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ALMOST SEPARABLE SPACES
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Abstract. We introduce the notion of almost separable space, which is a
generalization of separable space. We show that like separability, almost sep-
arability is c-productive and that the converse is true under some restrictions.
We discuss about the cardinality of the set of all real valued continuous func-
tions on an almost separable space. Finally, we establish a Baire category like
theorem on pseudocompact spaces.

1. Introduction

Let X be any topological space and let C(X) be the set of all real valued
continuous functions on X. A subset A of X is called almost dense in X if
for any f ∈ C(X), the condition f(A) = {0} implies that f(X) = {0}. A
topological space X is called almost separable if it has a countable almost dense
subset. A dense subset is always almost dense. In completely regular spaces,
dense and almost dense sets are identical, but the converse is not true. We give
an example of a noncompletely regular space in which dense and almost dense
sets are same. We show that almost separability is c-productive and that under
some restrictions, the converse is also true. Finally, we study relationships among
almost separability, sequential separability, and strongly sequential separability.

Definition 1.1 ([1,3,4]). A space X is called sequentially separable if there exists
a countable subset D of X such that, for every x ∈ X, there exists a sequence
from D converging to x.
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Definition 1.2 ([1]). A space X is called strongly sequentially separable if it is
separable and every dense countable subspace is sequentially dense. A subset D
of X is called sequentially dense if for every x in X, there exists a sequence from
D converging to x.

2. Almost dense subsets of a topological space

Definition 2.1. A subset A of a topological space X is called almost dense if for
any f ∈ C(X), the condition f(A) = {0} implies that f(X) = {0}.
Definition 2.2. A subset A of a topological spaceX is called zero set if A = Z(f),
for some f ∈ C(X), where Z(f) = {x ∈ X : f(x) = 0}. The complement of a
zero set is called cozero set.
Theorem 2.3. Dense subsets are always almost dense.
Proof. Let A be a dense subset of a topological space (X, τ). We show that A
is an almost dense subset of (X, τ). Let f ∈ C(X) with f(A) = {0}. Since
f ∈ C(X), then f(A) ⊆ f(A). Therefore f(A) = f(X) ⊆ f(A) = {0} = {0}.
Thus, f(X) = {0}. Hence A is an almost dense subset of X. □
Theorem 2.4. In a completely regular space X, almost dense subsets of X are
dense in X.
Proof. Let A be an almost dense subset of X. If possible, let A be not dense
in X and let x◦ ∈ X \ A. Then there exists f ∈ C(X) such that f(x◦) = 1
and f(A) = 0, by the complete regularity property of X. Thus f(A) = {0}, but
f(X) 6= {0}. This shows that A is not almost dense in X, which contradicts with
our assumption. Hence A is dense in X. □

We cite an example of a noncompletely regular space where every almost dense
set is dense. To show this, we need the following theorem.
Theorem 2.5. Let Y be a dense subset of a topological space X (may or may
not be a completely regular space). If Y has a base consisting of cozero subsets of
X for open sets, then every almost dense set in X is dense in X.
Proof. Suppose that A is an almost dense subset of X. We show that A is dense
in X. Let U be a nonempty open set in X. Then U ∩ Y 6= ∅ as Y is dense in X.
If A ∩ U = ∅, then A ∩ U ∩ Y = ∅. Let y ∈ U ∩ Y . Then there exists f ∈ C(X)
such that y ∈ X \ Z(f) ⊆ U ∩ Y . Consequently, f(A) = {0}, but f(X) 6= {0},
which is a contradiction, as A is almost dense in X. Hence A ∩ U 6= ∅. □

Now we give an example of a noncompletely regular space where almost dense
subsets are dense in X.
Example 2.6. Let K = { 1

n
: n ∈ N} and let β = {(a, b) : a < b, a, b ∈ R} ∪

{(a, b) \K : a < b, a, b ∈ R} be a base for the K-topology τK on R. Then (R, τK)
is not regular and hence not completely regular. We would like to show that an
almost dense set in (R, τK) is dense in (R, τK). Let Y = R \ {0}. The set Y is
open, dense in (R, τK), and the relative topology of Y is the usual topology of Y ,
which is completely regular and as a result, possess a base consisting of cozero
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sets of (R, τK). We invoke Theorem 2.5 to conclude that almost dense sets in
(R, τK) are dense in (R, τK).

In a normal space X, an almost dense subset of X may not be dense. This can
be shown in the following example.

Example 2.7. Let X = {a, b} and let τ = {ϕ,X, {a}} be a topology on X. Then
X is a normal space. Moreover, {b} is an almost dense set in X but not dense in
X.

Theorem 2.8. Let f : X −→ Y be a continuous, surjective function. If A is an
almost dense subset of X, then f(A) is an almost dense subset of Y .

Proof. Let f : X −→ Y be a continuous surjective function and let A be an
almost dense subset of X. To show that f(A) is an almost dense subset of Y , let
g ∈ C(Y ) such that g(f(A)) = {0}. Then g ◦f ∈ C(X) such that g ◦f(A) = {0}.
As A is almost dense in X, then we have g ◦ f(X) = {0}. Since f is onto, we
have g(Y ) = {0}. Hence f(A) is almost dense in Y . □

Theorem 2.9. Let τ1 and τ2 be two topologies on X such that τ2 is finer than
τ1. Then if a subset A of X is almost dense in (X, τ2), then A is almost dense
in (X, τ1).

Proof. We denote by C(X, τi) the set of all real valued continuous functions on
X with respect to the topology τi for i = 1, 2. Let A be almost dense in (X, τ2).
Let f ∈ C(X, τ1) with f(A) = {0}. Since f ∈ C(X, τ1) and τ2 is finer than τ1,
we have f ∈ C(X, τ2). Now A is almost dense in (X, τ2) and f ∈ C(X, τ2) with
f(A) = 0. Thus f(X) = {0}. Hence A is almost dense in (X, τ1). □

Theorem 2.10. If A is almost dense in X and B is almost dense in Y , then
A×B is almost dense in X × Y .

Proof. Let f : X × Y 7→ R be continuous such that f = 0 on A× B. Fix a ∈ A,
and look at fa(y) = f(a, y), y ∈ Y . Hence fa : Y 7→ R is continuous and fa(y) = 0
for all y ∈ B. The hypothesis implies fa(y) = 0 for all y ∈ Y . Since a is arbitrary,
we obtain f(A× Y ) = {0}. Take any (x, y) ∈ X × Y . Then fy : X → R defined
by fy(z) = f(z, y), z ∈ X, is a continuous map. Now fy(a) = 0 for all a ∈ A.
Then fy(x) = 0 for all x ∈ X, that is, f(x, y) = 0. Since y ∈ Y is arbitrary, this
shows f = 0 on X × Y . Hence A×B is almost dense in X × Y . □

Corollary 2.11. Let A1, A2, . . . , An be almost dense in X1, X2, . . . , Xn, respec-
tively. Then

∏n
i=1Ai is almost dense in

∏n
i=1Xi.

Proposition 2.12. Let {Xα : α ∈ Λ} be a family of topological spaces and let
Aα ⊂ Xα, α ∈ Λ, be almost dense in Xα. Then

∏
α∈ΛAα is almost dense in∏

α∈ΛXα.

Proof. For a = (aα)α∈Λ ∈
∏

α∈ΛAα, define

D = {(xα)α∈Λ ∈
∏
α∈Λ

Xα : {α : xα 6= aα}is finite}.
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Let f :
∏

α∈ΛXα 7→ R be continuous such that f = 0 on
∏

α∈ΛAα. For any
finite subset I ⊂ Λ,

∏
α∈I Xα×{aα : α ∈ Λ\ I} is homeomorphic to

∏
α∈I Xα and∏

α∈I Aα is almost dense in
∏

α∈I Xα (by Corollary 2.11). Hence
∏

α∈I Aα×{aα :
α ∈ Λ \ I} is almost dense in

∏
α∈I Xα × {aα : α ∈ Λ \ I}. Consequently

f(
∏

α∈ΛXα×{aα : α ∈ Λ \ I}) = {0}. Now D = ∪[
∏

α∈I Xα×{{aα : α ∈ Λ \ I} :
I ⊆ Λ finite }]. This implies that f(D) = {0}. □

We now invoke the following important result on product spaces.
Theorem 2.13. Let {Yα : α ∈ Λ} be a family of topological spaces and let
a = (xα)α∈Λ be a fixed element of

∏
α∈Λ Yα. The set E = {(yα)α∈Λ ∈

∏
α∈Λ Yα :

{α ∈ Λ : yα 6= xα} is finite} is dense in
∏

α∈Λ Yα.
Because of this theorem, D is dense in

∏
α∈ΛXα and f(D) = 0, which imply

f = 0 on
∏

α∈ΛXα. As a result,
∏

α∈ΛAα is almost dense in
∏

α∈ΛXα.
Theorem 2.14. If a topological space X contains a connected almost dense subset,
then X is connected.
Proof. Let A be a connected almost dense subset of X. If possible, let X be
disconnected. Then there exists a continuous, onto function f : X 7→ {0, 1}. Let
Y = {x ∈ X : f(x) = 0}. Then X \ Y = f−1{1}. Since A is connected, then
either A ⊆ Y or A ⊆ X \ Y .

Case 1: If A ⊆ Y , then f(A) = {0}, but f(X) 6= {0}, which contradicts with
the fact that A is an almost dense set in X.

Case 2: If A ⊆ X \ Y , then considering g = 1 − f implies g(A) = {0} but
g(X) 6= {0}, which is a contradiction as A is an almost dense set in X. Hence X
is connected. □

Of course the converse of Theorem 2.14 is not true that is possible for a con-
nected space X to have a disconnected almost dense subset. As an illustration,
consider the following example:

Let X = R with the topology consisting of all subsets of R containing 0. Then
X is obviously connected. The subspace A = {1, 2} is almost dense in X but not
connected.
Theorem 2.15. A subset A of X is almost dense in X if and only if every
nonempty cozero set intersects A.
Proof. Let A be an almost dense subset of X and let X \ Z(f) be a nonempty
cozero set in X. Let us assume that A∩ (X \Z(f)) = ∅. Then f(A) = {0}. Since
A is almost dense in X, then f(X) = {0}, which contradicts with the fact that
X \ Z(f) is nonempty. Hence A ∩ (X \ Z(f)) 6= ∅.

Conversely, let A intersect every nonempty cozero set of X. Suppose that A
is not an almost dense subset of X. Then there exists a continuous function
f : X 7→ R such that f(A) = {0} but f(X) 6= {0}. Then X \Z(f) is a nonempty
cozero set and A does not intersect the nonempty cozero set X \ Z(f). □

As is well known, in a topological space, a nonempty subset is dense if and only
if it intersects every nonempty open set. Theorem 2.15 presents the analogous
result in the case of almost denseness property. We have seen that in a topological
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spaceX, if A ⊆ X is dense and U is a nonempty open set, then not only A∩U 6= ∅,
but also A ∩ U is dense in U . Now the following question arises:

Let A be almost dense in a topological space X and let ∅ 6= U ⊂ X be a cozero
set. Then A ∩ U 6= ∅ is no doubt, but is A ∩ U almost dense in U? The answer
does not seem to be clear!

3. Almost separable spaces

Definition 3.1. A space X is called almost separable if it contains a countable
almost dense subset.
Theorem 3.2. Each separable space is almost separable.

The converse of the above theorem is not true.
Example 3.3. Let X = R and let τc be the cocountable topology on X. For any
countable set A in X, X \ A is open and A ∩ (X \ A) = ∅. Therefore A is not
dense in X. Therefore X is not separable.

We want to show that Q is almost dense in X. Let f ∈ C(X) and let f(Q) =
{0}. Since every real valued continuous function on X is constant, then f(X) =
{0}. Therefore Q is almost dense in X. Therefore X contains a countable almost
dense subset. Hence X is an almost separable space. In fact, any countable
subset of X is almost dense in X.
Theorem 3.4. Finite product of almost separable spaces is almost separable.
Proof. It follows from Corollary 2.11. □
Theorem 3.5. Let Y be almost dense subset of X and let Y be almost separable
as a subspace. Then X is almost separable.
Proof. Let A be a countable almost dense subset of Y . Let f ∈ C(X) such
that f(A) = {0}. Then f |Y∈ C(Y ) and f |Y (A) = {0}. These imply that
f |Y (Y ) = {0} as A is almost dense in Y . Since Y is almost dense in X, then
f(X) = {0}. Therefore A is a countable almost dense subset of X. Hence X is
an almost separable space. □

In the case of infinite products, like the case of separable spaces, the following
result is true.
Theorem 3.6. Let {Xα : α ∈ Λ} be a family of almost separable topological
spaces, in which card(Λ) = c. Then

∏
α∈ΛXα with the product topology is almost

separable space.
Proof. Let Aα ⊆ Xα be a countable almost dense subset of Xα. To avoid triviality,
we assume Aα to be countably infinite. Let fα : N → Aα be a bijection. Define∏

α∈Λ fα : NΛ →
∏

α∈ΛAα as follows:
∏

α∈Λ fα(nα, α ∈ Λ) = (fα(nα), α ∈ Λ),
where (nα, α ∈ Λ) ∈ NΛ. We write fΛ for

∏
α∈Λ fα. We know NΛ = {g :

Λ → N} and fΛ(g) = (fα(g(α)) : α ∈ Λ) ∈
∏

α∈ΛAα. It is easy to see that
fΛ is onto. Let pα :

∏
α∈ΛAα → Aα be the projection to the αth coordinate.

Then pα ◦ fΛ(g) = fα ◦ g(α), α ∈ Λ. This shows that fΛ : NΛ →
∏

α∈ΛAα is
continuous and onto. It is well known that NΛ is separable, and hence almost
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separable. Therefore
∏

α∈ΛAα is almost separable. Since
∏

α∈ΛAα is almost
dense in

∏
α∈ΛXα,

∏
α∈ΛXα is almost separable. □

Definition 3.7. A topological space X is called functionally Hausdorff if, for
any two distinct points a, b ∈ X, there exists f ∈ C(X) such that f(a) = 0 and
f(b) = 1.

Lemma 3.8. If X a functionally Hausdorff space, then for any two distinct points
a, b ∈ X, there exist two distinct cozero sets C and D in X such that a ∈ C and
b ∈ D.

Proof. Since X is functionally Hausdorff, for a, b ∈ X with a 6= b, there exists
f ∈ C(X) such that f(a) = 0 and f(b) = 1. Let C = {x ∈ X : f(x) < 1

2
} =

((f − 1
2
)∧ 0)−1(R \ {0}) and D = {x ∈ X : f(x) > 1

2
} = ((f − 1

2
)∨ 0)−1(R \ {0}),

where (g ∨ h)(x) = max{g(x), h(x)} and (g ∧ h)(x) = min{g(x), h(x)} for all
x ∈ X. Thus C and D are disjoint cozero sets in X, a ∈ C, and b ∈ D. □
Theorem 3.9. Let X =

∏
α∈ΛXα be an almost separable space, where each Xα is

functionally Hausdorff and contains at least two points. Then each Xα is almost
separable and card(Λ) ≤ c.

Proof. Let D be a countable, almost dense subset of X. Consider the projection
function pα : X 7→ Xα to the αth coordinate. Then the function pα : X 7→ Xα

is continuous. Since the continuous image of an almost separable space is almost
separable, each Xα is almost separable.

For every α ∈ Λ, let aα, bα ∈ Xα with aα 6= bα. Since each Xα is functionally
Hausdorff, there exist disjoint cozero sets Cα and Dα in Xα such that aα ∈ Cα

and bα ∈ Dα. Moreover, p−1
α (Cα) is a nonempty cozero set in X. Theorem 2.15

implies that Kα = D ∩ p−1
α (Cα) 6= ∅.

Define the function ϕ : Λ → P(D) by ϕ(α) = Kα. Now p−1
α (Cα) ∩ p−1

α (Dβ)
is a nonempty cozero set in X. Then there exists x ∈ D ∩ p−1

α (Cα) ∩ p−1
α (Dβ)

by Theorem 2.15. Hence, x ∈ Kα and x /∈ Kβ. Therefore Kα 6= Kβ. Thus ϕ is
injective. Hence card(Λ) ≤ card(P(D)) = c. □
Theorem 3.10. For an almost separable space X, the cardinality of C(X) is less
than or equal to c.

Proof. Let A be a countable almost dense subset of X. Define a map ϕ : C(X) →
C(A) by ϕ(f) = f |A. We show that ϕ is an injective mapping. Let ϕ(f) = ϕ(g),
where f, g ∈ C(X). Then f |A= g|A. Let h = f − g. Then h ∈ C(X) and
h(A) = {0}. Since A is almost dense in X, then h(X) = {0}. Therefore ϕ is
injective. Since the cardinality of C(A) is less that or equal to c, the cardinality
of C(X) is less than or equal to c. □
Corollary 3.11. If an almost separable space has an uncountable closed discrete
subspace, then it is not normal.

Proof. Let A be an uncountable closed discrete subset of an almost separable
space X. Then any real valued function on A is continuous as A is discrete.
Thus the cardinality of C(A) is greater than or equal to 2c. If X is normal,
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then by the Tietze’s extension theorem, any real valued continuous function on
A can be extended to a member of C(X) as A is a closed subset of X. Then
card(C(A)) ≥ 2c implies that card(C(X)) ≥ 2c, which contradicts with Theorem
3.10. Hence X is not normal. □
Theorem 3.12. Let X be a functionally Hausdorff, almost separable space. Then
the cardinality of X is at most 2c.

Proof. Consider the function ψ : X → P(C(X)) by ψ(x) = {f ∈ C(X) : f(x) =
0}. Using the functionally Hausdorff property of X, we have to show that ψ is
injective. By Theorem 3.10, the cardinality of C(X) is c. Thus cardinality of X
is at most 2c. □

4. Baire category like theorem

A topological space X is called pseudocompact if every real valued continuous
function on X is bounded. The concept of pseudocompact space was introduced
in [2]. The following result was established in [2, Theorem 34] assuming the
complete regularity of X. If we follow the steps of the proof of [2, Theorem 34],
then we can observe that the result is true for an arbitrary topological space.

Theorem 4.1. For a topological space X, the following conditions are equivalent:
(i) X is pseudocompact.
(ii) If {Fn : n ∈ N} is a sequence of zero sets of X with finite intersection
property, then

∩∞
n=1 Fn 6= ∅.

(iii) If {Un : n ∈ N} is a countable cover of X consisting of cozero sets, then
there exists a finite subcover.

Theorem 4.2. Let X be a topological space. Given a nonempty cozero set U and
x ∈ U , there exist a cozero set V and a zero set F such that x ∈ V ⊆ F ⊂ U .

Proof. Let f : X → [0, 1] such that U = f−1(0, 1] = X \ f−1({0}). Since x ∈
U, f(x) > 0. Choose δ > 0 such that 0 < f(x) − δ < f(x). Let V = f−1(f(x) −
δ, 1]) and let F = f−1[f(x)−δ, 1]. Then x ∈ V ⊆ F ⊆ U . Now (f(x)−δ, 1] ⊆ [0, 1]
is an open set and hence a cozero set [f(x)− δ, 1] is a closed subset of [0, 1] and
hence a zero set. Then V = f−1(f(x)−δ, 1] is a cozero set and F = f−1[f(x)−δ, 1]
is a zero set of X. □
Theorem 4.3 (Baire category like theorem). Let X be a pseudocompact space.
If {Un : n ∈ N} is a sequence of almost dense cozero sets of X, then

∩∞
n=1 Un is

a nonempty almost dense subset of X.
Proof. Write D =

∩∞
n=1 Un. We show that D 6= ∅ and that D intersects every

nonempty cozero set. Let V be a nonempty cozero set and let x ∈ V . Since U1

is almost dense, V ∩ U1 6= ∅ and is a cozero set. Let x1 ∈ V ∩ U1. By Theorem
4.2, there exist cozero sets V1 and F1 such that x1 ∈ V1 ⊆ F1 ⊂ V ∩ U1. Now
the fact that V1 6= ∅ is a cozero set implies that V1 ∩ U2 6= ∅ and is a zero set.
Let x2 ∈ V1 ∩ U2. Then there exist a nonempty cozero set V2 and a zero set F2

such that x2 ∈ V2 ⊆ F2 ⊂ V1 ∩ U2 ⊆ V ∩ U1 ∩ U2. Now V2 6= ∅ is a cozero set
and V2 ∩ U3 6= ∅ and is a cozero set. Let x3 ∈ V2 ∩ U3. There exist a cozero set
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V3 and a zero set F3 such that x3 ∈ V3 ⊆ F3 ⊆ V2 ∩ U3 ⊆ V ∩ U1 ∩ U2 ∩ U3.
Proceeding in this way, we obtain a nonempty cozero set Vn+1 and a zero set
Fn+1 such that xn+1 ∈ Vn+1 ⊆ Fn+1 ⊆ Vn ∩Un+1 ⊆ V ∩U1 ∩U2 ∩U3 ∩ · · · ∩Un+1

for all n ≥ 0. Note that Fn+1 ⊆ Fn and Fn’s are nonempty zero sets. Since
X is pseudocompact, in virtue of Theorem 4.1,

∩∞
n=1 Fn 6= ∅. Hence

∩∞
n=1 Fn ⊆∩∞

n=1(V ∩U1∩U2∩U3∩ · · · ∩Un) = V ∩
∩∞

n=1 Un, so V ∩ (
∩∞

n=1 Un) 6= ∅. That is,
V ∩D 6= ∅. Since V is an arbitrary nonempty cozero set, D is almost dense. □

We know that separability is not a hereditary property. Niemytzky’s plane
is a well-known example. The same is true about almost separability as well.
Niemytzky’s plane provides an example in this case also.

We now finish our paper giving relations among the different types of separa-
bility notions. From [1, Section 1.2], we get the following relation:

Strong sequentially separable ⇒ Sequentially separable ⇒ Separable.
In this paper, Theorem 3.2 gives that separable implies almost separable. Com-

bining these two, we get the following relations:
Strong sequentially separable ⇒ Sequentially separable ⇒ Separable ⇒ Almost

separable.
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