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INITIAL VALUE PROBLEMS FOR NONLINEAR CAPUTO
FRACTIONAL RELAXATION DIFFERENTIAL EQUATIONS
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Abstract. The main purpose of this article is to establish the existence and
uniqueness of solutions for a class of fractional relaxation differential equations.
Existence and uniqueness results are based on the Krasnoselskii fixed point
theorem and Banach contraction mapping principle. Finally, an example is
given to illustrate this work.

1. Introduction

The concept of fractional calculus is a generalization of the ordinary differ-
entiation and integration to arbitrary noninteger order. Fractional differential
equations with and without delay arise from a variety of applications including
in various fields of science and engineering such as applied sciences, practical
problems concerning mechanics, the engineering technique fields, economy, con-
trol systems, physics, chemistry, biology, medicine, atomic energy, information
theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability
and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian
systems, and so on. In particular, problems concerning qualitative analysis of
linear and nonlinear fractional differential equations with and without delay have
received the attention of many authors; see [1–24], [25, 27–31] and the references
therein. Chidouh, Guezane-Lakoud, and Bebbouchi [14] discussed the existence
and uniqueness of positive solutions of a nonlinear Caputo fractional relaxation
differential equation. Ardjouni and Djoudi [6] studied the positivity of solutions of
a nonlinear Caputo fractional differential equation. Seemab and Ur Rehman [25]
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investigated the existence and stability analysis for a nonlinear Caputo fractional
differential equation.

Inspired and motivated by the works mentioned above, we study the existence
and uniqueness of solutions for the following initial value problem of the fractional
differential equation{

CDα (u (t)− g (t, u (t))) + ωu (t) = f (t, u (t)) , t ∈ (0, T ] ,
u (0) = u0,

(1.1)

where CDα is the standard Caputo’s fractional derivative of order 0 < α ≤ 1,
ω > 0, and f : [0, T ] × R → R and g : [0, T ] × R → R are given continuous
functions. To show the existence and uniqueness of solutions, we transform (1.1)
into an equivalent integral equation and then use the Krasnoselskii and Banach
fixed point theorems.

The rest of this article is organized as follows. In Section 2, we introduce
some definitions and lemmas and state some preliminaries results needed in later
sections. Also, we present the Banach and Krasnoselskii fixed point theorems. In
Section 3, we prove the existence and uniqueness of solutions for (1.1). Finally,
an example is given to illustrate our main results.

2. Preliminaries

In this section, we present some basic definitions, notations, and results of
fractional calculus, which are used throughout this article.

Let T > 0, and let J = [0, T ]. By C (J,R) we denote the Banach space of all
continuous functions from J into R with the norm

∥u∥ = sup {u (t) : t ∈ J} .

Definition 2.1 ([19]). The fractional integral of order α > 0 of a function u :
J → R is given by

Iαu (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 u (s) ds,

provided the right side is pointwise defined on J .

Definition 2.2 ([19]). The Caputo fractional derivative of order α > 0 of function
u : J → R is given by

CDαu(t) = In−αD(n)u (t) =
1

Γ (n− α)

∫ t

0

(t− s)n−α−1 u(n) (s) ds,

where n = [α] + 1, provided the right side is pointwise defined on J .

Definition 2.3 ([9]). The two-parameter function of the Mittag-Leffler type is
defined by the series expansion

Eα,β (z) =
∞∑
n=0

zn

Γ(αn+ β)
, α > 0, β ∈ C, z ∈ C.
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For β = 1, we obtain the Mittag-Leffler function in one parameter

Eα (z) =
∞∑
n=0

zn

Γ(αn+ 1)
, α > 0, z ∈ C.

Lemma 2.4 ([9]). For 0 < α ≤ 1, the Mittag-Leffler type function Eα,α(−ωtα)
satisfies

0 ≤ Eα,α(−ωtα) ≤ 1

Γ (α)
, t ∈ [0,∞) , ω ≥ 0,

and
lim
t→0+

Eα,α(−ωtα) = Eα,α(0) =
1

Γ (α)
.

Lemma 2.5 ([15]). For t ∈ [0,∞) and 0 < α ≤ 1, the one-parameter Mittag-
Leffler function Eα,1(−tα) is a decreasing function of t and it is bounded from
above by 1, that is,

Eα,1(−ωtα) ≤ 1.

Furthermore, it is to be noted that
lim
t→∞

Eα,1(−ωtα) = 0.

Lastly in this section, we state the fixed point theorems, which enable us to
prove the existence and uniqueness of a solution of (1.1).

Theorem 2.6 (Banach’s fixed point theorem [26]). Let Ω be a nonempty closed
subset of a Banach space (S, ∥·∥). Then any contraction mapping Φ of Ω into
itself has a unique fixed point.

Theorem 2.7 (Krasnoselskii’s fixed point theorem [26]). Let Ω be a nonempty
bounded closed convex subset of a Banach space (S, ∥·∥). Suppose that F1 and F2

map Ω into S such that
(i) F1u+ F2v ∈ Ω for all u, v ∈ Ω,
(ii) F1 is continuous and compact,
(iii) F2 is a contraction.

Then there is u ∈ Ω with F1u+ F2u = u.

3. Existence and uniqueness

Let us start by defining what we mean by a solution of Problem (1.1).

Definition 3.1. A function u ∈ C1 (J,R) is said to be a solution of Problem
(1.1) if u satisfies CDα (u (t)− g (t, u (t))) +ωu (t) = f (t, u (t)) for any t ∈ J and
u (0) = u0.

For the existence of solutions for Problem (1.1), we need the following auxiliary
lemma.

Lemma 3.2. Let u ∈ C (J,R) and let u′ exist. Then u is a solution of the initial
value Problem (1.1) if and only if it is a solution of the integral equation

u(t) =(u0 − g(t, u0))Eα,1(−ωtα) + g (t, u (t))
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+

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [f (s, u (s))− ωg (s, u (s))] ds. (3.1)

Proof. It is easy to prove by the Laplace transform. □
In the following subsections, we prove existence, as well as the existence and

uniqueness results for Problem (1.1) by using a variety of fixed point theorems.
The following assumptions will be used in our main results
(H1) There exists a constant Lf ∈ R+ such that

|f(t, u)− f(t, v)| ≤ Lf |u− v| ,
for t ∈ J , u, v ∈ R.

(H2) There exists a constant Lg ∈ (0, 1) such that
|g(t, u)− g(t, v)| ≤ Lg |u− v| ,

for t ∈ J , u, v ∈ R.
3.1. Existence and uniqueness results via Banach’s fixed point theorem.
Theorem 3.3. Assume that the assumptions (H1)–(H2) are satisfied. If

Lg +
Tα

Γ (α + 1)
(Lf + Lgω) < 1, (3.2)

then there exists a unique solution for Problem (1.1) on J .
Proof. We define the operator Φ : C (J,R) → C (J,R) by

(Φu) (t) =(u0 − g(t, u0))Eα,1(−ωtα) + g (t, u (t))

+

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [f (s, u (s))− ωg (s, u (s))] ds.

Clearly, the fixed points of operator Φ are solutions of Problem (1.1). For any
u, v ∈ C ([0, T ] ,R) and t ∈ J , we have

|(Φu) (t)− (Φv) (t)|
≤ |g (t, u (t))− g (t, v (t))|

+

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) |f (s, u (s))− f (s, v (s))| ds

+ ω

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) |g (s, u (s))− g (s, v (s))| ds.

By (H1) and (H2), we have

|(Φu) (t)− (Φv) (t)| ≤ Lg ∥u− v∥+ TαLf

Γ (α + 1)
∥u− v∥+ TαLgω

Γ (α + 1)
∥u− v∥ ,

thus
∥Φu− Φv∥ ≤

(
Lg +

Tα

Γ (α + 1)
(Lf + Lgω)

)
∥u− v∥ .

From (3.2), Φ is a contraction. As a consequence of Banach’s fixed point theorem,
we get that Φ has a unique fixed point which is a unique solution of Problem (1.1)
on J . □
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3.2. Existence results via Krasnoselskii’s fixed point theorem.
Theorem 3.4. Assume (H2) and the following hypotheses:

(H3) There exists p1 ∈ C (J,R+) such that
|f (t, u)| ≤ p1 (t) ,

for t ∈ J and each u ∈ R.
(H4) There exists p2 ∈ C (J,R+) such that

|g (t, u)| ≤ p2 (t) ,

for t ∈ J and each u ∈ R.
Then Problem (1.1) has at least one solution in Ω.

Proof. Let us fix

ρ ≥ |u0|+ q + p∗2 +
Tα

Γ (α + 1)
(p∗1 + ωp∗2) ,

where p∗1 = supt∈J p1 (t), p∗2 = supt∈J p2 (t), and q = supt∈J |g(t, u0)|. Consider
the nonempty closed convex subset

Ω = {u ∈ C (J,R) , ∥u∥ ≤ ρ} ,
and define two operators F1 and F2 on Ω, as follows:

(F1u) (t) =

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [f (s, u (s))− ωg (s, u (s))] ds,

and
(F2u) (t) = (u0 − g(t, u0))Eα,1(−ωtα) + g (t, u (t)) .

We shall use the Krasnoselskii fixed point theorem to prove that there exists at
least one fixed point of the operator F1 + F2 in Ω. The proof will be given in
several steps.

Step 1. We prove F1u+ F2v ∈ Ω for all u, v ∈ Ω.
For any u, v ∈ Ω, we have

|(F1u) (t) + (F2v) (t)|

=
∣∣∣(u0 − g(t, u0)

)
Eα,1(−ωtα) + g (t, v (t))

+

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [f (s, u (s))− ωg (s, u (s))] ds
∣∣∣

≤ |u0|+ q + p∗2 +
Tα

Γ (α + 1)
(p∗1 + ωp∗2) .

Thus
∥F1u+ F2v∥ ≤ |u0|+ q + p∗2 +

Tα

Γ (α + 1)
(p∗1 + ωp∗2) ≤ ρ.

Hence, F1u+ F2v ∈ Ω, for all u, v ∈ Ω.
Step 2. We prove that F1 is compact and continuous.
For all u ∈ Ω, we have

|(F1u) (t)|



90 A. LACHOURI, A. ARDJOUNI, A. DJOUDI

=

∣∣∣∣∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [f (s, u (s))− ωg (s, u (s))] ds

∣∣∣∣
≤

∫ t

0

(t− s)α−1Eα,α(−ω(t− s)α) [|f (s, u (s))|+ ω |g (s, u (s))|] ds

≤ Tα

Γ (α + 1)
(p∗1 + ωp∗2) .

Thus
∥F1u∥ ≤ Tα

Γ (α + 1)
(p∗1 + ωp∗2) .

Hence, F1is uniformly bounded on Ω.
It remains to show that F1 (Ω) is equicontinuous. Let x ∈ Ω. Then for any

0 < t1 < t2 ≤ T , we have

|(F1u) (t2)− (F1u) (t1)|

=

∣∣∣∣∫ t2

0

(t2 − s)α−1Eα,α(−ω(t2 − s)α) [f (s, u (s))− ωg (s, u (s))] ds

−
∫ t1

0

(t1 − s)α−1Eα,α(−ω(t1 − s)α) [f (s, u (s))− ωg (s, u (s))] ds

∣∣∣∣
≤ 1

Γ (α)

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1) (|f (s, u (s))|+ ω |g (s, u (s))|) ds

+

∫ t2

t1

(t2 − s)α−1 (|f (s, u (s))|+ ω |g (s, u (s))|) ds

≤ (p∗1 + ωp∗2)

Γ (α + 1)
(2 (t2 − t1)

α + tα1 − tα2 )

≤ 2 (p∗1 + ωp∗2)

Γ (α + 1)
(t2 − t1)

α . (3.3)

As t1 → t2, the right-hand side of inequality (3.3) tends to zero and the conver-
gence is independent of u in Ω, which means that F1 (Ω) is equicontinuous. The
Arzela–Ascoli theorem implies that F1 is compact. Moreover, the continuity of f
and g implies that F1 is continuous.

Step 3. We prove that F2 : Ω → C (J,R) is a contraction mapping.
For all u, v ∈ Ω and t ∈ J , we have

|(F2u) (t)− (F2v) (t)| = |g (t, u (t))− g (t, v (t))|
≤ Lg ∥u− v∥ .

Thus
∥F2u− F2v∥ ≤ Lg ∥u− v∥ .

Hence, the operator F2 is a contraction.
Clearly, all the hypotheses of the Krasnoselskii fixed point theorem are satisfied.

Hence, there exists a fixed point u ∈ Ω such that u = F1u+F2u, which is a solution
of Problem (1.1). □
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Example 3.5. We consider the fractional initial value problem{
CD

1
2

(
u (t)− 1

4
u (t) cos(t)

)
+ 1

2
u (t) = 1

(exp(t)+4)(|u(t)|+1)
, t ∈ J = [0, 1] ,

u (0) = 1,
(3.4)

where T = 1, u0 = 1, α = ω = 1
2
, g(t, u) = 1

4
t sin(u), and f(t, u) = 1

(exp(t)+4)(|u|+1)
.

For each u, v ∈ R and t ∈ J , we have

|f (t, u)− f (t, v)| =
∣∣∣∣ 1

(exp(t) + 4) (|u|+ 1)
− 1

(exp(t) + 4) (|v|+ 1)

∣∣∣∣
≤ |u− v|

(exp(t) + 4) (1 + |u|) (1 + |v|)

≤ 1

5
|u− v| ,

and
|g(t, u)− g(t, v)| ≤ 1

4
|u− v| .

Hence, assumptions (H1) and (H2) are satisfied with Lf = 1
5

and Lg = 1
4
. The

condition
Lg +

Tα

Γ (α + 1)
(Lgω + Lf ) ≃ 0.62 < 1

is satisfied. It follows from Theorem 3.3 that Problem (3.4) has a unique solution
on J .
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