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NONCOMMUTATIVE CONVEXITY IN MATRICIAL ∗-RINGS
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Abstract. For every unital ∗-ring R, we define the notions of R-convexity, as
a kind of noncommutative convexity, R-face and R-extreme point, the relative
face, and extreme point, for general bimodules over R. The relation between
the C∗-convex subsets of R and R-convex subsets of Mn(R), the set of all
n× n matrices with entries in R, as well as, the relation between the C∗-faces
(C∗-extreme points) of these C∗-convex sets and R-faces (R-extreme points) of
R-convex sets in Mn(R) is given. Also, we prove the same results for diagonal
matrices in Mn(R). Finally, we show that, if the entries are restricted to the
positive elements in the unital ∗-ring R, then the set of all diagonal matrices
is an R-face of the set of all lower (upper) triangular matrices, and all of these
sets are R-faces of Mn(R+).

1. Introduction

One of the forms of noncommutative convexity is C∗-convexity. Formal study
of C∗-convexity was initiated by Loebl and Paulsen [12]. Farenick and Morenz [8]
proved that each irreducible element of the C∗-algebra Mn of complex n × n
matrices, is a C∗-extreme point, the relative extreme point, of the C∗-convex set
that it generates. Morenz [14] obtained a right analog of linear extreme points,
called structural elements, to prove a generalized Krein Milman theorem for C∗-
convex subsets of Mn. Also he extended the notion of face from convexity to
C∗-face in C∗-convexity. Kian has worked on this subject in several articles such
as [9–11]. In [9], the concept of C∗-convexity has generalized to the sets that have
a B(H)-module structures, and a generalization of the classical well-known result
“f is a convex function if and only if epi(f) is a convex set” has been obtained
for operator convex functions. Esslamzadeh and others have investigated the
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quantization in ∗-algebras and the structure of quasi-ordered ∗-vector spaces in
several articles such as [5–7]. The author and Esslamzadeh [4] generalized the
notions of C∗-convexity and C∗-extreme points to ∗-rings. Recently, the author
has proved some results on the subject of C∗-convex maps and C∗-affine maps
on ∗-rings in [2, 3], and he has investigated the C∗-extreme points of the graph
and epigraph of C∗-affine maps. Also, it has shown that for a C∗-convex map f
defined on a unital ∗-ring R with some conditions, the graph of f is a C∗-face of
the epigraph of f , and some other results about the C∗-faces of C∗-convex sets
in ∗-rings; see [2].

Throughout this article, R is a unital ∗-ring, that is, a ring with an involution
that has an identity element. An element x in R is called positive, written x ≥ 0,
if x = y∗1y1 + y∗2y2 + · · · + y∗nyn for some y1, y2, . . . , yn in R, and the set of all
positive elements in R is denoted by R+. The self-adjoint elements of R may be
ordered by writing x ≤ y in case y − x ≥ 0. The reference [1] is a basic reference
for studying the ∗-rings.

For C∗-subalgebras A,B ⊆ B(H), Magajna [13] has considered A,B-absolutely
convex sets in A,B-subbimodules of B(H), to prove a separation type theorem
for C∗-convex subsets of operator bimodules over C∗-algebras and von Neumann
algebras. In special case, an extension of C∗-convexity to A-subbimodules of
B(H) has defined there. Also, as mentioned above, this generalization has con-
sidered in [9] for the sets that have a B(H)-module structures. In this article,
we consider the same generalization for bimodules over ∗-rings, which we call it
R-convexity for bimodules over unital ∗-ring R. More precisely, we define the
notions of R-convexity, R-face, and R-extreme point in R-bimodules. Then we
focus on the special R-bimodule Mn(R), the set of all n×n matrices with entries
in the unital ∗-ring R, for each n ∈ N. Note that Mn(R) can be considered also
as a ∗-ring with the usual matrix operations and ∗-transposition as an involution,
that is, [aij]

∗ = [(aji)
∗]. We show the relation between the C∗-convex subsets

of R and R-convex subsets of Mn(R), as well as, the relation between their rel-
ative faces. Also we show that considering an extra condition on R, we have
R− ext(Mn(K)) = Mn(C

∗ − ext(K)) for every C∗-convex subset K of R. Also
we prove that the same conclusions hold for diagonal matrices on R. Moreover,
we prove that, if the entries restricted to the positive elements in R, then the
set of all diagonal matrices is an R-face of the set of all lower (upper) triangular
matrices. Furthermore, we show that all of these sets are R-faces of Mn(R+).

We use the notation a∗[aij]a for

diag(a∗) · [aij] · diag(a) =

a∗ 0
. . .

0 a∗

a11 . . . a1n
... . . . ...

an1 . . . ann

a 0
. . .

0 a

 .

2. Definitions and preliminaries

Definition 2.1. A subset K of a unital ∗-ring R is called C∗-convex, if
n∑

i=1

a∗ixiai ∈ K,
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whenever xi ∈ K and ai ∈ R for all i and
∑n

i=1 a
∗
i ai = 1R.

In this case, the summation
∑n

i=1 a
∗
ixiai is called a C∗-convex combination of

elements xi ∈ K.

Definition 2.2. Let K be a C∗-convex subset of R. An element x ∈ K is called
a C∗-extreme point of K if the condition

x =
n∑

i=1

a∗ixiai,
n∑

i=1

a∗i ai = 1R, xi ∈ K, ai is invertible in R, n ∈ N (2.1)

implies that all xi are unitarily equivalent to x in R, that is, there exist unitaries
ui ∈ R such that xi = u∗

ixui for all i.
The set of all C∗-extreme points of K is denoted by C∗-ext(K). In addition, if

Condition (2.1) holds, then we say that x is a proper C∗-convex combination of
x1, . . . , xn.

In the next two definitions, we extend the notions of C∗-convexity and C∗-
extreme points to bimodules over ∗-rings, respectively.

Definition 2.3. Let R be a unital ∗-ring, let M be an R-bimodule, and let
K ⊆ M . Then K is called an R-convex subset of M if

m∑
i=1

a∗iXiai ∈ M whenever,

Xi ∈ M , ai ∈ R for each i,
m∑
i=1

a∗i ai = 1R and m ∈ N.

In this case, the summation
∑m

i=1 a
∗
iXiai is called an R-convex combination

of elements Xi ∈ M , and it is called a proper R-convex combination if ai is
invertible in R for each i.

Definition 2.4. Let K be an R-convex subset of the R-bimodule M . An element
X ∈ K is called an R-extreme point of K if the condition

X =
m∑
i=1

a∗iXiai,
m∑
i=1

a∗i ai = 1R, Xi ∈ M,ai is invertible in R,m ∈ N,

implies that all X ,
is are unitarily equivalent to X in M , in the sense that, there

exist unitaries ui ∈ R such that Xi = u∗
iXui for all i.

The set of all R-extreme points of K is denoted by R-ext(K).

Note that in case M = R, as an R-bimodule, the above two definitions re-
lease to the usual definitions of C∗-convexity and C∗-extreme point in ∗-rings,
respectively.

Morenz [14] has extended the notion of face from classical convexity to C∗-
convexity. Also, this notion has extended to C∗-convexity in ∗-rings in [4], as
follows.

Definition 2.5. A nonempty subset F of a C∗-convex set K ⊆ R is called a
C∗-face of K, if the condition x ∈ F and x =

∑n
i=1 a

∗
ixiai as a proper C∗-convex

combination of elements xi ∈ K, implies that xi ∈ F for all i.

In the next definition, we extend the notion of C∗-face to R-convex subsets of
R-bimodules.
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Definition 2.6. Let R be a unital ∗-ring, let M be an R-bimodule, and let K be
an R-convex subset of M . A nonempty subset F of K is called an R-face of K, if
the conditions X ∈ F and X =

∑n
i=1 a

∗
iXiai as a proper R-convex combination

of elements Xi ∈ K, imply that Xi ∈ F for all i.

3. Main results

In this section, we concentrate on the set Mn(R), the set of all n× n matrices
with entries in R, as an R-bimodule, where R is an arbitrary unital ∗-ring, and we
attempt to obtain the relation between the C∗-convex subsets of R and R-convex
subsets of Mn(R). Also we investigate the relations between the C∗-faces (C∗-
extreme points) of the C∗-convex subsets of R and R-faces (R-extreme points)
of the R-convex subsets of Mn(R).

Theorem 3.1. K is a C∗-convex subset of R if and only if Mn(K) is an R-convex
subset of Mn(R).

Proof. Let K be a C∗-convex subset of R, and let X =
m∑
t=1

a∗tYtat be an R-convex

combination of elements Yt ∈ Mn(K). We must show that X = [Xij] ∈ Mn(K).
We have Xij =

m∑
t=1

a∗t (Yt)ijat for each i, j (1 ≤ i, j ≤ n). So Xij is written as a

C∗-convex combination of elements (Yt)ij ∈ K, and hence Xij ∈ K.
Conversely, suppose that Mn(K) is an R-convex subset of Mn(R) and that

x =
m∑
t=1

a∗tytat is a C∗-convex combination of elements yt ∈ K. Put

X =

x . . . x
... . . . ...
x . . . x


n×n

and Yt =

yt . . . yt
... . . . ...
yt . . . yt


n×n

,

for all t (1 ≤ t ≤ m). Then Yt ∈ Mn(K) and X =
m∑
t=1

a∗tYtat. So by the R-

convexity of Mn(K), we conclude that X ∈ Mn(K), and hence x ∈ K. Thus, K
is a C∗-convex subset of R. □

Theorem 3.2. F is a C∗-face of the C∗-convex set K in R if and only if Mn(F )
is an R-face of Mn(K) in Mn(R).

Proof. Let F be a C∗-face of K, let X = [xij] ∈ Mn(F ), and let X =
m∑
t=1

a∗tYtat be

a proper R-convex combination of elements Yt = [(yt)ij] ∈ Mn(K). We must show
that Yt ∈ Mn(F ) for all t. For each i, j (1 ≤ i, j ≤ n), we have xij =

m∑
t=1

a∗t (yt)ijat,

and hence (yt)ij ∈ F for each i, j and each t (1 ≤ t ≤ m). So Yt ∈ Mn(F ) for all
t, and hence Mn(F ) is an R-face of Mn(K).
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Conversely, suppose that Mn(F ) is an R-face of Mn(K), that x ∈ F , and that
x =

m∑
i=1

a∗i yiai is a proper C∗-convex combination of elements yi ∈ K. Put

X =

x . . . x
... . . . ...
x . . . x


n×n

and Yi =

yi . . . yi
... . . . ...
yi . . . yi


n×n

,

for each i (1 ≤ i ≤ m). Then X ∈ Mn(F ) and X =
m∑
i=1

a∗iYiai is a proper R-

convex combinations of elements Yi ∈ Mn(K). So Yi ∈ Mn(F ), and hence yi ∈ F
for each i. Therefore, F is a C∗-face of K. □

Note that the above conclusions hold for all rectangular matrices Mm,n(F ) and
Mm,n(K) by the same proofs.

Theorem 3.3. Let K be a C∗-convex subset of the unital ∗-ring R, such that for
each x ∈ K, C∗ − co({x}) = {x}. Then Mn(C

∗−ext(K)) = R−ext(Mn(K)).

Proof. Let X = [xij] ∈ R− ext(Mn(K)) and let xlk =
m∑
t=1

a∗tytat be a proper C∗-

convex combination of elements yt ∈ K for fixed l, k ∈ {1, . . . , n}. Also, suppose
that Yt = [(Yt)ij], where

(Yt)ij =

{
xij, (i, j) ̸= (l, k),

yt, (i, j) = (l, k).

Then, X =
m∑
t=1

a∗tYtat is a proper R-convex combination of elements Yt ∈ Mn(K),

and hence X is unitarily equivalent to Yt for each t (1 ≤ t ≤ m). So there exist
unitary elements ut ∈ R such that X = u∗

tYtut for each t. Thus, xlk = u∗
tytut, and

hence xlk is a C∗-extreme point of K. Since l and k are arbitrary in {1, . . . , n},
so X ∈ Mn(C

∗ − ext(K)).
Conversely, suppose that for each i, j (1 ≤ i, j ≤ n), xij ∈ C∗−ext(K) and that

X = [xij] =
m∑
t=1

a∗tYtat is a proper R-convex combination of elements Yt ∈ Mn(K).

Then xij =
m∑
t=1

a∗t (Yt)ijat is a proper C∗-convex combination of elements (Yt)ij ∈

K, and hence there are unitaries (ut)ij ∈ R such that xij = ((ut)ij)
∗(Yt)ij(ut)ij.

Since C∗ − co({x}) = {x} for each x ∈ K, so we have xij = (Yt)ij, and hence
X = Yt for all t (1 ≤ t ≤ m). Therefore, X ∈ R− ext(Mn(K)). □

Example 3.4. Let R be a unital ∗-ring. Then the following sets are R-convex
in Mn(R):

(1) The set Mn(R) of all n× n matrices with entries in R.
(2) The set UTn(R) of all n× n upper triangular matrices with entries in R.
(3) The set LTn(R) of all n× n lower triangular matrices with entries in R.
(4) The set Dn(R) of all n× n diagonal matrices with entries in R.
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(5) The set of all n × n symmetric (antisymmetric) matrices with entries in
R.

In the next proposition, we give some other examples of R-convex subsets of
Mn(R).

Proposition 3.5. The following sets are R-convex subsets of Mn(R) for every
unital ∗-ring R.

(1) The set M sa
n (R) of all n× n self-adjoint matrices with entries in R.

(2) The set M+
n (R) of all n× n positive matrices with entries in R.

(3) The set of all n× n (column) row stochastic matrices with entries in R.
(4) The set of all n× n doubly stochastic matrices with entries in R.

Proof. (1) Let Xi ∈ M sa
n (R) and let ai ∈ R such that

m∑
i=1

a∗i ai = 1R. We must

show that X =
m∑
i=1

a∗iXiai ∈ M sa
n (R). Since (a∗iXiai)kl = a∗i (Xi)klai, so(

m∑
i=1

a∗iXiai

)
kl

=
m∑
i=1

(a∗iX
∗
i ai)kl =

m∑
i=1

a∗i (X
∗
i )klai

=
m∑
i=1

a∗i ((Xi)lk)
∗ai =

((
m∑
i=1

a∗iXiai

)
lk

)∗

=

((
m∑
i=1

a∗iXiai

)∗)
kl

= (X∗)kl.

Thus Xkl = (X∗)kl for each 1 ≤ k, l ≤ m and hence X = X∗. Therefore,
X ∈ M sa

n (R).
(2) If Xi ≥ 0, then a∗iXiai = (aiIn)

∗Xi(aiIn) ≥ 0, and hence
m∑
i=1

a∗iXiai =
m∑
i=1

(aiIn)
∗Xi(aiIn) ≥ 0.

Therefore, M+
n (R) is an R-convex set.

(3) Suppose that Xi is an n × n row stochastic matrix for each i (1 ≤ i ≤ m),
that is,

n∑
l=1

(Xi)kl = 1R, for each k (1 ≤ k ≤ n). Then,

n∑
l=1

[
m∑
i=1

a∗iXiai

]
kl

=
n∑

l=1

m∑
i=1

a∗i [Xi]klai =
m∑
i=1

n∑
l=1

a∗i [Xi]klai

=
m∑
i=1

a∗i

(
n∑

l=1

[Xi]kl

)
ai =

m∑
i=1

a∗i 1Rai = 1R.

Similarly the set of all column stochastic matrices is also an R-convex set.
(4) It is a straightforward conclusion of part (3). □
Theorem 3.6. Let R be a unital ∗-ring. Then the following properties hold:
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(i) K is a C∗-convex subset of R if and only if Dn(K) is an R-convex subset
of Dn(R).

(ii) F is a C∗-face of K if and only if Dn(F ) is an R-face of Dn(K).
(iii) {x1, . . . , xn} ⊆ C∗−ext(K) if and only if diag(x1, . . . , xn) ∈ R−ext(Dn(K)),

provided that, C∗ − co({x}) = {x} for all x ∈ K.

Proof. The proof of (i) and (ii) is straightforward by noting the following equali-
ties:

m∑
i=1

a∗i


xi1 0

xi2

. . .
0 xin

 ai =
m∑
i=1


a∗ixi1ai 0

a∗ixi2ai
. . .

0 a∗ixinai



=



m∑
i=1

a∗ixi1ai 0

m∑
i=1

a∗ixi2ai

. . .

0
m∑
i=1

a∗ixinai


(iii) Let xi ∈ C∗ − ext(K), let yit ∈ K, and let at be an invertible element in R
for each t (1 ≤ t ≤ n) such that

m∑
t=1

a∗tat = 1R and


x1 0

x2

. . .
0 xn

 =
m∑
t=1

a∗t


y1t 0

y2t
. . .

0 ynt

 at.

Then for each i (1 ≤ i ≤ n), xi =
m∑
t=1

a∗tyitat, and hence xi is unitarily equivalent
to yit for all t. So yit = xi, by the assumption that the C∗-convex hull of each
element x in K is the singleton {x}. Therefore,

x1 0
x2

. . .
0 xn

 =


y1t 0

y2t
. . .

0 ynt

 ,

for each t (1 ≤ t ≤ m). So diag(x1, . . . , xn) ∈ R− ext(Dn(K)).
Conversely, suppose that diag(x1, . . . , xn) ∈ R − ext(Dn(K)) and that

xi =
m∑
t=1

a∗tytat is a proper C∗-convex combination of elements yt ∈ K. Put

Yt = diag(x1, . . . , xi−1, yt, xi+1, . . . , xn),
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for each t (1 ≤ t ≤ m). Then,
x1 0

x2

. . .
0 xn

 =
m∑
t=1

a∗tYtat, (3.1)

since
m∑
t=1

a∗txjat = xj by the assumption C∗ − co({x}) = {x}. On the other hand,

diag(x1, . . . , xn) is an R-extreme point of Dn(K), so the relation (3.1) implies
that

diag(x1, . . . , xn) = u∗
tYtut for all t,

for unitaries ut ∈ R. Hence, xi = u∗
tytut, and therefore xi ∈ C∗ − ext(K). □

Proposition 3.7. Let UTn(R+), LTn(R+), and Dn(R+) denote the sets of all
upper triangular, lower triangular, and diagonal n × n matrices with positive
entries in R, respectively. Then Dn(R+) is an R-convex set in Mn(R), and also
an R-face of the R-convex sets UTn(R+) and LTn(R+) provided that, for each
xi ∈ R, and n ∈ N, x∗

1x1 + · · ·+ x∗
nxn = 0 implies that x1 = · · · = xn = 0.

Proof. It is clear that Dn(R+), LTn(R+), and UTn(R+) are R-convex sets since[
m∑
i=1

a∗iAiai

]
kl

=
m∑
i=1

a∗i [Ai]klai. Let D ∈ Dn(R+) and let D =
m∑
i=1

a∗iBiai, where

ai ∈ R is invertible and Bi ∈ UTn(R+) for each i. We must show that Bi ∈
Dn(R+) for each i (1 ≤ i ≤ m). Since (Bi)kl ∈ R+, so there are xi,kl,j ∈ R

for 1 ≤ j ≤ Ni,kl such that (Bi)kl =
Ni,kl∑
j=1

x∗
i,kl,jxi,kl,j for each i ∈ {1, . . . ,m} and

k, l ∈ {1, . . . , n}. If k ̸= l, then

0 = Dkl =
m∑
i=1

(a∗i (Bi)klai)

=
m∑
i=1

a∗i

Ni,kl∑
j=1

x∗
i,kl,jxi,kl,j

 ai

=
m∑
i=1

Ni,kl∑
j=1

(
a∗ix

∗
i,kl,jxi,kl,jai

)
=

m∑
i=1

Ni,kl∑
j=1

(xi,kl,jai)
∗(xi,kl,jai).

Therefore, xi,kl,jai = 0. Invertibility of ai implies that xi,kl,j = 0 for each j (1 ≤
j ≤ Ni,kl). Thus, (Bi)kl = 0, and therefore Bi ∈ Dn(R+) for each i (1 ≤ i ≤ m).
Similarly, we can prove that Dn(R+) is an R-face of LTn(R+). □
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Proposition 3.8. The sets Dn(R+), UTn(R+), and LTn(R+) are R-faces of the
R-convex set Mn(R+) if for each xi ∈ R and n ∈ N, the following implication
holds:

x∗
1x1 + · · ·+ x∗

nxn = 0 =⇒ x1 = · · · = xn = 0.

Proof. The proposition can be proved similar to the previous proposition, and
hence we omit the proof. □

Remark 3.9. We can replace the following condition instead of the condition that
n∑

i=1

x∗
ixi = 0 implies that xi = 0 for all i, in the above proposition:

For each xi ∈ R+ and every invertible elements ai ∈ R satisfying
m∑
i=1

a∗i ai = 1R,

the condition
m∑
i=1

a∗ixiai = 0 implies that xi = 0 for all i.

Open problem. Are there exist the same conclusions for the general bimod-
ules over the unital ∗-rings, that is, is there any relation between the C∗-convex
subsets of R and R-convex subsets of the R-bimodule M , and also between their
appropriate faces and extreme points in general case?

Acknowledgement. The author would like to express his sincere gratitude
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