

Khayyam Journal of Mathematics emis.de/journals/KJM kjm-math.org

FINITE RANK LITTLE HANKEL OPERATORS ON $L_{a}^{2}\left(\mathbb{U}_{+}\right)$

NAMITA DAS ${ }^{1}$ AND SWORUP KUMAR DAS ${ }^{1 *}$

Communicated by J.M. Aldaz

Abstract

Let $\psi \in L^{\infty}\left(\mathbb{U}_{+}\right)$, where \mathbb{U}_{+}is the upper half plane in \mathbb{C} and let S_{ψ} be the little Hankel operator with symbol ψ defined on the Bergman space $L_{a}^{2}\left(\mathbb{U}_{+}\right)$. In this article, we show that if S_{ψ} is of finite rank, then $\psi=\varphi+\chi$, where $\chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp} \bigcap L^{\infty}\left(\mathbb{U}_{+}\right)$and $\bar{\varphi}$ is a linear combination of $d_{\bar{w}}, w \in \mathbb{U}_{+}$ and some of their derivatives.

1. Introduction

Let $\mathbb{U}_{+}=\{z=x+i y \in \mathbb{C}: y>0\}$ be the upper half plane in \mathbb{C}, and let $d \widetilde{A}=d x d y$ be the area measure on \mathbb{U}_{+}. Let $L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$ denote the Hilbert space of complex valued, absolutely square integrable, Lebesgue measurable functions on \mathbb{U}_{+}with the inner product $\langle f, g\rangle=\int_{\mathbb{U}_{+}} f(s) \overline{g(s)} d \widetilde{A}(s)$, and the corresponding norm is defined by $\|f\|_{2}=\langle f, f\rangle^{\frac{1}{2}}=\left[\int_{\mathbb{U}_{+}}|f(s)|^{2} d \widetilde{A}(s)\right]^{\frac{1}{2}}<\infty$.

Let $L_{a}^{2}\left(\mathbb{U}_{+}\right)$be the closed subspace of $L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$ consisting of all analytic functions in $L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$. The space $L_{a}^{2}\left(\mathbb{U}_{+}\right)$is called the Bergman space on \mathbb{U}_{+}. It is a reproducing kernel Hilbert space and $K_{w}(s)=-\frac{1}{\pi(\bar{w}-s)^{2}}, w, s \in \mathbb{U}_{+}$, is the reproducing kernel for the Bergman space $L_{a}^{2}\left(\mathbb{U}_{+}\right)$. The Bergman (orthogonal) projection P_{+}from $L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$ onto $L_{a}^{2}\left(\mathbb{U}_{+}\right)$is given by $\left(P_{+} f\right)(w)=\left\langle f, K_{w}\right\rangle$. Let $L^{\infty}\left(\mathbb{U}_{+}\right)$be the space of all complex valued, essentially bounded, Lebesgue

[^0]measurable functions on \mathbb{U}_{+}. Define for $\varphi \in L^{\infty}\left(\mathbb{U}_{+}\right)$,
$$
\|\varphi\|_{\infty}=e s s \sup _{s \in \mathbb{U}_{+}}|\varphi(s)|<\infty
$$

The space $L^{\infty}\left(\mathbb{U}_{+}\right)$is a Banach space with respect to the essential supremum norm. Let $H^{\infty}\left(\mathbb{U}_{+}\right)$be the space of all bounded analytic functions on \mathbb{U}_{+}. For $\varphi \in L^{\infty}\left(\mathbb{U}_{+}\right)$, we define the Toeplitz operator T_{φ} on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$by $T_{\varphi} f=P_{+}(\varphi f)$. The Toeplitz operator T_{φ} is bounded and $\left\|T_{\varphi}\right\| \leq\|\varphi\|_{\infty}$. For more details, see [3]. The big Hankel operator H_{φ} from $L_{a}^{2}\left(\mathbb{U}_{+}\right)$into $\left(L_{a}^{2}\left(\mathbb{U}_{+}\right)\right)^{\perp}$ is defined by $H_{\varphi} f=\left(I-P_{+}\right)(\varphi f), f \in L_{a}^{2}\left(\mathbb{U}_{+}\right)$. The little Hankel operator h_{φ} from $L_{a}^{2}\left(\mathbb{U}_{+}\right)$ into $\overline{\left(L_{a}^{2}\left(\mathbb{U}_{+}\right)\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(\mathbb{U}_{+}\right)\right\}$is defined by $h_{\varphi} f=\bar{P}_{+}(\varphi f)$, where \bar{P}_{+} is the orthogonal projection operator from $L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$ onto $\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}$. For $\psi \in$ $L^{\infty}\left(\mathbb{U}_{+}\right)$, define the operator $S_{\psi}: L_{a}^{2}\left(\mathbb{U}_{+}\right) \rightarrow L_{a}^{2}\left(\mathbb{U}_{+}\right)$as $S_{\psi} f=P_{+} J(\psi f)$, where $J: L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right) \rightarrow L^{2}\left(\mathbb{U}_{+}, d \widetilde{A}\right)$ is defined by $J f(s)=f(-\bar{s})$. The operator S_{ψ} is unitarily equivalent to h_{φ} for some $\varphi \in L^{\infty}\left(\mathbb{U}_{+}\right)$. Hence both operators h_{φ} and S_{ψ} are referred to as little Hankel operator on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$. For $g \in L^{\infty}(\mathbb{D})$, the little Hankel operator $\widetilde{\Gamma}_{g}: L_{a}^{2}(\mathbb{D}) \rightarrow L_{a}^{2}(\mathbb{D})$ with symbol g is defined by $\widetilde{\Gamma}_{g} f=P J(g f), f \in L_{a}^{2}(\mathbb{D})$, where P is the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$ and $J: L^{2}(\mathbb{D}, d A) \rightarrow L^{2}(\mathbb{D}, d A)$ is defined by $J f(z)=f(\bar{z})$. For details, see [7].

Define $M: \mathbb{U}_{+} \rightarrow \mathbb{D}$ by $M(s)=\frac{i-s}{i+s}=z$. Then M is one-to-one and onto, and $M^{-1}: \mathbb{D} \rightarrow \mathbb{U}_{+}$is given by $M^{-1}(z)=i \frac{1-z}{1+z}$. Thus M is its self inverse. Furthermore, $M^{\prime}(s)=\frac{-2 i}{(i+s)^{2}}$ and $\left(M^{-1}\right)^{\prime}(z)=\frac{-2 i}{(1+z)^{2}}$. Let $W: L_{a}^{2}(\mathbb{D}) \rightarrow L_{a}^{2}\left(\mathbb{U}_{+}\right)$ be defined by $(W g)(s)=g(M s) \frac{(2 i)}{\sqrt{\pi}(i+s)^{2}}$. The map W is one-to-one and onto. Hence W^{-1} exists and $W^{-1}: L_{a}^{2}\left(\mathbb{U}_{+}\right) \rightarrow L_{a}^{2}(\mathbb{D})$ is given by $\left(W^{-1} G\right)(z)=$ (2i) $\sqrt{\pi} G\left(M^{-1}(z)\right) \frac{1}{(1+z)^{2}}$.

In 1881, Kronecker [4,5] showed that the matrix $L=\left(a_{i+j}\right)_{i, j=0}^{\infty}$ is of finite rank n if and only if $r(z)=a_{0} z^{-1}+a_{1} z^{-2}+\cdots$, is a rational function of z, and in this case, n is the number of poles of $r(z)$. That is, in the Hardy space $H^{2}(\mathbb{T})$, a Hankel operator, H_{φ}, is of finite rank if and only if $\varphi=z \bar{u} h$, where u is a finite Blaschke product and $h \in H^{\infty}(\mathbb{T})$. In this case, the rank of S is no greater than the number of zeros of u counted with multiplicity. Das [2] showed that if $\psi \in L^{\infty}(\mathbb{D})$ and the little Hankel operator S_{ψ} is of finite rank, then $\psi=\varphi+\chi$, where $\chi \in\left(\overline{L_{a}^{2}(\mathbb{D})}\right)^{\perp} \cap L^{\infty}(\mathbb{D})$ and $\bar{\varphi}$ is a linear combination of the Bergman kernels and some of its derivatives. In this article, we have extended the result of [2] to characterize finite rank little Hankel operators defined on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$.

The organization of the article is as follows. In section 2, we introduce the elementary functions $d_{\bar{w}}(s)$ and $D_{\bar{w}}(s)$ and discuss some properties of these functions. We show that $D_{\bar{w}} \in L^{\infty}\left(\mathbb{U}_{+}\right)$and that $S_{\overline{D_{w}}}$ is a rank-one operator. We also relate little Hankel operators defined on $L_{a}^{2}(\mathbb{D})$ and $L_{a}^{2}\left(\mathbb{U}_{+}\right)$and prove that they are unitarily equivalent, and the symbol correspondence is obtained. In section

3, we show that if $S_{\bar{G}}$ is of finite rank, then $G=\sum_{i=1}^{n} \sum_{\nu=0}^{r_{i}-1} C_{i \nu} \frac{\partial^{\nu}}{\partial \bar{w}_{i}^{\nu}} D_{\overline{w_{i}}}$, for some constants $C_{i \nu}, i=1,2, \ldots, n$ and $\nu=0, \ldots, r_{i}-1$. That is, if $S_{\bar{G}}$ is a finite rank little Hankel operator, then G is a linear combination of $d_{\bar{w}}, w \in \mathbb{U}_{+}$and some of their derivatives.

2. Preliminaries

In this section, we introduce the elementary functions $d_{\bar{w}}(s)$ and $D_{\bar{w}}(s)$ and discuss some properties of these functions. We show that $D_{\bar{w}} \in L^{\infty}\left(\mathbb{U}_{+}\right)$and that $S_{\overline{D_{w}}}$ is a rank-one operator. We also relate little Hankel operators defined on $L_{a}^{2}(\mathbb{D})$ and $L_{a}^{2}\left(\mathbb{U}_{+}\right)$and prove that they are unitarily equivalent and the symbol correspondence is obtained.

For $s, w \in \mathbb{U}_{+}$, define $d_{\bar{w}}(s)=\frac{1}{\sqrt{\pi}} \frac{w+i}{\bar{w}-i} \frac{(-2 i) \operatorname{Im} w}{(s+w)^{2}}$. If $w=i \frac{1-\bar{a}}{1+\bar{a}} \in \mathbb{U}_{+}$, then $\bar{a} \in \mathbb{D}$ and $\bar{a}=\frac{i-w}{i+w}=M w$. That is, $M^{-1} \bar{a}=w$. Then

$$
\begin{aligned}
d_{\bar{w}}(-\bar{w}) & =\frac{1}{\sqrt{\pi}} \frac{w+i}{\bar{w}-i} \frac{(-2 i)(\operatorname{Im} w)}{(-\bar{w}+w)^{2}} \\
& =\frac{(-2 i)}{\sqrt{\pi}} \frac{M^{-1} \bar{a}+i}{\overline{M^{-1} \bar{a}}-i} \frac{I m w}{(w-\bar{w})^{2}} \\
& =\frac{(-2 i)}{\sqrt{\pi}} \frac{i \frac{1-\bar{a}}{1+\bar{a}}+i}{\left(\overline{\left.i \frac{1-\bar{a}}{1+\bar{a}}\right)-i} \frac{w-\bar{w}}{(2 i)(w-\bar{w})^{2}}\right.} \\
& =-\frac{1}{\sqrt{\pi}} \frac{i\left[\frac{1-\bar{a}}{1+\bar{a}}+1\right]}{\left[-i \frac{1-a}{1+a}-i\right]} \frac{1}{w-\bar{w}} \\
& =\frac{1}{\sqrt{\pi}} \frac{2}{1+\bar{a}} \frac{1+a}{2} \frac{1}{i \frac{1-\bar{a}}{1+\bar{a}}+i \frac{1-a}{1+a}} \\
& =\frac{1}{\sqrt{\pi}} \frac{1+a}{(1+\bar{a})} \frac{(1+\bar{a})(1+a)}{i[(1-\bar{a})(1+a)+(1-a)(1+\bar{a})]} \\
& =\frac{1}{i \sqrt{\pi}} \frac{(1+a)^{2}}{\left[1+a-\bar{a}-|a|^{2}+1+\bar{a}-a-|a|^{2}\right]} \\
& =\frac{1}{i \sqrt{\pi}} \frac{(1+a)^{2}}{2\left(1-|a|^{2}\right)} \\
& =\frac{1}{(2 i) \sqrt{\pi}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)} .
\end{aligned}
$$

Now

$$
\begin{aligned}
d_{\bar{w}}(s) d_{\bar{w}}(-\bar{w}) & =\frac{(-2 i)}{\sqrt{\pi}} \frac{w+i}{\bar{w}-i} \frac{I m w}{(s+w)^{2}} \frac{1}{(2 i) \sqrt{\pi}} \frac{(1+a)^{2}}{1-|a|^{2}} \\
& =\frac{(-2 i)}{\sqrt{\pi}}\left(\frac{i \frac{1-\bar{a}}{1+\bar{a}}+i}{-i \frac{1-a}{1+a}-i}\right) \frac{\left(\frac{w-\bar{w}}{2 i}\right)}{\left(s+i \frac{1-\bar{a}}{1+\bar{a}}\right)^{2}} \frac{1}{(2 i) \sqrt{\pi}} \frac{(1+a)^{2}}{1-|a|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-2 i)}{\sqrt{\pi}} \frac{\left(\frac{1-\bar{a}}{1+\bar{a}}+1\right)}{-\left(\frac{1-a}{1+a}+1\right)} \frac{\left[\left(i \frac{1-\bar{a}}{1+\bar{a}}\right)-\left(-i \frac{1-a}{1+a}\right)\right](1+\bar{a})^{2}}{(2 i)[s(1+\bar{a})+i(1-\bar{a})]^{2}} \frac{1}{(2 i) \sqrt{\pi}} \frac{(1+a)^{2}}{1-|a|^{2}} \\
& =\frac{1}{(2 i) \pi}\left(\frac{\frac{1-\bar{a}+1+\bar{a}}{1+\bar{a}}}{\frac{1-a+1+a}{1+a}}\right) \frac{i\left[\frac{1-\bar{a}}{1+\bar{a}}+\frac{1-a}{1+a}\right]}{[s(1+\bar{a})+i(1-\bar{a})]^{2}} \frac{(1+a)^{2}}{1-|a|^{2}}(1+\bar{a})^{2} \\
& =\frac{1}{2 \pi} \frac{1+a}{1+\bar{a}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)} \frac{2\left(1-|a|^{2}\right)}{(1+a)(1+\bar{a})} \frac{(1+\bar{a})^{2}}{[s(1+\bar{a})+i(1-\bar{a})]^{2}} \\
& =\frac{1}{\pi}\left(\frac{1+a}{1+\bar{a}}\right)^{2} \frac{(1+\bar{a})^{2}}{[i+s+\bar{a}(s-i)]^{2}} \\
& =\frac{1}{\pi}\left(\frac{1+a}{1+\bar{a}}\right)^{2} \frac{(1+\bar{a})^{2}}{[i+s-\bar{a}(i-s)]^{2}} \\
& =\frac{1}{\pi}\left(\frac{1+a}{1+\bar{a}}\right)^{2} \frac{(1+\bar{a})^{2}}{(i+s)^{2}\left[1-\bar{a}\left(\frac{i-s}{i+s}\right)\right]^{2}} \\
& =\frac{1}{\pi} \frac{(1+a)^{2}}{(i+s)^{2}} \frac{1}{(1-\bar{a} M s)^{2}} \\
& =D(s, w) \\
& =D_{\bar{w}}(s) .
\end{aligned}
$$

Hence, $d_{\bar{w}}(s)=\frac{D(s, w)}{d_{\bar{w}(-\bar{w})}}$ and $\left(d_{\bar{w}}(-\bar{w})\right)^{2}=D(\bar{w}, w)$. Now

$$
\begin{aligned}
\left\|D_{\bar{w}}\right\|^{2} & =\left\langle D_{\bar{w}}, D_{\bar{w}}\right\rangle \\
& =\int_{\mathbb{U}_{+}}\left|D_{\bar{w}}(s)\right|^{2} d \widetilde{A}(s) \\
& =\int_{\mathbb{U}_{+}}|D(s, w)|^{2} d \widetilde{A}(s) \\
& =\int_{\mathbb{U}_{+}}\left|d_{\bar{w}}(-\bar{w})\right|^{2}\left|d_{\bar{w}}(s)\right|^{2} d \widetilde{A}(s) \\
& =\left|d_{\bar{w}}(-\bar{w})\right|^{2} \int_{\mathbb{U}_{+}}\left|d_{\bar{w}}(s)\right|^{2} d \widetilde{A}(s) \\
& =\left|d_{\bar{w}}(-\bar{w})\right|^{2} \mid\left\|d_{\bar{w}}\right\|_{2}^{2} \\
& =\left|d_{\bar{w}}(-\bar{w})\right|^{2} \quad \text { since }\left\|d_{\bar{w}}\right\|_{2}=1
\end{aligned}
$$

Thus

$$
\left\|D_{\bar{w}}\right\|=\left|d_{\bar{w}}(-\bar{w})\right| \text { and }\left|d_{\bar{w}}(s)\right|\left\|D_{\bar{w}}\right\|=\left|D_{\bar{w}}(s)\right| . \text { Furthermore, } D_{\bar{w}} \in L^{\infty}\left(\mathbb{U}_{+}\right) .
$$

Lemma 2.1. If $\psi \in L^{\infty}\left(\mathbb{U}_{+}\right)$, then the little Hankel operator S_{ψ} defined on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$ with symbol ψ is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_{g}$ defined on $L_{a}^{2}(\mathbb{D})$ with symbol $g(z)=\left(\psi \circ M^{-1}\right)(z)\left(\frac{1+z}{1+\bar{z}}\right)^{2}$.

Proof. The operator W maps $z^{n} \sqrt{n+1}$ to the function $\frac{2 i}{\sqrt{\pi}}(M s)^{n} \sqrt{n+1} \frac{1}{(i+s)^{2}}=$ $\frac{2 i}{\sqrt{\pi}}\left(\frac{i-s}{i+s}\right)^{n} \sqrt{n+1} \frac{1}{(i+s)^{2}}$, which belongs to $L_{a}^{2}\left(\mathbb{U}_{+}\right)$.

Now

$$
\begin{aligned}
& S_{\psi}\left(\frac{2 i}{\sqrt{\pi}}\left(\frac{i-s}{i+s}\right)^{n} \sqrt{n+1} \frac{1}{(i+s)^{2}}\right) \\
& =P_{+}\left(J\left(\psi(s) \frac{2 i}{\sqrt{\pi}}\left(\frac{i-s}{i+s}\right)^{n} \sqrt{n+1} \frac{1}{(i+s)^{2}}\right)\right) \\
& =P_{+}\left(\psi(-\bar{s}) \frac{2 i}{\sqrt{\pi}} \sqrt{n+1}\left(\frac{i+\bar{s}}{i-\bar{s}}\right)^{n} \frac{1}{(i-\bar{s})^{2}}\right) \\
& =W P W^{-1}\left(\psi(-\bar{s}) \frac{2 i}{\sqrt{\pi}} \sqrt{n+1}\left(\frac{i+\bar{s}}{i-\bar{s}}\right)^{n} \frac{1}{(i-\bar{s})^{2}}\right) \\
& =W P\left((2 i) \sqrt{\pi} \frac{2 i}{\sqrt{\pi}} \sqrt{n+1} \psi\left(-\overline{M^{-1}(z)}\right)\left(\frac{i+\overline{M^{-1}(z)}}{i-\overline{M^{-1}(z)}}\right)^{n} \frac{1}{\left(i-\overline{M^{-1}(z)}\right)^{2}} \frac{1}{(1+z)^{2}}\right) \\
& =W P\left((-4) \sqrt{n+1} \psi\left(i \frac{1-\bar{z}}{1+\bar{z}}\right)\left(\frac{i-i \frac{1-\bar{z}}{1+\bar{z}}}{i+i \frac{1-\bar{z}}{1+\bar{z}}}\right)^{n} \frac{1}{\left(i+i \frac{1-\bar{z}}{1+\bar{z}}\right)^{2}} \frac{1}{(1+z)^{2}}\right) \\
& =W P\left((-4) \sqrt{n+1} \psi\left(i \frac{1-\bar{z}}{1+\bar{z}}\right)\left(\frac{1-\frac{1-\bar{z}}{1+\bar{z}}}{1+\frac{1-\bar{z}}{1+\bar{z}}}\right)^{n} \frac{-1}{\left(1+\frac{1-\bar{z}}{1+\bar{z}}\right)^{2}} \frac{1}{(1+z)^{2}}\right) \\
& =W P\left((-4) \sqrt{n+1} \psi\left(i \frac{1-\bar{z}}{1+\bar{z}}\right)\left(\frac{2 \bar{z}}{2}\right)^{n}(-1) \frac{(1+\bar{z})^{2}}{4} \frac{1}{(1+z)^{2}}\right) \\
& =W P\left(\sqrt{n+1} \psi\left(i \frac{1-\bar{z}}{1+\bar{z}}\right)(\bar{z})^{n}\left(\frac{1+\bar{z}}{1+z}\right)^{2}\right) \\
& =W P\left(J\left(\sqrt{n+1} z^{n} \psi\left(i \frac{1-z}{1+z}\right)\left(\frac{1+z}{1+\bar{z}}\right)^{2}\right)\right) \\
& \left.=W \widetilde{\Gamma}_{\psi(i(i-z}^{1+z}\right)\left(\frac{1+z}{1+\bar{z}}\right)^{2}\left(z^{n} \sqrt{n+1}\right) \\
& =W \widetilde{\Gamma}_{\left(\psi \circ M^{-1}\right)(z)\left(\frac{1+z}{1+\bar{z}}\right)^{2}}\left(z^{n} \sqrt{n+1}\right) .
\end{aligned}
$$

Thus $S_{\psi} W=W \widetilde{\Gamma}_{g}$, where $g(z)=\left(\psi \circ M^{-1}\right)(z)\left(\frac{1+z}{1+\bar{z}}\right)^{2}$. Since the sequence of vectors $\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $L_{a}^{2}(\mathbb{D})$, this proves our claim. Thus the little Hankel operator S_{ψ} defined on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$with symbol ψ is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_{g}$ defined on $L_{a}^{2}(\mathbb{D})$.

Lemma 2.2. Let $S_{\overline{D_{w}}}$ be the little Hankel operator defined on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$with symbol $\overline{D_{w}}$. Then $S_{\overline{D_{w}}}=D_{\bar{w}} \otimes D_{w}$.

Proof. Let $f, g \in L_{a}^{2}\left(\mathbb{U}_{+}\right)$and let $\bar{a}=M w \in \mathbb{D}$. Also let $f=W f_{1}$ and $g=$ $W g_{1}, f_{1}, g_{1} \in L_{a}^{2}(\mathbb{D})$. Then

$$
\begin{aligned}
\left\langle\left(D_{\bar{w}} \otimes D_{w}\right) f, g\right\rangle & =\left\langle\left\langle f, D_{w}\right\rangle D_{\bar{w}}, g\right\rangle \\
& =\left\langle f, D_{w}\right\rangle\left\langle D_{\bar{w}}, g\right\rangle \\
& =\left\langle W f_{1}, W K_{\bar{a}}\right\rangle\left\langle W K_{a}, W g_{1}\right\rangle \\
& =\left\langle W f_{1}, W K_{\bar{a}}\right\rangle \overline{\left\langle W g_{1}, W K_{a}\right\rangle} \\
& =f_{1}(\bar{a}) \overline{g_{1}(a)} .
\end{aligned}
$$

Now let $g^{+}(z)=\overline{g(\bar{z})}$. Then for polynomials f and g in $L_{a}^{2}\left(\mathbb{U}_{+}\right)$on w, we have

$$
\begin{aligned}
\left\langle S_{\overline{D_{w}}} f, g\right\rangle & =\left\langle P_{+} J\left(\overline{D_{w}} f\right), g\right\rangle \\
& =\left\langle\overline{D_{w}} f, J g\right\rangle \\
& =\left\langle f g^{+}, D_{w}\right\rangle \\
& =\left\langle W\left(f_{1} g_{1}^{+}\right), W K_{\bar{a}}\right\rangle \\
& =\left\langle f_{1} g_{1}^{+}, K_{\bar{a}}\right\rangle \\
& =f_{1}(\bar{a}) \overline{g_{1}(a)} .
\end{aligned}
$$

Lemma 2.3 (see [6]). Let f be a linear functional defined on a vector space V, and let $f_{1}, f_{2}, \ldots, f_{n}$ be linear functionals on V. If $\operatorname{ker} f \supseteq \bigcap_{i=1}^{n} \operatorname{ker} f_{i}$, then $f=\sum_{i=1}^{n} \lambda_{i} f_{i}$, where λ_{i} 's are complex numbers.

3. Characterization of finite Rank little Hankel OPERATORS

In this section, we show that if $S_{\bar{G}}$ is of finite rank, then

$$
G=\sum_{i=1}^{n} \sum_{\nu=0}^{r_{i}-1} C_{i \nu} \frac{\partial^{\nu}}{\partial{\overline{w_{i}}}^{\nu}} D_{\overline{w_{i}}}
$$

for some constants $C_{i \nu}, i=1,2, \ldots, n$ and $\nu=0, \ldots, r_{i}-1$. That is, if $S_{\bar{G}}$ is a finite rank little Hankel operator, then G is a linear combination of $d_{\bar{w}}, w \in \mathbb{U}_{+}$ and some of their derivatives.

Theorem 3.1. Let $\bar{G} \in L^{\infty}\left(\mathbb{U}_{+}\right)$, where G is analytic on \mathbb{U}_{+}and let $S_{\bar{G}}$ be the little Hankel operator defined on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$with symbol \bar{G}. If $S_{\bar{G}}$ is of finite rank, then $G=\sum_{i=1}^{n} \sum_{\nu=0}^{r_{i}-1} C_{i \nu} \frac{\partial^{\nu}}{\partial \bar{w}_{i}^{\nu}} D_{\overline{w_{i}}}$.
Proof. The little Hankel operator $S_{\bar{G}}$ on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_{\bar{g}}$ defined on $L_{a}^{2}(\mathbb{D})$, where $\bar{g}(z)=\left(\bar{G} \circ M^{-1}\right)(z)\left(\frac{1+z}{1+\bar{z}}\right)^{2}$. Now since $T_{\bar{z}} \widetilde{\Gamma}_{\bar{g}}=\widetilde{\Gamma}_{\bar{g}} T_{z}$, it follows that ker $\widetilde{\Gamma}_{\bar{g}}$ is an invariant subspace of T_{z}. Since the rank of $\widetilde{\Gamma}_{\bar{g}}$ is finite, it follows from [1] that

$$
\operatorname{ker} \widetilde{\Gamma}_{g}=\theta L_{a}^{2}(\mathbb{D})=\left(z-a_{1}\right)^{r_{1}}\left(z-a_{2}\right)^{r_{2}} \cdots\left(z-a_{n}\right)^{r_{n}} L_{a}^{2}(\mathbb{D})=q L_{a}^{2}(\mathbb{D})
$$

where θ is a finite Blaschke product and a_{i} are the zeros of θ counted according to their multiplicities $r_{i}(1 \leq i \leq n)$ and $\sum_{i=1}^{n} r_{i}$ is the rank of $\widetilde{\Gamma}_{\bar{g}}$ and $q(z)=\left(z-a_{1}\right)^{r_{1}}\left(z-a_{2}\right)^{r_{2}} \cdots\left(z-a_{n}\right)^{r_{n}}$. Define on the space \mathcal{P} of polynomials, the linear functional $\widehat{\phi}$ by $\widehat{\phi}(p)=\left\langle\widetilde{\Gamma}_{\bar{g}} p, 1\right\rangle, p \in \mathcal{P}$. Note that $q \mathcal{P} \subseteq$
$\left\{p: p\left(a_{i}\right)=0, i=1,2, \ldots, n, p \in \mathcal{P}\right\}$. For $r \in \mathbb{N}$ and $f \in L_{a}^{2}(\mathbb{D})$, we have $f^{(r)}(a)=$ $\left\langle f, K_{a, r}\right\rangle$, where $K_{a, r}=\frac{\partial^{r}}{\partial a^{r}} K_{a}, a \in \mathbb{D}$. Using this and the fact that $\left\langle\widetilde{\Gamma}_{\overline{K_{a, r}}} p, 1\right\rangle=$ $\left\langle p, K_{a, r}\right\rangle$, it follows that $(z-a)^{r} p(z) \in \operatorname{ker} \widetilde{\Gamma}_{\overline{K_{a, r-1}}}$. Thus $\operatorname{ker} \widehat{\phi} \supset \bigcap_{i=1}^{n} \operatorname{ker} \widetilde{\Gamma}_{\overline{K_{a, r-1}}}$. Using Lemma 2.3, we obtain

$$
\widehat{\phi}=\sum_{i=1}^{n} \beta_{i \nu} \widetilde{\Gamma}_{\overline{K_{a_{i}, r_{i}-1}}}=\sum_{i=1}^{n} \sum_{\nu=0}^{r_{i}-1} \beta_{i \nu} \widetilde{\Gamma} \overline{\frac{\partial^{\nu}}{\partial a_{i}^{\nu}} K_{a_{i}}}
$$

Since $\left\langle\widetilde{\Gamma}_{\bar{g}} f, h^{+}\right\rangle=\left\langle\widetilde{\Gamma}_{\bar{g}} f h, 1\right\rangle, f, h, f h \in L_{a}^{2}(\mathbb{D})$, and $\left\{z^{n}: n \geq 0\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, it follows $g=\sum_{i=1}^{n} \beta_{i} K_{a_{i}, r_{i}-1}$. Thus since $W^{-1} S_{\bar{G}} W=\widetilde{\Gamma}_{\bar{g}}$, hence

$$
G=\sum_{i=1}^{n} \sum_{\nu=0}^{r_{i}-1} C_{i \nu} \frac{\partial^{\nu}}{\partial \overline{w_{i}}} D_{\overline{w_{i}}}
$$

Corollary 3.2. If $\psi \in L^{\infty}\left(\mathbb{U}_{+}\right)$and S_{ψ} is a finite rank little Hankel operator on $L_{a}^{2}\left(\mathbb{U}_{+}\right)$, then $\psi=\varphi+\chi$, where $\chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp} \cap L^{\infty}\left(\mathbb{U}_{+}\right)$and $\bar{\varphi}=\sum_{i=1}^{n} \sum_{\nu=1}^{m_{i}-1} \beta_{i \nu} \frac{\partial^{\nu}}{\partial{\overline{w_{i}}}^{\nu}} d_{\overline{w_{i}}}$.
Proof. The result follows from the fact that $S_{\chi} \equiv 0$ if and only if $\chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp}$. This can be verified as follows: If $S_{\chi}=0$, then $S_{\chi} f=P_{+} J(\chi f)=0$ for all $f \in L_{a}^{2}\left(\mathbb{U}_{+}\right)$. Hence $J(\chi f) \in\left(L_{a}^{2}\left(\mathbb{U}_{+}\right)\right)^{\perp}$ or $\chi f \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp}$ for all $f \in L_{a}^{2}\left(\mathbb{U}_{+}\right)$. Thus $\langle\chi f, \bar{g}\rangle=0$ for all $g \in H^{\infty}\left(\mathbb{U}_{+}\right)$. Therefore $\langle\chi, \bar{f} \bar{g}\rangle=0$ for all $g \in H^{\infty}\left(\mathbb{U}_{+}\right)$. Thus we get $\langle\chi, \bar{h}\rangle=0$ for all $h \in L_{a}^{2}\left(\mathbb{U}_{+}\right)$, and hence $\chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp}$. Similarly one can show that if $\chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp} \bigcap L^{\infty}\left(\mathbb{U}_{+}\right)$, then $S_{\chi} \equiv 0$.

Now let $\psi \in L^{\infty}\left(\mathbb{U}_{+}\right)$and let $\psi=\varphi+\chi$, where

$$
\varphi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right), \chi \in\left(\overline{L_{a}^{2}\left(\mathbb{U}_{+}\right)}\right)^{\perp} \bigcap L^{\infty}\left(\mathbb{U}_{+}\right) .
$$

Then $S_{\chi} \equiv 0$. Thus $S_{\psi}=S_{\varphi}$, where $\bar{\varphi}$ is a linear combination of $d_{\overline{w_{i}}}$, and some of its derivatives. From the proof of Theorem 3.1, it follows that $W^{-1} S_{\varphi} W=$ $\widetilde{\Gamma}_{\bar{\theta}}$, where θ is a linear combination of the Bergman kernels $K_{\alpha_{i}}$ and some of its derivatives $K_{\alpha_{i}, r_{i}}$. Note that $\widetilde{\Gamma}_{\bar{\theta}}$ is a little Hankel operator on $L_{a}^{2}(\mathbb{D})$ with $\operatorname{ker} \widetilde{\Gamma}_{\theta}=G L_{a}^{2}(\mathbb{D})$ for some inner functions $G \in L_{a}^{2}(\mathbb{D})$ and the space $\left(G L_{a}^{2}\right)^{\perp}$ is finite-dimensional. For proof, see [2]. It thus follows that $\operatorname{ker} S_{\varphi}$ has also finitecodimensional and the operator $S_{\psi}=S_{\varphi}$ is of finite rank.

References

1. S. Axler and P. Bourdon, Finite codimensional invariant subspaces of Bergman spaces, Trans. Amer. Math. Soc. 31 (1988), no. 2, 805-817.
2. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. Lond. Math. Soc. 31 (1999) 75-80.
3. S. Elliott and A. Wynn, Composition operators on weighted Bergman spaces of a half plane, Proc. Edinb. Math. Soc. 54 (2011) 373-379.
4. V.V. Peller, Hankel Operators and Their Applications, Springer-Verlag, New York, 2003.
5. S.C. Power, Hankel Operators on Hilbert Space, Pitman, Boston-London, 1982.
6. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
7. K. Zhu, Operator Theory in Function Spaces, Marcell Dekker, New York, 1990.
${ }^{1}$ Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar751004, Odisha, India.

Email address: namitadas440@yahoo.co.in; sworup.math@gmail.com

[^0]: Date: Received: 12 August 2020; Revised: 4 March 2021; Accepted: 9 March 2021.

 * Corresponding author.

 2020 Mathematics Subject Classification. Primary 30H20; Secondary 47B35, 32A36.
 Key words and phrases. Bergman space, upper half plane, little Hankel operators, finite rank operators, essentially bounded functions.

