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ABSTRACT. We introduce and study Orlicz lacunary convergent double se-
quences over n-normed spaces. We define the notion of go-statistical conver-
gence in double sequence spaces and study some topological and algebraic
properties of these newly formed sequence spaces. Some inclusion relations are
also established in this paper. Finally, we study some applications of statistical
convergence of these sequence spaces.

1. INTRODUCTION AND PRELIMINARIES

The initial work on double sequences was established by Bromwich [2]. Re-
cently, Zeltser [27] studied both the theory of topological double sequence spaces
and the theory of summability of double sequences. The double lacunary statis-
tical convergence was presented by Patterson and Savas [22]. A double sequence
x = (x;;) has a Pringsheim limit L (denoted by P —limxz = L) provided that for
given € > 0, there exists n € N such that |z;; —L| < € whenever 7, j > n (see [18]).
We denote more briefly as P-convergent. The double sequence z = (x;;) is
bounded if there exists a positive number K such that |z;;| < K for all i,j.
Lorentz [14] introduced the notion of F-summability and discussed its relation to
various summability methods defined by matrices. The concept of almost conver-
gent sequences and strongly almost convergent sequences was given in [9,15]. The
concept of strongly almost convergent sequences was introduced by Maddox [16].
Recently, Korus [11, 12] studied A%-strong convergence of numerical sequences
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and uniform convergence of double sine integrals with generated monotone co-
efficients. Maddox [16] defined a generalization of strong almost convergence.
Detailed study on almost convergence can be seen in [1, 15, 26].

A double sequence = = (z;;) of real numbers is said to be almost convergent to
a limit & if

lim sup
7,800 m, 7’L>0

LS e

=m

= 0. (see [18]) (1.1)

m+r—1nts—1 ‘

The space of all almost convergent double sequences is denoted by F,
F= {x = (x;;) : Um |Aygmn(z) — €] = 0, unformily in m,n},

where

hysmn(x) = m Z Z Litm,j+n- (1.2)

=0 j5=0

The space of all strongly almost convergent double sequences is denoted by [F].
The theory of 2-normed spaces was first developed by Gahler [7], and aspects of
n-normed spaces have been studied extensively; see [8, 10]. To know more about
the definition of Orlicz sequence spaces, one can see [13,21].

The concept of statistical convergence was introduced independently by Fast
[6], Buck [3], and Schoenberg [25] for real and complex sequences. Later, the idea
was associated with summability theory by Connor [1], Duman and Orhan [5],
Mohiuddine [17], Mursaleen et al. [19,20], and many others. Statistical conver-
gence is closely related to the concept of convergence in probability. As defined
by Mursaleen and Edely [19], a real double sequence z = (x;;) is said to be
statistically convergent to L if for each € > 0,

1
P —lim —[{(i,j) :i <rand j <s, |z — | > e} = 0.
”ns T$

In this case, we write S? — limx;; = [ and the set of all statistical convergent
l’]

double sequences is denoted by S2.
The double sequence § = {(k,,1,)} is called double lacunary if there exist two
increasing sequences of integers such that

k=0, t, =k, —k,_1 - 00asv — 00

and B

lo=0, hy=1,— 1,1 — o0 asn — oo.
Let ky,, = kylyy, let t,,, = t,t,, and let 9,“7 be determined by I, = {(k,l) : k,_1 <
k< k,and [,o1 <l <1}, q = m, Gy = 1, and va = Gy (see [22]).

1

For more details about sequence spaces and par&:normed spaces, see [23,24] and
reference therein.

Let O = (Oy;) be a Museilak—Orlicz function, let u = (uy) be a double sequence

of positive real numbers, and let p = (pg;) be a bounded sequence of positive real

numbers. We denote the space of all sequences defined over (X, ||-,...,||) by

w(n— X). Now, we define the following sequence spaces for some p and for every
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NONZero zi,...,2n—1 € X:
[O7u7‘/—-7p7 ||7 SRR |H =
— hrsmn - p
{.CE € w(n - X) : lim Z [uklOkl<HMayl7 s 7yn—lH>:| . = 07
T,8—00 P
kil=1,1
uniformly in m,n > 1},
and
[O,U, [‘FLpaH??H] =
. fading xr—E& Pr
{33' S w(n - X) . 'r,lslgclm Z [uklokl <h7“smn< ‘Tayla <oy Yn— >):| - 07
uniformly in m,n > 1},
where h,.gn, () is defined as in (1.2). We write [O,u,]—",p, | ||} —limx = ¢&.
Also,
[Oauv [‘F]apv H7 SRR H} C [O,U,I,p, Ha SRR H] C [M,U, loo’p7 Ha SRR H}
holds by the following inequality:
TTOGTD (@itpj+a — &)
hrsmn(x - 5) =0 75=0
’—7917-.-71/71—1 :H y Yty - - -y Yn—1
p
1 : - Titm,j+n — 5
< ‘ 7]—7 sty In—

r—§
’ y Yty - - -y Yn—1
p

o )

The spaces of lacunary almost and strongly almost convergent double sequences
in n-normed spaces are defined as follows:

[O,U,Fg,p,||',--~,'||]
= {x: (i) € w(n — X) :

. g 1 Titm,j+n — f
v’ginoo Z [’LLklOkl t_ Z <—>y1, cee 7yn—1>

ki=1,1 Y G j€lyy, P

Pkl
[" =0

uniformly in m,n > 1}

and

[O7u7 [-’r@]vpv H77|H
= {x: (i) € win — X) :
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) 1 faiting Ts o Dkl
JJm > Y [uklokl<HM7yla“wyn 1”)] =0,
" U G €Ly ki=1,1 P
uniformly in m,n > 1}.
1.1. Main results.

Lemma 1.1. For givene > 0, let x = (x;;) be a strongly almost convergent double
sequence. Then there exist rq, S, mg, and ng such that
Pkl
)" <

for all prpy > 1, 1 > 19, S > S9, m > mgy, n > ng and for every nonzero

Yis- - Yoo € X. Then z € [O,u,[Fl,p, |- ... |]].

m+r—1n+4+s—1 00,00

Z Z Z [UmOkl(HIl — sYLy e ey Yno1

i=m j=n kl=1,1

Proof. Given € > 0, take 7(, s;, mg, no such that

m+r—1n+s—1 00,00

LSS (2

i=m j=n k|l=1,1

)]pkl < g (1.3)

for all r > TO, s> sy ,m > mg, n > ng. Now we have to prove only that there
exist 7 and sj such that for r > rj, s > 55, 0 <m < mg, 0 < n < ny,

)]p“ <o (14)

7y17"'7yn71

m+r—1n+s—1 00,00

0 S S ST SR

i=m j=n k|l=1,1

By choosing ro = max(r, () and sy = max(sy, s), (1.4) will holds for r > 7o,
s > sg, and for all m, n. Let my and ng be fixed. Then

mo—1nop—1 00,00

Z Z Z [uklokl<H ,y1,...,yn 1H>}pkl K (say). (1.5)
=0 j=0 k,i=1,1
mi:l"il Oozo:o [uklOkl( 5,y1,...,yn_1 )}pkl = C (say). (1.6)
=m j=no kil=1,1
milnozf Ooz: [um@a(H ,y1,...,yn,1 )]pkl = D (say). (1.7)

i=mg j=n k=11
Now tak1ng0<m<m0,O<n<n0,r>m0, and s > ng, we have

m+r—1n+s—1 00,00 5 >i|pkl
mo—1 m+r—1 no—1 n+s—1

CEY S o
— TS(; Z )(Z Z ) OOZ: [UklOkl(H »jp—57y17...,yn1

7y17“'7yn—1‘
i=m  j=n kil=1,1

)"

i=mo Jj=no

K ¢ D 1"&EInEt g P

S EemeRen 2 2 3 fwon([E )
= s s s s kUKl Y1 Yn—1

i=myg Jj=no k,l=1,



106 KULDIP RAJ, CHARU SHARMA, SWATI JASROTIA

(by (1.5), (1.6), (1.7))

K C D
+—+—+% (by (1.3)).

rs rs rs

Taking r and s sufficiently large, we can make
K C D ¢
—+—+—+ - <g,
rs rs rs 2

IN

which yields (1.4). O
Theorem 1.2. Let py; > 1 for all k,l. Then for every 0, we have
[O,U, [FQ]apa H7 B |H = [O,U, [-F]apa Ha SRR H] :
Proof. Let {x;;} € [(’),u, [Fol, p, ||,,||] Then for given ¢ > 0, there exist
ro, So, and & such that
mA4ty,—1 n+ty—1 co,00 é_ i
Z Z Z [UklOkl( 7 Y1y - Yn—1 )] <e¢

i=m j=n k|l=1,1
forv>wvy, n>mnp,and m =M,y +1+4+a, n=N,_1+1+a, a>0.Letr>t,
and let s > ¢,. Then write r = bt, +6 and s = ct,, + 0, where b and ¢ are integers.
Since b, ¢ > 1, we have
Pkl
€ o)

m-‘,—r 1 n+s— 1 00,00

Y o (1

i=m  j=n k,il=1,1

[—

m+(c+1)ty—1 n+(b+1)ty—1 oo0,00

1 Pri
1 ou([5 )
S Z z; klz: [Ukl kl yl Yn—1
s mt+@+Dty—1 ¢ nt+@'+1)t,—1 oo,00 -
= L2 Y 2 3 [wou([ )]
rs
i=m+u'ty '=0  j=n+ot, kl=11
< (C+1)<b+1)tfg
- s v
< %(C, b > 1)'
rs
For % < 1, since Cbt”t” < 1, we have
m+r—1n+s—1 oo,00 f .
LSS S ([ S )] <
rs i=m  j=n k,il=1,1
By using Lemma 1.1, [O,u, [fg],p,||-,...,-||} C [O,u, []—"],p7||.,,,_,.||}_ 0

Lemma 1.3. Suppose for given € > 0, there exist rg, sg, and mgy, ng such that
m—+r—1nts—1 .
I <

[UkzOle— Z Z (% ay1>--'7yn—1>

for allm > rg, m > sq, p > mg, q 2 ng, for every nonzero yi,...,y,—1 € X, and
for some p > 0. Then x € [O,F, w,py [ |H

k=1,
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Proof. For given € > 0, take r{, s, mo, ng such that

m—+r—1n+s—1

IO ES S SUCECHRS|

k,l=1,1

(1.8)

]pkl €
< =
2

for all » > r{, s > sy, m > mp, n > ny. By Lemma 1.1, it is enough to prove
that there exist r(] and s{ such that for r > r{, s > s, 0 < m < mg, 0 <n < no,

Pri
I <

1q+

3 [0 23S (S )

k,l=1,1

Since mg and nq are fixed, let

mo—1ng—1 00,00

553 o

=0 j=0 k,l=1,1

Pkl /
7y17--'7yn—1>‘:| =K (SaY)'

mo—1n+s—1 00,00

Z Z Z [UklOkl<

i=m j=ng k,l=1,1

Tij — &

Pkl
sy Yty -y Yn—1 ‘>i| :C/ (S&y).

m+r—1ng—1 00,00

o> Z Uklokl< ‘xijp_f,yl,...,yn_l D]pkl = D' (say).

i=mo Jj=n k,il=

LetOgmgmo,Ogngnoandr>mo,s>n0. Then
oo,oo m+r—1n+s—1

[umOsz— Z Z <x” ,yl,...,yn_1> rkl
kl=1,1 —
< Z [uklOle— Z Z <$” ,yl,...,yn_1>

k=1,

:|pkl

mo—1n+s—1 "pkz

+ Z [umOle— Z Z <x” ,yl,...,yn_1> |

k,=1,1 i=m j=ng

m—+r—1ng—1

+ Z |:UklOle_ Z Z (x” ,yl,...,yn,l)H:pkl

k=1, i=mg jJ=n
:|pkl

Ss Vvt s (1.9)

+ Z [UklOkZH— Z (xijp_ijlw'wyn_l) }Pkl'
J

m+r—1n+s—1

+ Z [Uklole_ Z Z (gj” ,y1,...,yn_1>

k=1,1 i=mg  j=no
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Let r —mo > r( and let s —ng > s;. Then for 0 < m < mg, 0 < n < ny, we
have r +m — mg > 1} and s +n — ng > s;. From (1.8), we have

00,00 1 mo+r+m—mo no+s+n—ng

Tij — £ Pkl
k_lzzll [ukzOle(r+m+m0)(s+n+no) z‘:zw;o j:Zno ( p 7y1,...,yn71)H]
3
<3 (110
From (1.9) and (1.10), we have
m+r—1n+s—
Xii Pkl
[uklole_ Z Z ( I 7y17"‘7yn—1) ]
ki=1,1
K " D +m — +n— €
L K & D (r+m-—mg)(s+n no)_
rs rs rs rs 2
K C D ¢
< —+—4 =+
rs rs rs 2
< e,
for sufficiently large r and s. O
Theorem 1.4.
(1) For €’U€7"y¢9, [O>u7]:9apa ||7 ) '||]ﬂ[0au7loo7p7 ||¢ o 7”] = [O,u,]:,p, Ha ) ||]
(ii) For every 6, [(’),u,}"g,p, 1. ]H ¢ [(’),u, R/ | RS ]H
Proof. (i) Let {x;;} € [(’),u,fg,p, I -\Hﬂ[(’),u, 1=, .., ||] for every e >
0. Then there exist vy and ng such that
00,00 mtt,—1n T Pil c
Do X0 E S S - PPN B SRt

for v,n > wvo, M0, m = mo, n 2ng, m=M, 1 +1+a, n=Ny1+1+a, a>0.
Let r > t,, let s > t,,, and let b, ¢ > 1. Then

00,00 m+r—1n+s—1 00,00 . Pal
ij —

[ukzOsz* ) D> o ( ,3/17-~-,yn71)H]
k,l=1,1 i=m Jj=n k|l=1,1

00,00 c—1 m+(p+1)ty—1 p—1 nt+(p+1)t,—1 . 5 o 1

1y ¢
< > [UMOMH*Z PSP ( p 7?/1a-~7yn—1)m +
k,l=1,1 = t=m+uty  P=0 j=n+tii,
m+r—1 n+s—1

=3 [wow XY () [ (1.12)

k,l=1,1 t=m-+-cly j=n+bty,
Since {z;;} € [O,u, 1%, p,|-,...,||] for all i and j, we have
00,00

]pkl < K (say).

Z [UklOle (xijp_ €71/1, e 7yn—1)

kJl=1,1
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From (1.11) and (1.12), we have
m+r—1n+s—1

[UklOk;lH_ Z Z <$” ,y1,---7yn—1>

k,l=1,1

Pk 1 _ € Ktvn
} < —cbtyty= +
TS 2

for % < 1. Since d’:—’;t” < 1 and t;’” can be made less than £, taking r and s
sufﬁmently Large SO
m—+r—1n+s—1

[Ukzole— Z Z (xlj ,yl,---,yn—1>

kl=1,1
for v,n > vy, m9, M > Mgy, N > nyg. Therefore,

[(9 u, Fo,p, ||+ - - ||] N [O,u,loo,p, ||,,||] C [O,u,f,p, ||,,||]
(ii) Let {z;;} = (—1)"“(ij)*, where 1 is constant with 0 < 1) < 1. Then

mt,—1ntiy—1

Z Z Tij, m, n > 0.
i=m j=n

Let X = R". It is straightforward to verify that {z;;} € [O,u, Fo,p, |-,...,|]
with & = 0, but {z;;} is not bounded.

Pkt
™ <

O

Theorem 1.5. The sequence space O, u, [F,p,||-,...,"||] is a linear topological
space total parnormed by

mAr—1nts—1 00,00 -
g2(x) = sup <rs Z Z Z |:UklOkZ(H SYly e e Yne )} )

rs2l, mn21 i=m  j=n k,il=1,1
))]pkl

0#£Y1,...,Yyn—1€X
Proof. Clearly go(x) = 0 if and only if x = 0, g2(x) = g2(—2) and go is subaddi-

= sup Z U Ot |:( rsmn(
tive.

r,s>1, mmn>1
0y 1y 1 €X FA=L1

Let (z®) in [O,u, [F],p, |- .., ||] such that go(z® —2) — 0 as k — oo and let

(vk1) be any sequence of scalars such that v — v as k, [ — oo. Since

g2(a™) < go(2) + go(a™ — )
holds by subadditivity of gs, go(x*)) is bounded, we have

Jylw"ayn*l
P

go (yklx(k) — V)

= sup
r,s>1, mn>1
0#Y1,--yn—1€X

1 m+r—1n+s—1 00,00 -
st (FTE S 00|22 )] )

r,s>1, mn>1
0Ly 11 €X i=m j=n kl=1,1

( m+r—1n+s—1 00,00

I

j=n kil=1,1
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+lv|  sup
r,s>1, mn>1
0#Y1,. s yn—1€X
= v — V]g2(z™) + [V|g2 (2 —2) — 0

as k,l — oo. O

() , .
LY S ol e ]

( m+r—1n+s—1 00,00
i=m j=n kl=1,1

Definition 1.6. A double sequence x = (x;;) is said to be strongly p-Cesaro
summable (0 < p < 00) to a limit & in ([O, [F],u,p, ||, .., |l], g2) if

kl—>ooH Z 92 xzy ge)

3,5=1,1
and we write it as z;; = £[C, ga],.

Definition 1.7. A double sequence z = (x;;) is said to be statistically convergent

(or go-statistically convergent) to a number & in ([0, u, [F,p, |-, ..., ||], g2) if for
each ¢ > 0
i i<k G < 1oy — €6 2 6} =0,
where
ga(zij — Ee)

m+r—1n+s—1 00,00
Tis 56 Pkt
= su e (’ J ULy e Yne )] )
p (rs ;ﬂ ]Zn k;I[ KUkl n Yn—1

r,s>1, mmn>1
0#Y1,Yn—1€X

By 52 we denote the set of all go(stat)-convergent sequences
( [Ovuv[}—]vpvl"v“'v'ﬂ 792)
n ([O,'LL, [Fva H7 SRR H]792)
Definition 1.8. A double sequence x = (z;;) is said to be statistically Cauchy
n ([0, u,[F],p, |-, -ll], 92) (or ga(stat)-Cauchy) if for every e > 0 there exist

two numbers R = R(¢) and S = S(g) such that

lim —]{z<r J<s:ga(x;; —xRs) >} =0.

r,s—0o0 'S

Theorem 1.9. If a double sequence is statistically convergent in
([0,u, [Fl.p, || -+ ll]: 92), then its limit is unique.

Proof. For given € > 0, we define the following sets as
. £
Ki(e) = {(Zaj) € NXN:gy(zy; — &) > 5}

and

Ks(e) = {(i,j) ENXN: gz — &) > %}

Suppose ga(stat) —limz = & and go(stat) —limx = &. Since go(stat) —limz = &,
we have d2(K(g)) = 0. Similarly, since go(stat) —limz = &, we have dy(Kz(€)) =
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0. Now let K(e) = K;(¢) U Ky(e). Then d9(K (¢)) = 0, and therefore, K¢(¢) is a
nonempty set and d2(K°(e)) = 1. If (¢,7) € Nx N\ K(¢), then

92(61 — &2) < g2y — &1) + ga(i; — §2) < % + g =ec.

Since £ > 0 is arbitrary, we get ¢g2(& — &) = 0, and hence & = &. O

Theorem 1.10. Let x = (z;;) € ([O,u, [Fl,p,||-,-..,-|],92) be statistically con-
vergent to & if and only if there exists a set K = {(i,,js) € NxN:ij <ig <+ <
b < ooy g1 < Jo <0 < s <o} with 03(K) =1 such that go(x;;, — &) — 0
as iy, js — 00.

Proof. Let go(stat) — limx = £. Now write for v = 1,2, ...

1
K(e) = {(r,s) eENXN:gy(z;;, —€) <1+ —}
v
and .
M,(e) = {(7‘, s) € NXN: go(z;,j, — &) > 5}
Then 09(K) = 0. Also
MlgMgD"'DMZ’DMH_lD“' (113)
and
5(M,)=1, v=1,2,.... (1.14)
As we know, {z;,;,} is go-convergent to . Assume that {z;;} is not go-convergent
to £. Therefore, there is ¢ > 0 such that go(x;,;, — &) < € for infinitely many
terms.
Let M. = {(7’, s) € NxN: go(z;,5, — &) > 8} and let ¢ > 1, (v=1,2,...). Then
da(M.) = 0, and by (1.13), M, C M.. Hence, d2(M,) = 0, which contradicts
(1.14) and we get that {x;;} is go-convergent to &.
Conversely, suppose that there exists a subset K = {(i,,js) € Nx N : 4 <
Qg < o < dp < ey g1 < Jo < o < js < -+ } with 09(K) = 1 such that
go — lim z; ; =& Then there exists N(¢) such that
7,8—00

go(zi; — &) <€ forz,7 > N.
Let
K= {(i,) ENxN: golay; — €) > ¢}

and let K = {(iN+17jN+1>a (iN+27jN+2)a .. } Then (52<K/) =1 and Ka g N x N\
K’ which implies that d3(K.) = 0. Hence gy(stat) — limz = &. O

Theorem 1.11. Let go(stat) — limxz = & and let go(stat) — limy = &. Then
(i) g2(stat) — lim(z £ y) = & £ &;
(ii) go(stat) — lim(ax) = a&, a € R.

Proof. 1t is easy to prove, so we omit it. 0

Theorem 1.12. If 0 < p < 0o and x;; — £[C, ga]p, then (x;;) is go-statistically
convergent to & in ([O,u, (Fl,o -, -|H,gg).
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Proof. Let x;; — €[C, ga],. Then

k,l k,l

1 < 1 ’

7l Z (ga(zij — Ee))P > 7 Z (92(zi; — &e))P = H|K B
ij=1,1 ij=1

g2(zi—Ee)>e

Since k}liinw%\f(g\ = 0850 0s(K.) =0, where K. = {i <k, j <1:go(z;; — Ee) >
e}, the desired result. O
Theorem 1.13. If x = (x;;) is ga(stat)-convergent to & in

([O, [(Fl,u,p, ||, -|H,gg), then x;; — £[C, ga]p-

Proof. Suppose that x = (x;;) is go-statistically convergent to & in

([0, [F),u,p, |, -+-]l], 92). Then for & > 0, we have 05(K.) = 0, where K, =
{i <k, j<l:gs(x;; —&e) > e}. Since x = (z;5) € [O,u,l‘x’,p, Il - .,-H], then
there exists K > 0 such that [uklOkl(H%T?ge, Yy e e s Yn_1 )}pkl < K for all 4, j.

Thus,

m+r—1n+s—1 é— Pl
go(zij — &e) = sup (Ts Z Z [Uklekzl< ,yl,...,ynle)] >

r,s>1, mn>1 i=m
0#£Y1,-Yn—1€X

< K.
Hence
kel
kl Z ga(wij — &e))! = kl Z g2(ij — &e))? (ga(zij — &e))?
4,j=1,1 4,j=1,1 zj:Ll
7 ]QKE i,jEKe
< Pt —IK -
]
Theorem 1.14. It holds that <52 ) — (1C, gal) e
([0 P llel] 92) / reg (1€ gzl )res
Proof. By combining Theorems 1.11 and 1.12, we have the proof. O
Theorem 1.15. Let ([(9, u, [Flp, |-y |H , 92) be a complete paranormed space.
Then a sequence in [(’), u, [Fl,p, |-+ ||] is go-statistical convergent if and only

if it is go-statistical Cauchy.
Proof. Let go(stat) —limz = £. Then we get d2(A(e)) = 0, where

X(e) = {(i:J) € Nx N: goly; =€) = S .
This implies
02(X(€)) = 02({(4,7) € Nx N: gaoay; — §)) <e}) = 1.
Let k,1 € X¢(¢). Then go(w1y — &) < 5. Now let

V() = {(i.)) € N X N: golwm — 25) > e},
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We need to show that Y(e) C X(g). Let (4,7) € Y(¢). Then ga(xp — xi5) > ¢,
and therefore go(x;; — &) > ¢, that is, (4,j) € X(¢). Otherwise, if go(z;; — ) <,
then

e €
€ < go(wij — i) < go(wij — &) + go(zm — &) < 3 + 5= €,

which is impossible. Thus, Y (¢) C X(¢), and therefore, z = (x;;) is go-statistical
convergent sequence.

Conversely, let z = (z;;) be go-statistical Cauchy but not g,-statistical convergent
sequence. Then there exists (t',w') € N x N such that

5gD@»:@(gyﬁeNxN:@@“—%w)z%):o

and 02(G(e)) = 0, where
. £
G(e) = {(i,7) € Nx ol — ) < 5},
that is, do(G°(¢)) = 1, since go(ws; — 11) < 2g2(2i; — &) < €. If ga(wy; — &) < 5,
then do(D¢(g)) = 0, that is, do(D(e)) = 1, which leads to a contradiction.

O
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