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Abstract. Let ψ ∈ L∞(U+), where U+ is the upper half plane in C and let
Sψ be the little Hankel operator with symbol ψ defined on the Bergman space
L2
a(U+). In this article, we show that if Sψ is of finite rank, then ψ = φ + χ,

where χ ∈
(
L2
a(U+)

)⊥⋂
L∞(U+) and φ is a linear combination of dw, w ∈ U+

and some of their derivatives.

1. Introduction

Let U+ = {z = x + iy ∈ C : y > 0} be the upper half plane in C, and let
dÃ = dxdy be the area measure on U+. Let L2(U+, dÃ) denote the Hilbert space
of complex valued, absolutely square integrable, Lebesgue measurable functions
on U+ with the inner product ⟨f, g⟩ =

∫
U+
f(s)g(s)dÃ(s), and the corresponding

norm is defined by ||f ||2 = ⟨f, f⟩ 1
2 =

[∫
U+

|f(s)|2dÃ(s)
] 1

2
<∞.

Let L2
a(U+) be the closed subspace of L2(U+, dÃ) consisting of all analytic

functions in L2(U+, dÃ). The space L2
a(U+) is called the Bergman space on U+.

It is a reproducing kernel Hilbert space and Kw(s) = − 1
π(w−s)2 , w, s ∈ U+, is the

reproducing kernel for the Bergman space L2
a(U+). The Bergman (orthogonal)

projection P+ from L2(U+, dÃ) onto L2
a(U+) is given by (P+f)(w) = ⟨f,Kw⟩.

Let L∞(U+) be the space of all complex valued, essentially bounded, Lebesgue
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measurable functions on U+. Define for φ ∈ L∞(U+),

||φ||∞ = ess sup
s∈U+

|φ(s)| <∞.

The space L∞(U+) is a Banach space with respect to the essential supremum
norm. Let H∞(U+) be the space of all bounded analytic functions on U+. For
φ ∈ L∞(U+), we define the Toeplitz operator Tφ on L2

a(U+) by Tφf = P+(φf).
The Toeplitz operator Tφ is bounded and ||Tφ|| ≤ ||φ||∞. For more details,
see [3]. The big Hankel operator Hφ from L2

a(U+) into (L2
a(U+))

⊥ is defined
by Hφf = (I −P+)(φf), f ∈ L2

a(U+). The little Hankel operator hφ from L2
a(U+)

into (L2
a(U+)) = {f : f ∈ L2

a(U+)} is defined by hφf = P+(φf), where P+

is the orthogonal projection operator from L2(U+, dÃ) onto L2
a(U+). For ψ ∈

L∞(U+), define the operator Sψ : L2
a(U+) → L2

a(U+) as Sψf = P+J(ψf), where
J : L2(U+, dÃ) → L2(U+, dÃ) is defined by Jf(s) = f(−s). The operator Sψ
is unitarily equivalent to hφ for some φ ∈ L∞(U+). Hence both operators hφ
and Sψ are referred to as little Hankel operator on L2

a(U+). For g ∈ L∞(D),
the little Hankel operator Γ̃g : L2

a(D) → L2
a(D) with symbol g is defined by

Γ̃gf = PJ(gf), f ∈ L2
a(D), where P is the orthogonal projection from L2(D, dA)

onto L2
a(D) and J : L2(D, dA) → L2(D, dA) is defined by Jf(z) = f(z). For

details, see [7].

Define M : U+ → D by M(s) = i−s
i+s

= z. Then M is one-to-one and onto,
and M−1 : D → U+ is given by M−1(z) = i1−z

1+z
. Thus M is its self inverse.

Furthermore, M ′
(s) = −2i

(i+s)2
and (M−1)

′
(z) = −2i

(1+z)2
. Let W : L2

a(D) → L2
a(U+)

be defined by (Wg)(s) = g(Ms) (2i)√
π(i+s)2

. The map W is one-to-one and onto.
Hence W−1 exists and W−1 : L2

a(U+) → L2
a(D) is given by (W−1G)(z) =

(2i)
√
πG(M−1(z)) 1

(1+z)2
.

In 1881, Kronecker [4,5] showed that the matrix L = (ai+j)
∞
i,j=0 is of finite rank

n if and only if r(z) = a0z
−1 + a1z

−2 + · · · , is a rational function of z, and in
this case, n is the number of poles of r(z). That is, in the Hardy space H2(T),
a Hankel operator, Hφ, is of finite rank if and only if φ = zuh, where u is a
finite Blaschke product and h ∈ H∞(T). In this case, the rank of S is no greater
than the number of zeros of u counted with multiplicity. Das [2] showed that if
ψ ∈ L∞(D) and the little Hankel operator Sψ is of finite rank, then ψ = φ + χ,
where χ ∈

(
L2
a(D)

)⊥⋂
L∞(D) and φ is a linear combination of the Bergman

kernels and some of its derivatives. In this article, we have extended the result
of [2] to characterize finite rank little Hankel operators defined on L2

a(U+).
The organization of the article is as follows. In section 2, we introduce the

elementary functions dw(s) and Dw(s) and discuss some properties of these func-
tions. We show that Dw ∈ L∞(U+) and that SDw

is a rank-one operator. We also
relate little Hankel operators defined on L2

a(D) and L2
a(U+) and prove that they

are unitarily equivalent, and the symbol correspondence is obtained. In section
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3, we show that if SG is of finite rank, then G =
n∑
i=1

ri−1∑
ν=0

Ciν
∂ν

∂wi
νDwi

, for some

constants Ciν , i = 1, 2, . . . , n and ν = 0, . . . , ri − 1. That is, if SG is a finite rank
little Hankel operator, then G is a linear combination of dw, w ∈ U+ and some of
their derivatives.

2. Preliminaries

In this section, we introduce the elementary functions dw(s) and Dw(s) and
discuss some properties of these functions. We show that Dw ∈ L∞(U+) and that
SDw

is a rank-one operator. We also relate little Hankel operators defined on
L2
a(D) and L2

a(U+) and prove that they are unitarily equivalent and the symbol
correspondence is obtained.

For s, w ∈ U+, define dw(s) =
1√
π

w + i

w − i

(−2i)Im w

(s+ w)2
. If w = i

1− a

1 + a
∈ U+, then

a ∈ D and a =
i− w

i+ w
=Mw. That is, M−1a = w. Then

dw(−w) =
1√
π

w + i

w − i

(−2i)(Im w)

(−w + w)2

=
(−2i)√

π

M−1a+ i

M−1a− i

Im w

(w − w)2

=
(−2i)√

π

i1−a
1+a

+ i(
i1−a
1+a

)
− i

w − w

(2i)(w − w)2

= − 1√
π

i
[
1−a
1+a

+ 1
]

[−i1−a
1+a

− i]

1

w − w

=
1√
π

2

1 + a

1 + a

2

1

i1−a
1+a

+ i1−a
1+a

=
1√
π

1 + a

(1 + a)

(1 + a)(1 + a)

i[(1− a)(1 + a) + (1− a)(1 + a)]

=
1

i
√
π

(1 + a)2

[1 + a− a− |a|2 + 1 + a− a− |a|2]

=
1

i
√
π

(1 + a)2

2(1− |a|2)

=
1

(2i)
√
π

(1 + a)2

(1− |a|2)
.

Now

dw(s)dw(−w) =
(−2i)√

π

w + i

w − i

Im w

(s+ w)2
1

(2i)
√
π

(1 + a)2

1− |a|2

=
(−2i)√

π

(
i1−a
1+a

+ i

−i1−a
1+a

− i

) (
w−w
2i

)
(s+ i1−a

1+a
)2

1

(2i)
√
π

(1 + a)2

1− |a|2
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=
(−2i)√

π

(
1−a
1+a

+ 1
)

−
(
1−a
1+a

+ 1
) [(i1−a1+a

)
−
(
−i1−a

1+a

)]
(1 + a)2

(2i)[s(1 + a) + i(1− a)]2
1

(2i)
√
π

(1 + a)2

1− |a|2

=
1

(2i)π

(
1−a+1+a

1+a
1−a+1+a

1+a

)
i
[
1−a
1+a

+ 1−a
1+a

]
[s(1 + a) + i(1− a)]2

(1 + a)2

1− |a|2
(1 + a)2

=
1

2π

1 + a

1 + a

(1 + a)2

(1− |a|2)
2(1− |a|2)

(1 + a)(1 + a)

(1 + a)2

[s(1 + a) + i(1− a)]2

=
1

π

(
1 + a

1 + a

)2
(1 + a)2

[i+ s+ a(s− i)]2

=
1

π

(
1 + a

1 + a

)2
(1 + a)2

[i+ s− a(i− s)]2

=
1

π

(
1 + a

1 + a

)2
(1 + a)2

(i+ s)2[1− a
(
i−s
i+s

)
]2

=
1

π

(1 + a)2

(i+ s)2
1

(1− aMs)2

= D(s, w)

= Dw(s).

Hence, dw(s) = D(s,w)
dw(−w) and (dw(−w))2 = D(w,w). Now

||Dw||2 = ⟨Dw, Dw⟩

=

∫
U+

|Dw(s)|2dÃ(s)

=

∫
U+

|D(s, w)|2dÃ(s)

=

∫
U+

|dw(−w)|2|dw(s)|2dÃ(s)

= |dw(−w)|2
∫
U+

|dw(s)|2dÃ(s)

= |dw(−w)|2||dw||22
= |dw(−w)|2 since ||dw||2 = 1.

Thus
||Dw|| = |dw(−w)| and |dw(s)| ||Dw|| = |Dw(s)|. Furthermore, Dw ∈ L∞(U+).

Lemma 2.1. If ψ ∈ L∞(U+), then the little Hankel operator Sψ defined on L2
a(U+)

with symbol ψ is unitarily equivalent to the little Hankel operator Γ̃g defined on
L2
a(D) with symbol g(z) = (ψ ◦M−1)(z)

(
1+z
1+z

)2
.

Proof. The operator W maps zn
√
n+ 1 to the function 2i√

π
(Ms)n

√
n+ 1 1

(i+s)2
=

2i√
π

(
i−s
i+s

)n√
n+ 1 1

(i+s)2
, which belongs to L2

a(U+).
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Now

Sψ

(
2i√
π

(
i− s

i+ s

)n√
n+ 1

1

(i+ s)2

)
= P+

(
J

(
ψ(s)

2i√
π

(
i− s

i+ s

)n√
n+ 1

1

(i+ s)2

))
= P+

(
ψ(−s) 2i√

π

√
n+ 1

(
i+ s

i− s

)n 1

(i− s)2

)
=WPW−1

(
ψ(−s) 2i√

π

√
n+ 1

(
i+ s

i− s

)n 1

(i− s)2

)
=WP

(
(2i)

√
π

2i√
π

√
n+ 1ψ

(
−M−1(z)

)( i+M−1(z)

i−M−1(z)

)n
1

(i−M−1(z))2
1

(1 + z)2

)

=WP

(
(−4)

√
n+ 1ψ

(
i
1− z

1 + z

)(
i− i1−z1+z

i+ i1−z1+z

)n
1

(i+ i1−z1+z )
2

1

(1 + z)2

)

=WP

(
(−4)

√
n+ 1ψ

(
i
1− z

1 + z

)(
1− 1−z

1+z

1 + 1−z
1+z

)n
−1

(1 + 1−z
1+z )

2

1

(1 + z)2

)

=WP

(
(−4)

√
n+ 1ψ

(
i
1− z

1 + z

)(
2z

2

)n
(−1)

(1 + z)2

4

1

(1 + z)2

)
=WP

(
√
n+ 1ψ

(
i
1− z

1 + z

)
(z)n

(
1 + z

1 + z

)2
)

=WP

(
J

(
√
n+ 1znψ

(
i
1− z

1 + z

)(
1 + z

1 + z

)2
))

=W Γ̃
ψ(i 1−z

1+z )(
1+z
1+z )

2(zn
√
n+ 1)

=W Γ̃
(ψ◦M−1)(z)( 1+z

1+z )
2(zn

√
n+ 1).

Thus SψW = W Γ̃g, where g(z) = (ψ ◦M−1) (z)
(
1+z
1+z

)2
. Since the sequence of

vectors {
√
n+ 1zn}∞n=0 forms an orthonormal basis for L2

a(D), this proves our
claim. Thus the little Hankel operator Sψ defined on L2

a(U+) with symbol ψ is
unitarily equivalent to the little Hankel operator Γ̃g defined on L2

a(D). □

Lemma 2.2. Let SDw
be the little Hankel operator defined on L2

a(U+) with symbol
Dw. Then SDw

= Dw ⊗Dw.

Proof. Let f, g ∈ L2
a(U+) and let a = Mw ∈ D. Also let f = Wf1 and g =

Wg1, f1, g1 ∈ L2
a(D). Then

⟨(Dw ⊗Dw)f, g⟩ = ⟨⟨f,Dw⟩Dw, g⟩
= ⟨f,Dw⟩⟨Dw, g⟩
= ⟨Wf1,WKa⟩⟨WKa,Wg1⟩
= ⟨Wf1,WKa⟩⟨Wg1,WKa⟩
= f1(a)g1(a).
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Now let g+(z) = g(z). Then for polynomials f and g in L2
a(U+) on w, we have

⟨SDw
f, g⟩ = ⟨P+J(Dwf), g⟩

= ⟨Dwf, Jg⟩
= ⟨fg+, Dw⟩
= ⟨W (f1g

+
1 ),WKa⟩

= ⟨f1g+1 , Ka⟩
= f1(a)g1(a).

□
Lemma 2.3 (see [6]). Let f be a linear functional defined on a vector space

V , and let f1, f2, . . . , fn be linear functionals on V . If ker f ⊇
n⋂
i=1

kerfi, then

f =
n∑
i=1

λifi, where λi’s are complex numbers.

3. Characterization of finite rank little Hankel
operators

In this section, we show that if SG is of finite rank, then

G =
n∑
i=1

ri−1∑
ν=0

Ciν
∂ν

∂wi
νDwi

for some constants Ciν , i = 1, 2, . . . , n and ν = 0, . . . , ri − 1. That is, if SG is a
finite rank little Hankel operator, then G is a linear combination of dw, w ∈ U+

and some of their derivatives.
Theorem 3.1. Let G ∈ L∞(U+), where G is analytic on U+ and let SG be the
little Hankel operator defined on L2

a(U+) with symbol G. If SG is of finite rank,

then G =
n∑
i=1

ri−1∑
ν=0

Ciν
∂ν

∂wi
νDwi

.

Proof. The little Hankel operator SG on L2
a(U+) is unitarily equivalent to the

little Hankel operator Γ̃g defined on L2
a(D), where g(z) = (G ◦M−1)(z)

(
1+z
1+z

)2.
Now since TzΓ̃g = Γ̃gTz, it follows that ker Γ̃g is an invariant subspace of Tz. Since
the rank of Γ̃g is finite, it follows from [1] that

ker Γ̃g = θL2
a(D) = (z − a1)

r1(z − a2)
r2 · · · (z − an)

rnL2
a(D) = qL2

a(D),
where θ is a finite Blaschke product and ai are the zeros of θ counted ac-

cording to their multiplicities ri(1 ≤ i ≤ n) and
n∑
i=1

ri is the rank of Γ̃g and

q(z) = (z − a1)
r1(z − a2)

r2 · · · (z − an)
rn . Define on the space P of polyno-

mials, the linear functional ϕ̂ by ϕ̂(p) = ⟨Γ̃gp, 1⟩, p ∈ P . Note that qP ⊆
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{p : p(ai) = 0, i = 1, 2, . . . , n, p ∈ P} . For r ∈ N and f ∈ L2
a(D), we have f (r)(a) =

⟨f,Ka,r⟩, where Ka,r =
∂r

∂ar
Ka, a ∈ D. Using this and the fact that ⟨Γ̃Ka,r

p, 1⟩ =

⟨p,Ka,r⟩, it follows that (z − a)rp(z) ∈ ker Γ̃Ka,r−1
. Thus ker ϕ̂ ⊃

n⋂
i=1

ker Γ̃Ka,r−1
.

Using Lemma 2.3, we obtain

ϕ̂ =
n∑
i=1

βiνΓ̃Kai,ri−1
=

n∑
i=1

ri−1∑
ν=0

βiνΓ̃ ∂ν

∂aνi
Kai

.

Since ⟨Γ̃gf, h+⟩ = ⟨Γ̃gfh, 1⟩, f, h, fh ∈ L2
a(D), and {zn : n ≥ 0} is dense in L2

a(D),

it follows g =
n∑
i=1

βiKai,ri−1. Thus since W−1SGW = Γ̃g, hence

G =
n∑
i=1

ri−1∑
ν=0

Ciν
∂ν

∂wi
νDwi

.

□
Corollary 3.2. If ψ ∈ L∞(U+) and Sψ is a finite rank little Hankel
operator on L2

a(U+), then ψ = φ + χ, where χ ∈
(
L2
a(U+)

)⊥⋂
L∞(U+) and

φ =
n∑
i=1

mi−1∑
ν=1

βiν
∂ν

∂wi
ν dwi

.

Proof. The result follows from the fact that Sχ ≡ 0 if and only if χ ∈
(
L2
a(U+)

)⊥
.

This can be verified as follows: If Sχ = 0, then Sχf = P+J(χf) = 0 for all
f ∈ L2

a(U+). Hence J(χf) ∈ (L2
a(U+))

⊥ or χf ∈
(
L2
a(U+)

)⊥
for all f ∈ L2

a(U+).
Thus ⟨χf, g⟩ = 0 for all g ∈ H∞(U+). Therefore ⟨χ, fg⟩ = 0 for all g ∈ H∞(U+).
Thus we get ⟨χ, h⟩ = 0 for all h ∈ L2

a(U+), and hence χ ∈
(
L2
a(U+)

)⊥
. Similarly

one can show that if χ ∈
(
L2
a(U+)

)⊥⋂
L∞(U+), then Sχ ≡ 0. □

Now let ψ ∈ L∞(U+) and let ψ = φ+ χ, where

φ ∈
(
L2
a(U+)

)
, χ ∈

(
L2
a(U+)

)⊥⋂
L∞(U+).

Then Sχ ≡ 0. Thus Sψ = Sφ, where φ is a linear combination of dwi
, and some

of its derivatives. From the proof of Theorem 3.1, it follows that W−1SφW =

Γ̃θ, where θ is a linear combination of the Bergman kernels Kαi
and some of

its derivatives Kαi,ri . Note that Γ̃θ is a little Hankel operator on L2
a(D) with

ker Γ̃θ = GL2
a(D) for some inner functions G ∈ L2

a(D) and the space (GL2
a)

⊥ is
finite-dimensional. For proof, see [2]. It thus follows that kerSφ has also finite-
codimensional and the operator Sψ = Sφ is of finite rank.
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