Khayyam Journal of Mathematics emis.de/journals/KJMkjm-math.org ## NONCOMMUTATIVE CONVEXITY IN MATRICIAL *-RINGS ## ALI EBRAHIMI MEYMAND¹ Communicated by A.M. Peralta ABSTRACT. For every unital *-ring \mathcal{R} , we define the notions of \mathcal{R} -convexity, as a kind of noncommutative convexity, \mathcal{R} -face and \mathcal{R} -extreme point, the relative face, and extreme point, for general bimodules over \mathcal{R} . The relation between the C^* -convex subsets of \mathcal{R} and \mathcal{R} -convex subsets of $M_n(\mathcal{R})$, the set of all $n \times n$ matrices with entries in \mathcal{R} , as well as, the relation between the C^* -faces (C^* -extreme points) of these C^* -convex sets and \mathcal{R} -faces (\mathcal{R} -extreme points) of \mathcal{R} -convex sets in $M_n(\mathcal{R})$ is given. Also, we prove the same results for diagonal matrices in $M_n(\mathcal{R})$. Finally, we show that, if the entries are restricted to the positive elements in the unital *-ring \mathcal{R} , then the set of all diagonal matrices is an \mathcal{R} -face of the set of all lower (upper) triangular matrices, and all of these sets are \mathcal{R} -faces of $M_n(\mathcal{R}^+)$. # 1. Introduction One of the forms of noncommutative convexity is C^* -convexity. Formal study of C^* -convexity was initiated by Loebl and Paulsen [12]. Farenick and Morenz [8] proved that each irreducible element of the C^* -algebra M_n of complex $n \times n$ matrices, is a C^* -extreme point, the relative extreme point, of the C^* -convex set that it generates. Morenz [14] obtained a right analog of linear extreme points, called structural elements, to prove a generalized Krein Milman theorem for C^* -convex subsets of M_n . Also he extended the notion of face from convexity to C^* -face in C^* -convexity. Kian has worked on this subject in several articles such as [9–11]. In [9], the concept of C^* -convexity has generalized to the sets that have a B(H)-module structures, and a generalization of the classical well-known result "f is a convex function if and only if epi(f) is a convex set" has been obtained for operator convex functions. Esslamzadeh and others have investigated the Date: Received: 1 November 2020; Revised: 22 January 2021; Accepted: 23 January 2021. 2020 Mathematics Subject Classification. Primary 52A01; Secondary 16W10. Key words and phrases. R-convex set, R-face, R-extreme point, *-ring. quantization in *-algebras and the structure of quasi-ordered *-vector spaces in several articles such as [5–7]. The author and Esslamzadeh [4] generalized the notions of C^* -convexity and C^* -extreme points to *-rings. Recently, the author has proved some results on the subject of C^* -convex maps and C^* -affine maps on *-rings in [2, 3], and he has investigated the C^* -extreme points of the graph and epigraph of C^* -affine maps. Also, it has shown that for a C^* -convex map f defined on a unital *-ring $\mathcal R$ with some conditions, the graph of f is a C^* -face of the epigraph of f, and some other results about the C^* -faces of C^* -convex sets in *-rings; see [2]. Throughout this article, \mathcal{R} is a unital *-ring, that is, a ring with an involution that has an identity element. An element x in \mathcal{R} is called positive, written $x \geq 0$, if $x = y_1^* y_1 + y_2^* y_2 + \cdots + y_n^* y_n$ for some y_1, y_2, \ldots, y_n in \mathcal{R} , and the set of all positive elements in \mathcal{R} is denoted by \mathcal{R}^+ . The self-adjoint elements of \mathcal{R} may be ordered by writing $x \leq y$ in case $y - x \geq 0$. The reference [1] is a basic reference for studying the *-rings. For C^* -subalgebras $A, B \subseteq B(H)$, Magajna [13] has considered A, B-absolutely convex sets in A, B-subbimodules of B(H), to prove a separation type theorem for C^* -convex subsets of operator bimodules over C^* -algebras and von Neumann algebras. In special case, an extension of C^* -convexity to A-subbimodules of B(H) has defined there. Also, as mentioned above, this generalization has considered in [9] for the sets that have a B(H)-module structures. In this article, we consider the same generalization for bimodules over *-rings, which we call it \mathcal{R} -convexity for bimodules over unital *-ring \mathcal{R} . More precisely, we define the notions of \mathcal{R} -convexity, \mathcal{R} -face, and \mathcal{R} -extreme point in \mathcal{R} -bimodules. Then we focus on the special \mathcal{R} -bimodule $M_n(\mathcal{R})$, the set of all $n \times n$ matrices with entries in the unital *-ring \mathcal{R} , for each $n \in \mathbb{N}$. Note that $M_n(\mathcal{R})$ can be considered also as a *-ring with the usual matrix operations and *-transposition as an involution, that is, $[a_{ij}]^* = [(a_{ii})^*]$. We show the relation between the C^* -convex subsets of \mathcal{R} and \mathcal{R} -convex subsets of $M_n(\mathcal{R})$, as well as, the relation between their relative faces. Also we show that considering an extra condition on \mathcal{R} , we have $\mathcal{R} - ext(M_n(K)) = M_n(C^* - ext(K))$ for every C^* -convex subset K of \mathcal{R} . Also we prove that the same conclusions hold for diagonal matrices on \mathcal{R} . Moreover, we prove that, if the entries restricted to the positive elements in \mathcal{R} , then the set of all diagonal matrices is an \mathcal{R} -face of the set of all lower (upper) triangular matrices. Furthermore, we show that all of these sets are \mathcal{R} -faces of $M_n(\mathcal{R}^+)$. We use the notation $a^*[a_{ij}]a$ for $$\operatorname{diag}(a^*) \cdot [a_{ij}] \cdot \operatorname{diag}(a) = \begin{bmatrix} a^* & 0 \\ & \ddots & \\ 0 & a^* \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} a & 0 \\ & \ddots & \\ 0 & a \end{bmatrix}.$$ ## 2. Definitions and preliminaries **Definition 2.1.** A subset K of a unital *-ring \mathcal{R} is called C*-convex, if $$\sum_{i=1}^{n} a_i^* x_i a_i \in K,$$ whenever $x_i \in K$ and $a_i \in \mathcal{R}$ for all i and $\sum_{i=1}^n a_i^* a_i = 1_{\mathcal{R}}$. In this case, the summation $\sum_{i=1}^{n} a_i^* x_i a_i$ is called a C^* -convex combination of elements $x_i \in K$. **Definition 2.2.** Let K be a C^* -convex subset of \mathcal{R} . An element $x \in K$ is called a C^* -extreme point of K if the condition $$x = \sum_{i=1}^{n} a_i^* x_i a_i, \ \sum_{i=1}^{n} a_i^* a_i = 1_{\mathcal{R}}, x_i \in K, a_i \text{ is invertible in } \mathcal{R}, n \in \mathbb{N}$$ (2.1) implies that all x_i are unitarily equivalent to x in \mathcal{R} , that is, there exist unitaries $u_i \in \mathcal{R}$ such that $x_i = u_i^* x u_i$ for all i. The set of all C^* -extreme points of K is denoted by C^* -ext(K). In addition, if Condition (2.1) holds, then we say that x is a proper C^* -convex combination of x_1, \ldots, x_n . In the next two definitions, we extend the notions of C^* -convexity and C^* -extreme points to bimodules over *-rings, respectively. **Definition 2.3.** Let \mathcal{R} be a unital *-ring, let M be an \mathcal{R} -bimodule, and let $K \subseteq M$. Then K is called an \mathcal{R} -convex subset of M if $\sum_{i=1}^{m} a_i^* X_i a_i \in M$ whenever, $$X_i \in M$$, $a_i \in \mathcal{R}$ for each i , $\sum_{i=1}^m a_i^* a_i = 1_{\mathcal{R}}$ and $m \in \mathbb{N}$. In this case, the summation $\sum_{i=1}^{m} a_i^* X_i a_i$ is called an \mathcal{R} -convex combination of elements $X_i \in M$, and it is called a proper \mathcal{R} -convex combination if a_i is invertible in \mathcal{R} for each i. **Definition 2.4.** Let K be an \mathcal{R} -convex subset of the \mathcal{R} -bimodule M. An element $X \in K$ is called an \mathcal{R} -extreme point of K if the condition $$X = \sum_{i=1}^{m} a_i^* X_i a_i, \ \sum_{i=1}^{m} a_i^* a_i = 1_{\mathcal{R}}, X_i \in M, a_i \text{ is invertible in } \mathcal{R}, m \in \mathbb{N},$$ implies that all X_i 's are unitarily equivalent to X in M, in the sense that, there exist unitaries $u_i \in \mathcal{R}$ such that $X_i = u_i^* X u_i$ for all i. The set of all \mathcal{R} -extreme points of K is denoted by \mathcal{R} -ext(K). Note that in case $M = \mathcal{R}$, as an \mathcal{R} -bimodule, the above two definitions release to the usual definitions of C^* -convexity and C^* -extreme point in *-rings, respectively. Morenz [14] has extended the notion of face from classical convexity to C^* -convexity. Also, this notion has extended to C^* -convexity in *-rings in [4], as follows. **Definition 2.5.** A nonempty subset F of a C^* -convex set $K \subseteq \mathcal{R}$ is called a C^* -face of K, if the condition $x \in F$ and $x = \sum_{i=1}^n a_i^* x_i a_i$ as a proper C^* -convex combination of elements $x_i \in K$, implies that $x_i \in F$ for all i. In the next definition, we extend the notion of C^* -face to \mathcal{R} -convex subsets of \mathcal{R} -bimodules. **Definition 2.6.** Let \mathcal{R} be a unital *-ring, let M be an \mathcal{R} -bimodule, and let K be an \mathcal{R} -convex subset of M. A nonempty subset F of K is called an \mathcal{R} -face of K, if the conditions $X \in F$ and $X = \sum_{i=1}^{n} a_i^* X_i a_i$ as a proper \mathcal{R} -convex combination of elements $X_i \in K$, imply that $X_i \in F$ for all i. #### 3. Main results In this section, we concentrate on the set $M_n(\mathcal{R})$, the set of all $n \times n$ matrices with entries in \mathcal{R} , as an \mathcal{R} -bimodule, where \mathcal{R} is an arbitrary unital *-ring, and we attempt to obtain the relation between the C^* -convex subsets of \mathcal{R} and \mathcal{R} -convex subsets of $M_n(\mathcal{R})$. Also we investigate the relations between the C^* -faces (C^* -extreme points) of the C^* -convex subsets of \mathcal{R} and \mathcal{R} -faces (\mathcal{R} -extreme points) of the \mathcal{R} -convex subsets of $M_n(\mathcal{R})$. **Theorem 3.1.** K is a C^* -convex subset of \mathcal{R} if and only if $M_n(K)$ is an \mathcal{R} -convex subset of $M_n(\mathcal{R})$. Proof. Let K be a C^* -convex subset of \mathcal{R} , and let $X = \sum_{t=1}^m a_t^* Y_t a_t$ be an \mathcal{R} -convex combination of elements $Y_t \in M_n(K)$. We must show that $X = [X_{ij}] \in M_n(K)$. We have $X_{ij} = \sum_{t=1}^m a_t^* (Y_t)_{ij} a_t$ for each $i, j \ (1 \le i, j \le n)$. So X_{ij} is written as a C^* -convex combination of elements $(Y_t)_{ij} \in K$, and hence $X_{ij} \in K$. Conversely, suppose that $M_n(K)$ is an \mathcal{R} -convex subset of $M_n(\mathcal{R})$ and that conversely, suppose that $M_n(K)$ is an K-convex subset of $M_n(K)$ and $x = \sum_{t=1}^m a_t^* y_t a_t$ is a C^* -convex combination of elements $y_t \in K$. Put $$X = \begin{bmatrix} x & \dots & x \\ \vdots & \ddots & \vdots \\ x & \dots & x \end{bmatrix}_{n \times n} \text{ and } Y_t = \begin{bmatrix} y_t & \dots & y_t \\ \vdots & \ddots & \vdots \\ y_t & \dots & y_t \end{bmatrix}_{n \times n},$$ for all $t (1 \le t \le m)$. Then $Y_t \in M_n(K)$ and $X = \sum_{t=1}^m a_t^* Y_t a_t$. So by the \mathcal{R} -convexity of $M_n(K)$, we conclude that $X \in M_n(K)$, and hence $x \in K$. Thus, K is a C^* -convex subset of \mathcal{R} . **Theorem 3.2.** F is a C^* -face of the C^* -convex set K in \mathcal{R} if and only if $M_n(F)$ is an \mathcal{R} -face of $M_n(K)$ in $M_n(\mathcal{R})$. Proof. Let F be a C^* -face of K, let $X = [x_{ij}] \in M_n(F)$, and let $X = \sum_{t=1}^m a_t^* Y_t a_t$ be a proper \mathcal{R} -convex combination of elements $Y_t = [(y_t)_{ij}] \in M_n(K)$. We must show that $Y_t \in M_n(F)$ for all t. For each $i, j \ (1 \le i, j \le n)$, we have $x_{ij} = \sum_{t=1}^m a_t^* (y_t)_{ij} a_t$, and hence $(y_t)_{ij} \in F$ for each i, j and each $t \ (1 \le t \le m)$. So $Y_t \in M_n(F)$ for all t, and hence $M_n(F)$ is an \mathcal{R} -face of $M_n(K)$. Conversely, suppose that $M_n(F)$ is an \mathcal{R} -face of $M_n(K)$, that $x \in F$, and that $x = \sum_{i=1}^m a_i^* y_i a_i$ is a proper C^* -convex combination of elements $y_i \in K$. Put $$X = \begin{bmatrix} x & \dots & x \\ \vdots & \ddots & \vdots \\ x & \dots & x \end{bmatrix}_{n \times n} \text{ and } Y_i = \begin{bmatrix} y_i & \dots & y_i \\ \vdots & \ddots & \vdots \\ y_i & \dots & y_i \end{bmatrix}_{n \times n},$$ for each $i (1 \leq i \leq m)$. Then $X \in M_n(F)$ and $X = \sum_{i=1}^m a_i^* Y_i a_i$ is a proper \mathcal{R} -convex combinations of elements $Y_i \in M_n(K)$. So $Y_i \in M_n(F)$, and hence $y_i \in F$ for each i. Therefore, F is a C^* -face of K. Note that the above conclusions hold for all rectangular matrices $M_{m,n}(F)$ and $M_{m,n}(K)$ by the same proofs. **Theorem 3.3.** Let K be a C^* -convex subset of the unital *-ring \mathcal{R} , such that for each $x \in K$, C^* - $co(\{x\}) = \{x\}$. Then $M_n(C^*$ -ext $(K)) = \mathcal{R}$ -ext $(M_n(K))$. *Proof.* Let $X = [x_{ij}] \in \mathcal{R} - ext(M_n(K))$ and let $x_{lk} = \sum_{t=1}^m a_t^* y_t a_t$ be a proper C^* convex combination of elements $y_t \in K$ for fixed $l, k \in \{1, \ldots, n\}$. Also, suppose that $Y_t = [(Y_t)_{ij}]$, where $$(Y_t)_{ij} = \begin{cases} x_{ij}, & (i,j) \neq (l,k), \\ y_t, & (i,j) = (l,k). \end{cases}$$ Then, $X = \sum_{t=1}^{m} a_t^* Y_t a_t$ is a proper \mathcal{R} -convex combination of elements $Y_t \in M_n(K)$, and hence X is unitarily equivalent to Y_t for each $t \ (1 \le t \le m)$. So there exist unitary elements $u_t \in \mathcal{R}$ such that $X = u_t^* Y_t u_t$ for each t. Thus, $x_{lk} = u_t^* y_t u_t$, and hence x_{lk} is a C^* -extreme point of K. Since l and k are arbitrary in $\{1, \ldots, n\}$, so $X \in M_n(C^* - ext(K))$. Conversely, suppose that for each $i, j \ (1 \le i, j \le n), \ x_{ij} \in C^* - ext(K)$ and that $X = [x_{ij}] = \sum_{t=1}^{m} a_t^* Y_t a_t$ is a proper \mathcal{R} -convex combination of elements $Y_t \in M_n(K)$. Then $x_{ij} = \sum_{t=1}^{m} a_t^* (Y_t)_{ij} a_t$ is a proper C^* -convex combination of elements $(Y_t)_{ij} \in K$, and hence there are unitaries $(u_t)_{ij} \in \mathcal{R}$ such that $x_{ij} = ((u_t)_{ij})^* (Y_t)_{ij} (u_t)_{ij}$. Since $C^* - co(\{x\}) = \{x\}$ for each $x \in K$, so we have $x_{ij} = (Y_t)_{ij}$, and hence $X = Y_t$ for all $t (1 \le t \le m)$. Therefore, $X \in \mathcal{R} - ext(M_n(K))$. \square **Example 3.4.** Let \mathcal{R} be a unital *-ring. Then the following sets are \mathcal{R} -convex in $M_n(\mathcal{R})$: - (1) The set $M_n(\mathcal{R})$ of all $n \times n$ matrices with entries in \mathcal{R} . - (2) The set $UT_n(\mathcal{R})$ of all $n \times n$ upper triangular matrices with entries in \mathcal{R} . - (3) The set $LT_n(\mathcal{R})$ of all $n \times n$ lower triangular matrices with entries in \mathcal{R} . - (4) The set $D_n(\mathcal{R})$ of all $n \times n$ diagonal matrices with entries in \mathcal{R} . (5) The set of all $n \times n$ symmetric (antisymmetric) matrices with entries in \mathcal{R} . In the next proposition, we give some other examples of \mathcal{R} -convex subsets of $M_n(\mathcal{R})$. **Proposition 3.5.** The following sets are \mathcal{R} -convex subsets of $M_n(\mathcal{R})$ for every unital *-ring \mathcal{R} . - (1) The set $M_n^{sa}(\mathcal{R})$ of all $n \times n$ self-adjoint matrices with entries in \mathcal{R} . - (2) The set $M_n^+(\mathcal{R})$ of all $n \times n$ positive matrices with entries in \mathcal{R} . - (3) The set of all $n \times n$ (column) row stochastic matrices with entries in \mathbb{R} . - (4) The set of all $n \times n$ doubly stochastic matrices with entries in \mathbb{R} . *Proof.* (1) Let $X_i \in M_n^{sa}(\mathcal{R})$ and let $a_i \in \mathcal{R}$ such that $\sum_{i=1}^m a_i^* a_i = 1_{\mathcal{R}}$. We must show that $X = \sum_{i=1}^m a_i^* X_i a_i \in M_n^{sa}(\mathcal{R})$. Since $(a_i^* X_i a_i)_{kl} = a_i^* (X_i)_{kl} a_i$, so $$\left(\sum_{i=1}^{m} a_i^* X_i a_i\right)_{kl} = \sum_{i=1}^{m} (a_i^* X_i^* a_i)_{kl} = \sum_{i=1}^{m} a_i^* (X_i^*)_{kl} a_i$$ $$= \sum_{i=1}^{m} a_i^* ((X_i)_{lk})^* a_i = \left(\left(\sum_{i=1}^{m} a_i^* X_i a_i\right)_{lk}\right)^*$$ $$= \left(\left(\sum_{i=1}^{m} a_i^* X_i a_i\right)^*\right)_{kl} = (X^*)_{kl}.$$ Thus $X_{kl} = (X^*)_{kl}$ for each $1 \leq k, l \leq m$ and hence $X = X^*$. Therefore, $X \in M_n^{sa}(\mathcal{R})$. (2) If $X_i \geq 0$, then $a_i^* X_i a_i = (a_i I_n)^* X_i (a_i I_n) \geq 0$, and hence $$\sum_{i=1}^{m} a_i^* X_i a_i = \sum_{i=1}^{m} (a_i I_n)^* X_i (a_i I_n) \ge 0.$$ Therefore, $M_n^+(\mathcal{R})$ is an \mathcal{R} -convex set. (3) Suppose that X_i is an $n \times n$ row stochastic matrix for each i $(1 \le i \le m)$, that is, $\sum_{l=1}^{n} (X_i)_{kl} = 1_{\mathcal{R}}$, for each k $(1 \le k \le n)$. Then, $$\sum_{l=1}^{n} \left[\sum_{i=1}^{m} a_i^* X_i a_i \right]_{kl} = \sum_{l=1}^{n} \sum_{i=1}^{m} a_i^* [X_i]_{kl} a_i = \sum_{i=1}^{m} \sum_{l=1}^{n} a_i^* [X_i]_{kl} a_i$$ $$= \sum_{i=1}^{m} a_i^* \left(\sum_{l=1}^{n} [X_i]_{kl} \right) a_i = \sum_{i=1}^{m} a_i^* 1_{\mathcal{R}} a_i = 1_{\mathcal{R}}.$$ Similarly the set of all column stochastic matrices is also an \mathcal{R} -convex set. (4) It is a straightforward conclusion of part (3). **Theorem 3.6.** Let \mathcal{R} be a unital *-ring. Then the following properties hold: - (i) K is a C^* -convex subset of \mathcal{R} if and only if $D_n(K)$ is an \mathcal{R} -convex subset of $D_n(\mathcal{R})$. - (ii) F is a C^* -face of K if and only if $D_n(F)$ is an \mathcal{R} -face of $D_n(K)$. - (iii) $\{x_1, \ldots, x_n\} \subseteq C^* ext(K)$ if and only if $\operatorname{diag}(x_1, \ldots, x_n) \in \mathcal{R} ext(D_n(K))$, provided that, $C^* co(\{x\}) = \{x\}$ for all $x \in K$. *Proof.* The proof of (i) and (ii) is straightforward by noting the following equalities: (iii) Let $x_i \in C^* - ext(K)$, let $y_{it} \in K$, and let a_t be an invertible element in \mathcal{R} for each t $(1 \le t \le n)$ such that $\sum_{t=1}^{m} a_t^* a_t = 1_{\mathcal{R}}$ and $$\begin{bmatrix} x_1 & & & 0 \\ & x_2 & & \\ & & \ddots & \\ 0 & & & x_n \end{bmatrix} = \sum_{t=1}^m a_t^* \begin{bmatrix} y_{1t} & & & 0 \\ & y_{2t} & & \\ & & \ddots & \\ 0 & & & y_{nt} \end{bmatrix} a_t.$$ Then for each $i (1 \le i \le n)$, $x_i = \sum_{t=1}^m a_t^* y_{it} a_t$, and hence x_i is unitarily equivalent to y_{it} for all t. So $y_{it} = x_i$, by the assumption that the C^* -convex hull of each element x in K is the singleton $\{x\}$. Therefore, $$\begin{bmatrix} x_1 & & & 0 \\ & x_2 & & \\ & & \ddots & \\ 0 & & & x_n \end{bmatrix} = \begin{bmatrix} y_{1t} & & & 0 \\ & y_{2t} & & \\ & & \ddots & \\ 0 & & & y_{nt} \end{bmatrix},$$ for each $t (1 \le t \le m)$. So $\operatorname{diag}(x_1, \dots, x_n) \in \mathcal{R} - \operatorname{ext}(D_n(K))$. Conversely, suppose that $\operatorname{diag}(x_1, \dots, x_n) \in \mathcal{R} - \operatorname{ext}(D_n(K))$ and that $x_i = \sum_{t=1}^m a_t^* y_t a_t$ is a proper C^* -convex combination of elements $y_t \in K$. Put $$Y_t = \text{diag}(x_1, \dots, x_{i-1}, y_t, x_{i+1}, \dots, x_n),$$ for each $t (1 \le t \le m)$. Then, $$\begin{bmatrix} x_1 & & 0 \\ & x_2 & \\ & & \ddots & \\ 0 & & & x_n \end{bmatrix} = \sum_{t=1}^m a_t^* Y_t a_t, \tag{3.1}$$ since $\sum_{t=1}^{m} a_t^* x_j a_t = x_j$ by the assumption $C^* - co(\{x\}) = \{x\}$. On the other hand, $\operatorname{diag}(x_1, \ldots, x_n)$ is an \mathcal{R} -extreme point of $D_n(K)$, so the relation (3.1) implies that $$\operatorname{diag}(x_1,\ldots,x_n)=u_t^*Y_tu_t$$ for all t , for unitaries $u_t \in \mathcal{R}$. Hence, $x_i = u_t^* y_t u_t$, and therefore $x_i \in C^* - ext(K)$. **Proposition 3.7.** Let $UT_n(\mathcal{R}^+)$, $LT_n(\mathcal{R}^+)$, and $D_n(\mathcal{R}^+)$ denote the sets of all upper triangular, lower triangular, and diagonal $n \times n$ matrices with positive entries in \mathcal{R} , respectively. Then $D_n(\mathcal{R}^+)$ is an \mathcal{R} -convex set in $M_n(\mathcal{R})$, and also an \mathcal{R} -face of the \mathcal{R} -convex sets $UT_n(\mathcal{R}^+)$ and $LT_n(\mathcal{R}^+)$ provided that, for each $x_i \in \mathcal{R}$, and $n \in \mathbb{N}$, $x_1^*x_1 + \cdots + x_n^*x_n = 0$ implies that $x_1 = \cdots = x_n = 0$. Proof. It is clear that $D_n(\mathcal{R}^+)$, $LT_n(\mathcal{R}^+)$, and $UT_n(\mathcal{R}^+)$ are \mathcal{R} -convex sets since $\begin{bmatrix} \sum\limits_{i=1}^m a_i^*A_ia_i \end{bmatrix}_{kl} = \sum\limits_{i=1}^m a_i^*[A_i]_{kl}a_i$. Let $D \in D_n(\mathcal{R}^+)$ and let $D = \sum\limits_{i=1}^m a_i^*B_ia_i$, where $a_i \in \mathcal{R}$ is invertible and $B_i \in UT_n(\mathcal{R}^+)$ for each i. We must show that $B_i \in D_n(\mathcal{R}^+)$ for each i ($1 \le i \le m$). Since $(B_i)_{kl} \in \mathcal{R}^+$, so there are $x_{i,kl,j} \in \mathcal{R}$ for $1 \le j \le N_{i,kl}$ such that $(B_i)_{kl} = \sum\limits_{j=1}^{N_{i,kl}} x_{i,kl,j}^* x_{i,kl,j}$ for each $i \in \{1,\ldots,m\}$ and $k,l \in \{1,\ldots,n\}$. If $k \ne l$, then $$0 = D_{kl} = \sum_{i=1}^{m} (a_i^*(B_i)_{kl} a_i)$$ $$= \sum_{i=1}^{m} a_i^* \left(\sum_{j=1}^{N_{i,kl}} x_{i,kl,j}^* x_{i,kl,j} \right) a_i$$ $$= \sum_{i=1}^{m} \sum_{j=1}^{N_{i,kl}} (a_i^* x_{i,kl,j}^* x_{i,kl,j} a_i)$$ $$= \sum_{i=1}^{m} \sum_{j=1}^{N_{i,kl}} (x_{i,kl,j} a_i)^* (x_{i,kl,j} a_i).$$ Therefore, $x_{i,kl,j}a_i = 0$. Invertibility of a_i implies that $x_{i,kl,j} = 0$ for each $j (1 \le j \le N_{i,kl})$. Thus, $(B_i)_{kl} = 0$, and therefore $B_i \in D_n(\mathcal{R}^+)$ for each $i (1 \le i \le m)$. Similarly, we can prove that $D_n(\mathcal{R}^+)$ is an \mathcal{R} -face of $LT_n(\mathcal{R}^+)$. **Proposition 3.8.** The sets $D_n(\mathcal{R}^+)$, $UT_n(\mathcal{R}^+)$, and $LT_n(\mathcal{R}^+)$ are \mathcal{R} -faces of the \mathcal{R} -convex set $M_n(\mathcal{R}^+)$ if for each $x_i \in \mathcal{R}$ and $n \in \mathbb{N}$, the following implication holds: $$x_1^*x_1 + \dots + x_n^*x_n = 0 \Longrightarrow x_1 = \dots = x_n = 0.$$ *Proof.* The proposition can be proved similar to the previous proposition, and hence we omit the proof. \Box Remark 3.9. We can replace the following condition instead of the condition that $\sum_{i=1}^{n} x_i^* x_i = 0$ implies that $x_i = 0$ for all i, in the above proposition: For each $x_i \in \mathcal{R}^+$ and every invertible elements $a_i \in \mathcal{R}$ satisfying $\sum_{i=1}^m a_i^* a_i = 1_{\mathcal{R}}$, the condition $\sum_{i=1}^{m} a_i^* x_i a_i = 0$ implies that $x_i = 0$ for all i. **Open problem.** Are there exist the same conclusions for the general bimodules over the unital *-rings, that is, is there any relation between the C^* -convex subsets of \mathcal{R} and \mathcal{R} -convex subsets of the \mathcal{R} -bimodule M, and also between their appropriate faces and extreme points in general case? **Acknowledgement.** The author would like to express his sincere gratitude for referees valuable comments and suggestions to improve the article. # REFERENCES - 1. S.K. Berberian, Baer *-Rings, Springer Verlag, New York, 1972. - 2. A. Ebrahimi Meymand, C*-extreme points and C*-faces of the epigraph of C*-affine maps in *-rings, Wavelets and Linear algebra 5 (2019), no. 2, 21–28. - 3. A. Ebrahimi Meymand, The structure of the set of all C^* -convex maps in *-rings, Wavelets and Linear algebra 7 (2020), no. 2, 43–51. - 4. A. Ebrahimi Meymand and G.H. Esslamzadeh, C^* -convexity and C^* -faces in *-rings, Turkish J. Math. **36** (2012) 131–145. - 5. G.H. Esslamzadeh, M. Moazami Goodarzi and F. Taleghani, Structure of quasi ordered *-vector spaces, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), no. 4, 445–453. - G.H. Esslamzadeh and F. Taleghani, Quantization in *-algebras and an algebraic analog of Arveson's extension theorem, Positivity 23 (2019) 35–53. - 7. G.H. Esslamzadeh and F. Taleghani, Quantization in *-algebras II, Archimedeanization, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 6, 1701–1709. - D.R. Farenick and P.B. Morenz, C*-extreme points of some compact C*-convex sets, Proc. Amer. Math. Soc. 118 (1993) 765–775. - 9. M. Kian, Epigraph of operator functions, Quaest. Math. 39 (2016), no. 5, 587–594. - M. Kian, C*-convexity of norm unit balls, J. Math. Anal. Appl. 445 (2017), no. 2, 1417–1427. - 11. M. Kian and M. Dehghani, A noncommutative convexity in C*-bimodules, Surveys in Mathematics and its Applications 12 (2017) 7–21. - R. Loebl and V.I. Paulsen, Some remarks on C*-convexity, Linear Algebra Appl. 35 (1981) 63–78. - 13. B. Magajna, C*-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 2, 375–387. - 14. P.B. Morenz, *The structure of C*-convex sets*, Canad. J. Math. **46** (1994) 1007–1026. $^1\mathrm{Department}$ of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. $Email\ address: \verb"a.ebrahimi@vru.ac.ir"$