, Dp = {v ∈ TpM : η(v) = 0}, (2.2)

and the complement of D is the 1-dimensional distribution spanned by ξ. Suppose
that

N1 = Nϕ − 2dη ⊗ ξ, N2(X,Y ) = (LϕXη)Y − (LϕY η)X, N3 = Lξϕ, N4 = Lξη.



304 S. AZAMI

By Proposition 1.5, for any X,Y of C∞(M)-module of all sections of distribution
D, we have

NJ(X
v, Y v) = 0,

NJ(X
v, Y c) = A

(
[N1(X,Y )]v +N2(X,Y )ξc

)
,

NJ(X
c, Y c) = A

(
[N1(X,Y )]c +N2(X,Y )ξv

)
,

NJ(X
v, ξv) = A

(
− (N3(X))v +N4(X)ξc

)
,

NJ(X
v, ξc) = A

(
[ϕ(N3(X))−N4(X)ξ]v +N2(X, ξ)ξc

)
,

NJ(X
c, ξv) = A

(
− (N3(X))c + (ϕ(N3(X)))v − [N4(ϕX)−N4(X)]cξc

)
,

NJ(X
c, ξc) = A

(
− (N3(X))v + [N4(X) +N2(X, ξ)]ξc

+[ϕ(N3(X))−N4(X)ξ]c
)
,

NJ(ξ
v, ξv) = NJ(ξ

c, ξc) = NJ(ξ
v, ξc) = 0,

where A = (2σp,q−p

2
)2. Indeed the tensor N1 of a P-Sasakian manifold van-

ishes. On the other hand, if N1 = 0, then also N2, N3, and N4 vanish. Hence
NJ(X̃, Ỹ ) = 0 for all X̃, Ỹ ∈ X (TM), that is J is integrable. □

Theorem 2.4. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g) and let J be defined by (2.1). Then the metallic structure J is never
parallel with respect to ∇c.

Proof. We have

(∇c
XcJ)ξc = ∇c

Xc(Jξc)− J(∇c
Xcξc)

= −2σp,q − p

2

[
∇c

Xc

(
(ϕξ)c + η(ξ)vξv + η(ξ)cξc

)
− (ϕ∇Xξ)

c

−(η(∇Xξ))
vξv − (η(∇Xξ))

cξc] .

Using ϕX = ∇Xξ, we get

(∇c
XcJ)ξc = −2σp,q − p

2
[(ϕX)v −Xc] ̸= 0, for all X ∈ D \ {0},

where D is a distribution and defined by (2.2). □

Proposition 2.5. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g), let ∇ϕ = 0, and let J be defined by (2.1). Then, the fundamental
2-form Φ, given by

Φ(X̃, Ỹ ) = gc(X̃, JỸ )− p

2
gc(X̃, Ỹ ), X̃, Ỹ ∈ X (TM),

is closed if and only if

g(∇YX,ϕZ)+ g(∇ZY, ϕX)+ g(∇XZ, ϕY ) = 0, for all X,Y, Z ∈ X (M). (2.3)
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Proof. The coboundary formula for d on a 2-form Φ is
3dΦ(X̃, Ỹ , Z̃) = X̃Φ(Ỹ , Z̃) + Ỹ Φ(Z̃, X̃) + Z̃Φ(X̃, Ỹ )

−Φ([X̃, Ỹ ], Z̃)− Φ([Z̃, X̃], Ỹ )− Φ([Ỹ , Z̃], X̃),

for any X̃, Ỹ , Z̃ ∈ X (TM). Hence, for any X,Y, Z ∈ X (M), we have

3dΦ(Xc, Y c, Zv) = Xcgc(Y c, JZv)− p

2
Xcgc(Y c, Zv) + Y cgc(Zv, JXc)

−p

2
Y cgc(Zv, Xc) + Zvgc(Xc, JY c)− p

2
ZV gc(Xc, Y c)

−gc([X,Y ]c, JZv) +
p

2
gc([X,Y ]c, Zv)− gc([Z,X]v, JY c)

+
p

2
gc([Z,X]v, Y c)− gc([Y, Z]v, JXc) +

p

2
gc([Y, Z]v, Xc).

On the other hand,

JZv =
p

2
Zv − 2σp,q − p

2

(
(ϕ(Z))v + (η(Z))vξc

)
and

JXc =
p

2
Xc − 2σp,q − p

2

(
(ϕ(X))v + (η(X))vξv + (η(X))cξc

)
.

Therefore,

− 6

2σp,q − p
dΦ(Xc, Y c, Zv) = {Xg(Y, ϕZ) + Y g(Z, ϕX) + Zg(X,ϕY )

−g([X,Y ], ϕZ)− g([Z,X], ϕY )

−g([Y, Z], ϕX)}v

+Xc[(η(Z))v(η(Y ))c] + Y c[(η(X))c(η(Z))v]

+Zv[(η(Y ))v(η(X))v] + Zv[(η(Y ))c(η(X))c]

−(η(Z))vg([X,Y ], ξ)c − (η(Y ))cg([Z,X], ξ)v

−(η(X))cg([Y, Z], ξ)v.

Since ∇ϕ = 0 and g(X,ϕY ) = g(Y, ϕX), we get
Xg(Y, ϕZ)− g([X,Y ], ϕZ) = g(∇YX,ϕZ) + g(∇XZ, ϕY ).

Also, ∇Xξ = ϕX results that
g([X,Y ], ξ) = g(∇XY, ξ)− g(∇YX, ξ)

= Xg(Y, ξ)− g(Y,∇Xξ)− Y g(X, ξ) + g(X,∇Y ξ)

= X(η(Y ))− g(Y, ϕX)− Y (η(X)) + g(X,ϕY )

= X(η(Y ))− Y (η(X)).

Thus,

− 6

2σp,q − p
dΦ(Xc, Y c, Zv) = 2 {g(∇YX,ϕZ) + g(∇ZY, ϕX) + g(∇XZ, ϕY )}

+2 {(η(Y ))c(Xη(Z))v + (η(Z))v(Y η(X))c

+(η(X))c(Zη(Y ))v} .
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Now, if X,Y, Z ∈ D, then dΦ(Xc, Y c, Zv) = 0 is equivalent with (2.3), where D
is a distribution and defined by (2.2). Also, if X = ξ or Z = ξ, then we get the
same result. The other cases are reducible to (2.3). □

Note.We recall that p
2
I − (2σp,q−p

2
)(ϕc ± ηv ⊗ ξv ± ηc ⊗ ξc) are also metallic

structures. For these structures, we can obtain the similar results as for the
metallic structure (2.1).
In the following, we study a metallic structure on TM induced by the horizontal
lift.

Proposition 2.6. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g). Then there exists a metallic structure on its tangent bundle, given
by

F =
p

2
I − (

2σp,q − p

2
)(ϕh + ηh ⊗ ξh + ηv ⊗ ξv). (2.4)

Proof. By the definition of vertical lift and horizontal lift of the almost paracon-
tact structure of a P-Sasakian manifold M , we have

(ϕh)2 = (ϕ2)h = I − ηh ⊗ ξv − ηv ⊗ ξh,

ηv(ξh) = ηh(ξv) = 1, ηv(ξv) = ηh(ξh) = 0,

ϕh(ξv) = ϕh(ξh) = 0, ηv ◦ ϕh = ηh ◦ ϕh = 0.

Therefore for any X̃ ∈ X (TM), we get

F (ξv) =
p

2
ξv − 2σp,q − p

2
ξh, J(ξh) =

p

2
ξh − 2σp,q − p

2
ξv,

F (ϕhX̃) =
p

2
ϕhX̃ − 2σp,q − p

2
(X̃ − ηh(X̃)ξv − ηv(X̃)ξh).

Now, we obtain

F (X̃) =
p

2
X̃ − 2σp,q − p

2
(ϕhX̃ + ηv(X̃)ξv + ηh(X̃)ξh)

and

F 2(X̃) =
p

2
F (X̃)− 2σp,q − p

2
(F (ϕhX̃) + ηv(X̃)F (ξv) + ηh(X̃)F (ξh))

= pF (X̃) + qX̃,

which finishes the proof. □
Definition 2.7 (Sasakian metric). Let (M, g) be a Riemannian manifold. The
Sasakian metric on TM is defined as follows:

G(Xv, Y h) = 0, G(Xv, Y v) = [g(X,Y )]v, G(Xh, Y h) = [g(X,Y )]v,

for any X,Y ∈ X (M).

Proposition 2.8. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g). If F is defined by (2.4) on TM and G is the Sasakian metric, then

G(FX̃, F Ỹ ) = pG(X̃, F Ỹ ) + qG(X̃, Ỹ ),

for any X̃, Ỹ ∈ X (TM).
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Proof. For any X,Y ∈ X (M), we have
ηh(Xv) = ηv(Xv) = 0, ηhXh = ηvXh = (η(X))h,

ϕhXv = (ϕX)v, ϕhXh = (ϕX)h.

Hence,
FXv =

p

2
Xv − 2σp,q − p

2
(ϕX)v.

Now by the definition of the Sasakian metric G, we get

G(FXv, FY v) =

{
(q +

p2

2
)g(X,Y )− 2σp,q − p

2
pg(X,ϕY )

}v

and
G(Xv, FY v) =

{
p

2
g(X,Y )− 2σp,q − p

2
g(X,ϕY )

}v

.

Therefore,
G(FXv, FY v) = pG(Xv, FY v) + qG(Xv, Y v).

The other cases are similar.
□

Definition 2.9. Let (M, g) be a Riemannian manifold and let ∇ be the Levi-
Civita connection with respect to the Riemannian metric g. Let D be a distri-
bution defined by (2.2). The connection ∇ is called D-flat if ∇XY ∈ D for all
X,Y ∈ D.
Theorem 2.10. Let M be a P-Sasakian manifold with structure tensor (ϕ, η, ξ, g).
Then the metallic structure F defined by (2.4) on TM is integrable if and only if
∇ is D-flat and

R(ϕX, ϕY ) +R(X,Y )− ϕ{R(ϕX, Y ) +R(X,ϕY )} = 0, (2.5)
where R is a curvature tensor of M .
Proof. Let X,Y ∈ D, let a = − 2

2σp,q−p
, and let U ∈ TM . Then

NF (X
h, Y h)U = [N1(X,Y )]hU + {ηR(ϕX, Y )U + ηR(X,ϕY )U}ξh

−{R(ϕX, ϕY )U +R(X,Y )U − ϕR(ϕX, Y )U

+R(X,ϕY )U}v +N2(X,Y )ξv.

Also,
aNF (X

h, Y v) =
(
∇ϕXϕY − ϕ∇ϕXY − ϕ∇XϕY +∇XY

)v
−{η(∇ϕXY ) + η(∇XϕY )}ξh,

NF (X
v, Y v) = 0,

aNF (X
h, ξh)U =

(
∇ϕXξ − ϕ(∇Xξ) + ϕ(N3(X))

)h
U + [ηR(ϕX, ξ)U ]ξh

+{N2(X, ξ)− η(∇Xξ)}ξv + [ϕR(ϕX, ξ)U ]v,

aNF (X
h, ξv)U = −[N3(X)]hU + {N2(X, ξ) + ηR(X, ξ)U}ξh

−{R(ϕX, ξ)U − ϕR(X, ξ)U + ϕ(∇ϕXξ)−∇Xξ}v

−N4(X)ξv,
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and
aNF (X

v, ξv) = −(∇ξϕX − ϕ∇ξX)v + η(∇ξX)ξh.

Hence, NF = 0 if and only if (2.5) is true and
∇ϕXϕY − ϕ∇ϕXY − ϕ∇XϕY +∇XY = 0. (2.6)

From (1.1), Eq. (2.6) is equivalent with η(∇XY ) = 0, for any X,Y ∈ D, that is,
∇ is D-flat. □
Theorem 2.11. Let M be a P-Sasakian manifold with structure tensor (ϕ, η, ξ, g).
Then the metallic structure F defined by (2.4) on TM is never parallel with respect
to ∇h.

Proof. We have

(∇h
XhF )ξh = ∇h

Xh(Fξh)− F (∇h
Xhξ

h) = −2σp,q − p

2
[(ϕX)v − (ϕ2X)h].

If X ∈ D \ {0}, then (∇h
XhF )ξh ̸= 0, where D is defined by (2.2). □

We define the fundamental 2-form Φ′ by

Φ′(X̃, Ỹ ) = G(X̃, F Ỹ )− p

2
G(X̃, Ỹ ), X̃, Ỹ ∈ X (TM).

Proposition 2.12. Let M be a P-Sasakian manifold with structure tensor
(ϕ, η, ξ, g) and let F be defined by (2.4). Then fundamental 2-form Φ′ is never
closed.

Proof. Let X ∈ D be a unit vector field, that is, g(X,X) = 1, where D is defined
by (2.2). Then by a similar proof as that of Proposition 2.5, we have

− 6

2σp,q − p
dΦ′(Xh, Xv, ξv) = −G([ξv, Xh], (ϕX)v) = −g(∇Xξ, ϕX)v

= −g(X,X)v = −1.

□
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