Khayyam J. Math. 8 (2022), no. 1, 25-32 DOI: 10.22034/KJM.2021.243561.1964

FINITE RANK LITTLE HANKEL OPERATORS ON $L^2_a(\mathbb{U}_+)$

NAMITA DAS¹ AND SWORUP KUMAR DAS^{1*}

Communicated by J.M. Aldaz

ABSTRACT. Let $\psi \in L^{\infty}(\mathbb{U}_+)$, where \mathbb{U}_+ is the upper half plane in \mathbb{C} and let S_{ψ} be the little Hankel operator with symbol ψ defined on the Bergman space $L^2_a(\mathbb{U}_+)$. In this article, we show that if S_{ψ} is of finite rank, then $\psi = \varphi + \chi$, where $\chi \in \left(\overline{L^2_a(\mathbb{U}_+)}\right)^{\perp} \bigcap L^{\infty}(\mathbb{U}_+)$ and $\overline{\varphi}$ is a linear combination of $d_{\overline{w}}, w \in \mathbb{U}_+$ and some of their derivatives.

1. INTRODUCTION

Let $\mathbb{U}_+ = \{z = x + iy \in \mathbb{C} : y > 0\}$ be the upper half plane in \mathbb{C} , and let $d\widetilde{A} = dxdy$ be the area measure on \mathbb{U}_+ . Let $L^2(\mathbb{U}_+, d\widetilde{A})$ denote the Hilbert space of complex valued, absolutely square integrable, Lebesgue measurable functions on \mathbb{U}_+ with the inner product $\langle f, g \rangle = \int_{\mathbb{U}_+} f(s)\overline{g(s)}d\widetilde{A}(s)$, and the corresponding norm is defined by $||f||_2 = \langle f, f \rangle^{\frac{1}{2}} = \left[\int_{\mathbb{U}_+} |f(s)|^2 d\widetilde{A}(s)\right]^{\frac{1}{2}} < \infty$.

Let $L_a^2(\mathbb{U}_+)$ be the closed subspace of $L^2(\mathbb{U}_+, d\widetilde{A})$ consisting of all analytic functions in $L^2(\mathbb{U}_+, d\widetilde{A})$. The space $L_a^2(\mathbb{U}_+)$ is called the Bergman space on \mathbb{U}_+ . It is a reproducing kernel Hilbert space and $K_w(s) = -\frac{1}{\pi(\overline{w}-s)^2}, w, s \in \mathbb{U}_+$, is the reproducing kernel for the Bergman space $L_a^2(\mathbb{U}_+)$. The Bergman (orthogonal) projection P_+ from $L^2(\mathbb{U}_+, d\widetilde{A})$ onto $L_a^2(\mathbb{U}_+)$ is given by $(P_+f)(w) = \langle f, K_w \rangle$. Let $L^{\infty}(\mathbb{U}_+)$ be the space of all complex valued, essentially bounded, Lebesgue

Date: Received: 12 August 2020; Revised: 4 March 2021; Accepted: 9 March 2021. *Corresponding author.

²⁰²⁰ Mathematics Subject Classification. Primary 30H20; Secondary 47B35, 32A36.

Key words and phrases. Bergman space, upper half plane, little Hankel operators, finite rank operators, essentially bounded functions.

measurable functions on \mathbb{U}_+ . Define for $\varphi \in L^{\infty}(\mathbb{U}_+)$,

$$||\varphi||_{\infty} = ess \sup_{s \in \mathbb{U}_+} |\varphi(s)| < \infty$$

The space $L^{\infty}(\mathbb{U}_{+})$ is a Banach space with respect to the essential supremum norm. Let $H^{\infty}(\mathbb{U}_{+})$ be the space of all bounded analytic functions on \mathbb{U}_{+} . For $\varphi \in L^{\infty}(\mathbb{U}_{+})$, we define the Toeplitz operator T_{φ} on $L^{2}_{a}(\mathbb{U}_{+})$ by $T_{\varphi}f = P_{+}(\varphi f)$. The Toeplitz operator T_{φ} is bounded and $||T_{\varphi}|| \leq ||\varphi||_{\infty}$. For more details, see [3]. The big Hankel operator H_{φ} from $L^{2}_{a}(\mathbb{U}_{+})$ into $(L^{2}_{a}(\mathbb{U}_{+}))^{\perp}$ is defined by $H_{\varphi}f = (I - P_{+})(\varphi f), f \in L^{2}_{a}(\mathbb{U}_{+})$. The little Hankel operator h_{φ} from $L^{2}_{a}(\mathbb{U}_{+})$ into $(L^{2}_{a}(\mathbb{U}_{+})) = \{\overline{f} : f \in L^{2}_{a}(\mathbb{U}_{+})\}$ is defined by $h_{\varphi}f = \overline{P}_{+}(\varphi f)$, where \overline{P}_{+} is the orthogonal projection operator from $L^{2}(\mathbb{U}_{+}, d\widetilde{A})$ onto $\overline{L^{2}_{a}(\mathbb{U}_{+})}$. For $\psi \in$ $L^{\infty}(\mathbb{U}_{+})$, define the operator $S_{\psi} : L^{2}_{a}(\mathbb{U}_{+}) \to L^{2}_{a}(\mathbb{U}_{+})$ as $S_{\psi}f = P_{+}J(\psi f)$, where $J : L^{2}(\mathbb{U}_{+}, d\widetilde{A}) \to L^{2}(\mathbb{U}_{+}, d\widetilde{A})$ is defined by $Jf(s) = f(-\overline{s})$. The operator S_{ψ} is unitarily equivalent to h_{φ} for some $\varphi \in L^{\infty}(\mathbb{U}_{+})$. Hence both operators h_{φ} and S_{ψ} are referred to as little Hankel operator on $L^{2}_{a}(\mathbb{U}_{+})$. For $g \in L^{\infty}(\mathbb{D})$, the little Hankel operator $\widetilde{\Gamma}_{g} : L^{2}_{a}(\mathbb{D}) \to L^{2}_{a}(\mathbb{D})$ with symbol g is defined by $\widetilde{\Gamma}_{g}f = PJ(gf), f \in L^{2}_{a}(\mathbb{D})$, where P is the orthogonal projection from $L^{2}(\mathbb{D}, dA)$ onto $L^{2}_{a}(\mathbb{D})$ and $J : L^{2}(\mathbb{D}, dA) \to L^{2}(\mathbb{D}, dA)$ is defined by $Jf(z) = f(\overline{z})$. For details, see [7].

Define $M : \mathbb{U}_+ \to \mathbb{D}$ by $M(s) = \frac{i-s}{i+s} = z$. Then M is one-to-one and onto, and $M^{-1} : \mathbb{D} \to \mathbb{U}_+$ is given by $M^{-1}(z) = i\frac{1-z}{1+z}$. Thus M is its self inverse. Furthermore, $M'(s) = \frac{-2i}{(i+s)^2}$ and $(M^{-1})'(z) = \frac{-2i}{(1+z)^2}$. Let $W : L^2_a(\mathbb{D}) \to L^2_a(\mathbb{U}_+)$ be defined by $(Wg)(s) = g(Ms)\frac{(2i)}{\sqrt{\pi}(i+s)^2}$. The map W is one-to-one and onto. Hence W^{-1} exists and $W^{-1} : L^2_a(\mathbb{U}_+) \to L^2_a(\mathbb{D})$ is given by $(W^{-1}G)(z) = (2i)\sqrt{\pi}G(M^{-1}(z))\frac{1}{(1+z)^2}$.

In 1881, Kronecker [4,5] showed that the matrix $L = (a_{i+j})_{i,j=0}^{\infty}$ is of finite rank n if and only if $r(z) = a_0 z^{-1} + a_1 z^{-2} + \cdots$, is a rational function of z, and in this case, n is the number of poles of r(z). That is, in the Hardy space $H^2(\mathbb{T})$, a Hankel operator, H_{φ} , is of finite rank if and only if $\varphi = z\overline{u}h$, where u is a finite Blaschke product and $h \in H^{\infty}(\mathbb{T})$. In this case, the rank of S is no greater than the number of zeros of u counted with multiplicity. Das [2] showed that if $\psi \in L^{\infty}(\mathbb{D})$ and the little Hankel operator S_{ψ} is of finite rank, then $\psi = \varphi + \chi$, where $\chi \in \left(\overline{L_a^2(\mathbb{D})}\right)^{\perp} \cap L^{\infty}(\mathbb{D})$ and $\overline{\varphi}$ is a linear combination of the Bergman kernels and some of its derivatives. In this article, we have extended the result of [2] to characterize finite rank little Hankel operators defined on $L_a^2(\mathbb{U}_+)$.

The organization of the article is as follows. In section 2, we introduce the elementary functions $d_{\overline{w}}(s)$ and $D_{\overline{w}}(s)$ and discuss some properties of these functions. We show that $D_{\overline{w}} \in L^{\infty}(\mathbb{U}_{+})$ and that $S_{\overline{D_{w}}}$ is a rank-one operator. We also relate little Hankel operators defined on $L^2_a(\mathbb{D})$ and $L^2_a(\mathbb{U}_{+})$ and prove that they are unitarily equivalent, and the symbol correspondence is obtained. In section

3, we show that if $S_{\overline{G}}$ is of finite rank, then $G = \sum_{i=1}^{n} \sum_{\nu=0}^{r_i-1} C_{i\nu} \frac{\partial^{\nu}}{\partial \overline{w_i}^{\nu}} D_{\overline{w_i}}$, for some constants $C_{i\nu}$, $i = 1, 2, \ldots, n$ and $\nu = 0, \ldots, r_i - 1$. That is, if $S_{\overline{G}}$ is a finite rank little Hankel operator, then G is a linear combination of $d_{\overline{w}}, w \in \mathbb{U}_+$ and some of their derivatives.

2. Preliminaries

In this section, we introduce the elementary functions $d_{\overline{w}}(s)$ and $D_{\overline{w}}(s)$ and discuss some properties of these functions. We show that $D_{\overline{w}} \in L^{\infty}(\mathbb{U}_{+})$ and that $S_{\overline{D_w}}$ is a rank-one operator. We also relate little Hankel operators defined on $L_a^2(\mathbb{D})$ and $L_a^2(\mathbb{U}_{+})$ and prove that they are unitarily equivalent and the symbol correspondence is obtained.

For
$$s, w \in \mathbb{U}_+$$
, define $d_{\overline{w}}(s) = \frac{1}{\sqrt{\pi}} \frac{w+i}{\overline{w}-i} \frac{(-2i)Im}{(s+w)^2}$. If $w = i\frac{1-a}{1+\overline{a}} \in \mathbb{U}_+$, then
 $\overline{a} \in \mathbb{D}$ and $\overline{a} = \frac{i-w}{i+w} = Mw$. That is, $M^{-1}\overline{a} = w$. Then
 $d_{\overline{w}}(-\overline{w}) = \frac{1}{\sqrt{\pi}} \frac{w+i}{\overline{w}-i} \frac{(-2i)(Im}{(-\overline{w}+w)^2}$
 $= \frac{(-2i)}{\sqrt{\pi}} \frac{M^{-1}\overline{a}+i}{M^{-1}\overline{a}-i} \frac{Im}{(w-\overline{w})^2}$
 $= \frac{(-2i)}{\sqrt{\pi}} \frac{i\frac{1-\overline{a}}{1+\overline{a}}+i}{(i\frac{1-\overline{a}}{1+\overline{a}})-i} \frac{w-\overline{w}}{(2i)(w-\overline{w})^2}$
 $= -\frac{1}{\sqrt{\pi}} \frac{i\left[\frac{1-\overline{a}}{1+\overline{a}}+1\right]}{(i\frac{1-\overline{a}}{1+\overline{a}}-i)} \frac{1}{w-\overline{w}}$
 $= \frac{1}{\sqrt{\pi}} \frac{2}{1+\overline{a}} \frac{1+a}{2} \frac{1}{i\frac{1-\overline{a}}{1+\overline{a}}+i\frac{1-a}{1+a}}$
 $= \frac{1}{\sqrt{\pi}} \frac{1+a}{(1+\overline{a})} \frac{(1+\overline{a})(1+a)}{i[(1-\overline{a})(1+a)+(1-a)(1+\overline{a})]}$
 $= \frac{1}{i\sqrt{\pi}} \frac{(1+a)^2}{(1+a-\overline{a}-|a|^2+1+\overline{a}-a-|a|^2]}$
 $= \frac{1}{i\sqrt{\pi}} \frac{(1+a)^2}{(2(1-|a|^2)})$
 $= \frac{1}{(2i)\sqrt{\pi}} \frac{(1+a)^2}{(1-|a|^2)}$.

Now

$$d_{\overline{w}}(s)d_{\overline{w}}(-\overline{w}) = \frac{(-2i)}{\sqrt{\pi}} \frac{w+i}{\overline{w}-i} \frac{Im \ w}{(s+w)^2} \frac{1}{(2i)\sqrt{\pi}} \frac{(1+a)^2}{1-|a|^2} = \frac{(-2i)}{\sqrt{\pi}} \left(\frac{i\frac{1-\overline{a}}{1+\overline{a}}+i}{-i\frac{1-\overline{a}}{1+a}-i}\right) \frac{\left(\frac{w-\overline{w}}{2i}\right)}{(s+i\frac{1-\overline{a}}{1+\overline{a}})^2} \frac{1}{(2i)\sqrt{\pi}} \frac{(1+a)^2}{1-|a|^2}$$

$$\begin{split} &= \frac{(-2i)}{\sqrt{\pi}} \frac{\left(\frac{1-\bar{a}}{1+\bar{a}}+1\right)}{-\left(\frac{1-\bar{a}}{1+\bar{a}}+1\right)} \frac{\left[\left(i\frac{1-\bar{a}}{1+\bar{a}}\right) - \left(-i\frac{1-\bar{a}}{1+\bar{a}}\right)\right] (1+\bar{a})^2}{(2i)[s(1+\bar{a}) + i(1-\bar{a})]^2} \frac{1}{(2i)\sqrt{\pi}} \frac{(1+a)^2}{1-|a|^2} \\ &= \frac{1}{(2i)\pi} \left(\frac{\frac{1-\bar{a}+1+\bar{a}}{1+\bar{a}}}{\frac{1-\bar{a}+1+\bar{a}}{1+\bar{a}}}\right) \frac{i\left[\frac{1-\bar{a}}{1+\bar{a}} + \frac{1-\bar{a}}{1+\bar{a}}\right]}{[s(1+\bar{a}) + i(1-\bar{a})]^2} \frac{(1+\bar{a})^2}{1-|a|^2} (1+\bar{a})^2 \\ &= \frac{1}{2\pi} \frac{1+a}{1+\bar{a}} \frac{(1+a)^2}{(1-|a|^2)} \frac{2(1-|a|^2)}{(1+a)(1+\bar{a})} \frac{(1+\bar{a})^2}{[s(1+\bar{a}) + i(1-\bar{a})]^2} \\ &= \frac{1}{\pi} \left(\frac{1+a}{1+\bar{a}}\right)^2 \frac{(1+\bar{a})^2}{[i+s+\bar{a}(s-i)]^2} \\ &= \frac{1}{\pi} \left(\frac{1+a}{1+\bar{a}}\right)^2 \frac{(1+\bar{a})^2}{[i+s-\bar{a}(i-s)]^2} \\ &= \frac{1}{\pi} \left(\frac{1+a}{1+\bar{a}}\right)^2 \frac{(1+\bar{a})^2}{(i+s)^2[1-\bar{a}\left(\frac{i-s}{i+s}\right)]^2} \\ &= \frac{1}{\pi} \frac{(1+a)^2}{(i+s)^2} \frac{1}{(1-\bar{a}Ms)^2} \\ &= D_{\bar{w}}(s). \end{split}$$

Hence, $d_{\overline{w}}(s) = \frac{D(s,w)}{d_{\overline{w}}(-\overline{w})}$ and $(d_{\overline{w}}(-\overline{w}))^2 = D(\overline{w}, w)$. Now $||D_{\overline{w}}||^2 = \langle D_{\overline{w}}, D_{\overline{w}} \rangle$ $= \int_{\mathbb{U}_+} |D_{\overline{w}}(s)|^2 d\widetilde{A}(s)$ $= \int_{\mathbb{U}_+} |D(s,w)|^2 d\widetilde{A}(s)$ $= \int_{\mathbb{U}_+} |d_{\overline{w}}(-\overline{w})|^2 |d_{\overline{w}}(s)|^2 d\widetilde{A}(s)$ $= |d_{\overline{w}}(-\overline{w})|^2 \int_{\mathbb{U}_+} |d_{\overline{w}}(s)|^2 d\widetilde{A}(s)$ $= |d_{\overline{w}}(-\overline{w})|^2 ||d_{\overline{w}}||_2^2$ $= |d_{\overline{w}}(-\overline{w})|^2 \text{ since } ||d_{\overline{w}}||_2 = 1.$

Thus

 $||D_{\overline{w}}|| = |d_{\overline{w}}(-\overline{w})|$ and $|d_{\overline{w}}(s)| ||D_{\overline{w}}|| = |D_{\overline{w}}(s)|$. Furthermore, $D_{\overline{w}} \in L^{\infty}(\mathbb{U}_+)$.

Lemma 2.1. If $\psi \in L^{\infty}(\mathbb{U}_+)$, then the little Hankel operator S_{ψ} defined on $L^2_a(\mathbb{U}_+)$ with symbol ψ is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_g$ defined on $L^2_a(\mathbb{D})$ with symbol $g(z) = (\psi \circ M^{-1})(z) \left(\frac{1+z}{1+\overline{z}}\right)^2$.

Proof. The operator W maps $z^n \sqrt{n+1}$ to the function $\frac{2i}{\sqrt{\pi}} (Ms)^n \sqrt{n+1} \frac{1}{(i+s)^2} = \frac{2i}{\sqrt{\pi}} \left(\frac{i-s}{i+s}\right)^n \sqrt{n+1} \frac{1}{(i+s)^2}$, which belongs to $L^2_a(\mathbb{U}_+)$.

Now

$$\begin{split} S_{\psi} & \left(\frac{2i}{\sqrt{\pi}} \left(\frac{i-s}{i+s}\right)^n \sqrt{n+1} \frac{1}{(i+s)^2}\right) \\ &= P_+ \left(J \left(\psi(s) \frac{2i}{\sqrt{\pi}} \left(\frac{i-s}{i+s}\right)^n \sqrt{n+1} \frac{1}{(i-s)^2}\right)\right) \\ &= P_+ \left(\psi(-\overline{s}) \frac{2i}{\sqrt{\pi}} \sqrt{n+1} \left(\frac{i+\overline{s}}{i-\overline{s}}\right)^n \frac{1}{(i-\overline{s})^2}\right) \\ &= WPW^{-1} \left(\psi(-\overline{s}) \frac{2i}{\sqrt{\pi}} \sqrt{n+1} \left(\frac{i+\overline{s}}{i-\overline{s}}\right)^n \frac{1}{(i-\overline{s})^2}\right) \\ &= WP \left((2i)\sqrt{\pi} \frac{2i}{\sqrt{\pi}} \sqrt{n+1} \psi \left(-\overline{M^{-1}(z)}\right) \left(\frac{i+\overline{M^{-1}(z)}}{i+\overline{1+\overline{z}}}\right)^n \frac{1}{(i-\overline{M^{-1}(z)})^2} \frac{1}{(1+z)^2}\right) \\ &= WP \left((-4)\sqrt{n+1} \psi \left(i\frac{1-\overline{z}}{1+\overline{z}}\right) \left(\frac{i-i\frac{1-\overline{z}}{1+\overline{z}}}{i+\overline{1+\overline{z}}}\right)^n \frac{1}{(i+i\frac{1-\overline{z}}{1+\overline{z}})^2} \frac{1}{(1+z)^2}\right) \\ &= WP \left((-4)\sqrt{n+1} \psi \left(i\frac{1-\overline{z}}{1+\overline{z}}\right) \left(\frac{1-\frac{1-\overline{z}}{1+\overline{z}}}{1+\frac{1-\overline{z}}{1+\overline{z}}}\right)^n \frac{-1}{(1+\frac{1-\overline{z}}{1+\overline{z}})^2} \frac{1}{(1+z)^2}\right) \\ &= WP \left((-4)\sqrt{n+1} \psi \left(i\frac{1-\overline{z}}{1+\overline{z}}\right) \left(\frac{2\overline{z}}{2}\right)^n (-1) \frac{(1+\overline{z})^2}{4} \frac{1}{(1+z)^2}\right) \\ &= WP \left(\sqrt{n+1} \psi \left(i\frac{1-\overline{z}}{1+\overline{z}}\right) (\overline{z})^n \left(\frac{1+\overline{z}}{1+z}\right)^2\right) \\ &= WP \left(J \left(\sqrt{n+1}z^n \psi \left(i\frac{1-z}{1+z}\right) \left(\frac{1+z}{1+z}\right)^2\right) \\ &= WP \left(\overline{V} \left(\frac{\sqrt{n+1}z^n \psi \left(i\frac{1-z}{1+z}\right) \left(\frac{1+z}{1+z}\right)^2\right) \\ &= W\widetilde{\Gamma}_{(\psi \circ M^{-1})(z)(\frac{1+\overline{z}}{1+\overline{z}})^2(z^n \sqrt{n+1}). \end{split}$$

Thus $S_{\psi}W = W\widetilde{\Gamma}_g$, where $g(z) = (\psi \circ M^{-1})(z) \left(\frac{1+z}{1+\overline{z}}\right)^2$. Since the sequence of vectors $\{\sqrt{n+1}z^n\}_{n=0}^{\infty}$ forms an orthonormal basis for $L^2_a(\mathbb{D})$, this proves our claim. Thus the little Hankel operator S_{ψ} defined on $L^2_a(\mathbb{U}_+)$ with symbol ψ is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_g$ defined on $L^2_a(\mathbb{D})$. \Box

Lemma 2.2. Let $S_{\overline{D_w}}$ be the little Hankel operator defined on $L^2_a(\mathbb{U}_+)$ with symbol $\overline{D_w}$. Then $S_{\overline{D_w}} = D_{\overline{w}} \otimes D_w$.

Proof. Let $f, g \in L^2_a(\mathbb{U}_+)$ and let $\overline{a} = Mw \in \mathbb{D}$. Also let $f = Wf_1$ and $g = Wg_1, f_1, g_1 \in L^2_a(\mathbb{D})$. Then

$$\begin{aligned} \langle (D_{\overline{w}} \otimes D_w) f, g \rangle &= \langle \langle f, D_w \rangle D_{\overline{w}}, g \rangle \\ &= \langle f, D_w \rangle \langle D_{\overline{w}}, g \rangle \\ &= \langle W f_1, W K_{\overline{a}} \rangle \langle W K_a, W g_1 \rangle \\ &= \langle W f_1, W K_{\overline{a}} \rangle \overline{\langle W g_1, W K_a \rangle} \\ &= f_1(\overline{a}) \overline{g_1(a)}. \end{aligned}$$

Now let $g^+(z) = \overline{g(\overline{z})}$. Then for polynomials f and g in $L^2_a(\mathbb{U}_+)$ on w, we have

<

$$S_{\overline{D_w}}f,g\rangle = \langle P_+J(\overline{D_w}f),g\rangle$$

= $\langle \overline{D_w}f,Jg\rangle$
= $\langle fg^+, D_w\rangle$
= $\langle W(f_1g_1^+), WK_{\overline{a}}\rangle$
= $\langle f_1g_1^+, K_{\overline{a}}\rangle$
= $f_1(\overline{a})\overline{g_1(a)}.$

Lemma 2.3 (see [6]). Let f be a linear functional defined on a vector space V, and let f_1, f_2, \ldots, f_n be linear functionals on V. If ker $f \supseteq \bigcap_{i=1}^n \ker f_i$, then $f = \sum_{i=1}^n \lambda_i f_i$, where λ_i 's are complex numbers.

3. Characterization of finite rank little Hankel Operators

In this section, we show that if $S_{\overline{G}}$ is of finite rank, then

$$G = \sum_{i=1}^{n} \sum_{\nu=0}^{r_i-1} C_{i\nu} \frac{\partial^{\nu}}{\partial \overline{w_i}^{\nu}} D_{\overline{w_i}}$$

for some constants $C_{i\nu}$, i = 1, 2, ..., n and $\nu = 0, ..., r_i - 1$. That is, if $S_{\overline{G}}$ is a finite rank little Hankel operator, then G is a linear combination of $d_{\overline{w}}, w \in \mathbb{U}_+$ and some of their derivatives.

Theorem 3.1. Let $\overline{G} \in L^{\infty}(\mathbb{U}_+)$, where G is analytic on \mathbb{U}_+ and let $S_{\overline{G}}$ be the little Hankel operator defined on $L^2_a(\mathbb{U}_+)$ with symbol \overline{G} . If $S_{\overline{G}}$ is of finite rank,

then
$$G = \sum_{i=1}^{n} \sum_{\nu=0}^{n-1} C_{i\nu} \frac{\partial^{\nu}}{\partial \overline{w_i}^{\nu}} D_{\overline{w_i}}$$

Proof. The little Hankel operator $S_{\overline{G}}$ on $L^2_a(\mathbb{U}_+)$ is unitarily equivalent to the little Hankel operator $\widetilde{\Gamma}_{\overline{g}}$ defined on $L^2_a(\mathbb{D})$, where $\overline{g}(z) = (\overline{G} \circ M^{-1})(z) \left(\frac{1+z}{1+\overline{z}}\right)^2$. Now since $T_{\overline{z}}\widetilde{\Gamma}_{\overline{g}} = \widetilde{\Gamma}_{\overline{g}}T_z$, it follows that ker $\widetilde{\Gamma}_{\overline{g}}$ is an invariant subspace of T_z . Since the rank of $\widetilde{\Gamma}_{\overline{g}}$ is finite, it follows from [1] that

$$\ker \widetilde{\Gamma}_g = \theta L_a^2(\mathbb{D}) = (z - a_1)^{r_1} (z - a_2)^{r_2} \cdots (z - a_n)^{r_n} L_a^2(\mathbb{D}) = q L_a^2(\mathbb{D}),$$

where θ is a finite Blaschke product and a_i are the zeros of θ counted according to their multiplicities $r_i(1 \leq i \leq n)$ and $\sum_{i=1}^n r_i$ is the rank of $\widetilde{\Gamma}_{\overline{g}}$ and $q(z) = (z - a_1)^{r_1}(z - a_2)^{r_2} \cdots (z - a_n)^{r_n}$. Define on the space \mathcal{P} of polynomials, the linear functional $\widehat{\phi}$ by $\widehat{\phi}(p) = \langle \widetilde{\Gamma}_{\overline{g}}p, 1 \rangle, p \in \mathcal{P}$. Note that $q\mathcal{P} \subseteq$ $\{p: p(a_i) = 0, i = 1, 2, ..., n, p \in \mathcal{P}\}$. For $r \in \mathbb{N}$ and $f \in L^2_a(\mathbb{D})$, we have $f^{(r)}(a) = \langle f, K_{a,r} \rangle$, where $K_{a,r} = \frac{\partial^r}{\partial a^r} K_a, a \in \mathbb{D}$. Using this and the fact that $\langle \widetilde{\Gamma}_{\overline{K_{a,r}}} p, 1 \rangle = \langle p, K_{a,r} \rangle$, it follows that $(z - a)^r p(z) \in \ker \widetilde{\Gamma}_{\overline{K_{a,r-1}}}$. Thus $\ker \widehat{\phi} \supset \bigcap_{i=1}^n \ker \widetilde{\Gamma}_{\overline{K_{a,r-1}}}$. Using Lemma 2.3, we obtain

$$\widehat{\phi} = \sum_{i=1}^{n} \beta_{i\nu} \widetilde{\Gamma}_{\overline{K_{a_i,r_i-1}}} = \sum_{i=1}^{n} \sum_{\nu=0}^{r_i-1} \beta_{i\nu} \widetilde{\Gamma}_{\overline{\partial u_i^{\nu} K_{a_i}}}.$$

Since $\langle \widetilde{\Gamma}_{\overline{g}} f, h^+ \rangle = \langle \widetilde{\Gamma}_{\overline{g}} fh, 1 \rangle, f, h, fh \in L^2_a(\mathbb{D}), \text{ and } \{z^n : n \ge 0\}$ is dense in $L^2_a(\mathbb{D}),$ it follows $g = \sum_{i=1}^n \beta_i K_{a_i, r_i - 1}$. Thus since $W^{-1} S_{\overline{G}} W = \widetilde{\Gamma}_{\overline{g}},$ hence $G = \sum_{i=1}^n \sum_{j=1}^{r_i - 1} C_{i\nu} \frac{\partial^{\nu}}{\partial z_j} D_{\overline{w}}.$

$$G = \sum_{i=1}^{N} \sum_{\nu=0}^{N-1} C_{i\nu} \frac{\partial^{\nu}}{\partial \overline{w_i}^{\nu}} D_{\overline{w_i}}.$$

Corollary 3.2. If $\psi \in L^{\infty}(\mathbb{U}_{+})$ and S_{ψ} is a finite rank little Hankel operator on $L^{2}_{a}(\mathbb{U}_{+})$, then $\psi = \varphi + \chi$, where $\chi \in \left(\overline{L^{2}_{a}(\mathbb{U}_{+})}\right)^{\perp} \bigcap L^{\infty}(\mathbb{U}_{+})$ and $\overline{\varphi} = \sum_{i=1}^{n} \sum_{\nu=1}^{m_{i}-1} \beta_{i\nu} \frac{\partial^{\nu}}{\partial \overline{w_{i}}^{\nu}} d_{\overline{w_{i}}}.$

Proof. The result follows from the fact that $S_{\chi} \equiv 0$ if and only if $\chi \in \left(\overline{L_a^2(\mathbb{U}_+)}\right)^{\perp}$. This can be verified as follows: If $S_{\chi} = 0$, then $S_{\chi}f = P_+J(\chi f) = 0$ for all $f \in L_a^2(\mathbb{U}_+)$. Hence $J(\chi f) \in (L_a^2(\mathbb{U}_+))^{\perp}$ or $\chi f \in \left(\overline{L_a^2(\mathbb{U}_+)}\right)^{\perp}$ for all $f \in L_a^2(\mathbb{U}_+)$. Thus $\langle \chi f, \overline{g} \rangle = 0$ for all $g \in H^{\infty}(\mathbb{U}_+)$. Therefore $\langle \chi, \overline{fg} \rangle = 0$ for all $g \in H^{\infty}(\mathbb{U}_+)$. Thus we get $\langle \chi, \overline{h} \rangle = 0$ for all $h \in L_a^2(\mathbb{U}_+)$, and hence $\chi \in \left(\overline{L_a^2(\mathbb{U}_+)}\right)^{\perp}$. Similarly one can show that if $\chi \in \left(\overline{L_a^2(\mathbb{U}_+)}\right)^{\perp} \cap L^{\infty}(\mathbb{U}_+)$, then $S_{\chi} \equiv 0$.

Now let $\psi \in L^{\infty}(\mathbb{U}_+)$ and let $\psi = \varphi + \chi$, where

$$\varphi \in \left(\overline{L_a^2(\mathbb{U}_+)}\right), \chi \in \left(\overline{L_a^2(\mathbb{U}_+)}\right)^{\perp} \bigcap L^{\infty}(\mathbb{U}_+).$$

Then $S_{\chi} \equiv 0$. Thus $S_{\psi} = S_{\varphi}$, where $\overline{\varphi}$ is a linear combination of $d_{\overline{w_i}}$, and some of its derivatives. From the proof of Theorem 3.1, it follows that $W^{-1}S_{\varphi}W = \widetilde{\Gamma}_{\overline{\theta}}$, where θ is a linear combination of the Bergman kernels K_{α_i} and some of its derivatives K_{α_i,r_i} . Note that $\widetilde{\Gamma}_{\overline{\theta}}$ is a little Hankel operator on $L^2_a(\mathbb{D})$ with ker $\widetilde{\Gamma}_{\theta} = GL^2_a(\mathbb{D})$ for some inner functions $G \in L^2_a(\mathbb{D})$ and the space $(GL^2_a)^{\perp}$ is finite-dimensional. For proof, see [2]. It thus follows that ker S_{φ} has also finitecodimensional and the operator $S_{\psi} = S_{\varphi}$ is of finite rank.

N. DAS, S.K. DAS

References

- 1. S. Axler and P. Bourdon, *Finite codimensional invariant subspaces of Bergman spaces*, Trans. Amer. Math. Soc. **31** (1988), no. 2, 805–817.
- N. Das, The kernel of a Hankel operator on the Bergman space, Bull. Lond. Math. Soc. 31 (1999) 75–80.
- S. Elliott and A. Wynn, Composition operators on weighted Bergman spaces of a half plane, Proc. Edinb. Math. Soc. 54 (2011) 373–379.
- 4. V.V. Peller, Hankel Operators and Their Applications, Springer-Verlag, New York, 2003.
- 5. S.C. Power, Hankel Operators on Hilbert Space, Pitman, Boston-London, 1982.
- 6. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
- 7. K. Zhu, Operator Theory in Function Spaces, Marcell Dekker, New York, 1990.

¹DEPARTMENT OF MATHEMATICS, UTKAL UNIVERSITY, VANI VIHAR, BHUBANESWAR-751004, Odisha, India.

Email address: namitadas440@yahoo.co.in; sworup.math@gmail.com