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Abstract. We consider a class of boundary value problems associated with
even order nonlinear impulsive neutral partial functional differential equations
with continuous distributed deviating arguments and damping term. Necessary
and sufficient conditions are obtained for the oscillation of all solutions using
impulsive differential inequalities and integral averaging scheme with the Robin
boundary condition. Examples illustrating the results are also given.

1. Introduction and preliminaries

The theory of impulsive differential equations is much richer than the corre-
sponding theory of differential equations without impulse effects. The theory
of impulsive differential equations marks its beginning in [15] by Mil’man and
Myshkis. The first investigation on the oscillation theory of impulsive differen-
tial equations was published in 1989 [2]. The first paper on impulsive partial
differential equations, [1], was published in 1991.

The oscillation of impulsive and nonimpulsive partial differential equations
has been extensively studied in the literature; we refer the readers to the pa-
pers [5, 11, 17–20] and the references therein cited. We also refer to the pa-
pers [9, 10] for oscillatory and/or nonoscillatory solutions to models from math-
ematical biology and physics formulated by partial differential equations such
that their long time behavior is connected to the external source, idealized by
nonlocal and/or taxis-driven terms. Consequently, it is required to study with
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impulse effect on higher-order partial differential equations. In the monographs,
Wu [22] and Yoshida [24] provided several fundamental theories and applications
of partial functional differential equations to population ecology, generic repres-
sion, climate models, viscoelastic materials, control problems, coupled oscillators,
beam equations, and structured population models. There is a strong interest in
these mathematical models for formulating this higher-order problem. In this
effort, we begin oscillation criteria for even order impulsive neutral partial differ-
ential equations that are not formally studied. Thus the main results of this paper
are the generalization of the results studied in [3,14] with additional force compo-
nents along the system such as impulse and distributed delay. Distributed delay
is a broad case of constant delay, which can be found in the monographs [7, 8].

Consider the higher-order impulsive neutral delay partial differential equations
with distributed delay of the form

∂m

∂tm
(u(x, t) + c(t)u(x, τ(t))) +

∫ b
a q(t, ξ)u(x, σ(t, ξ))dη(ξ)

= a(t)∆u(x, t) +
∫ b
a b(t, ξ)∆u(x, ρ(t, ξ))dη(ξ), t ̸= tk, (x, t) ∈ Ω× [0,+∞) ≡ G,

∂(i)u(x, t+k )

∂t(i)
= I

(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
, k = 1, 2, . . . , i = 0, 1, 2, . . . ,m− 1,


(1.1)

where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω and
∆ is the Laplacian in the Euclidean space RN .

Equation (1.1) is supplemented by the following Robin boundary condition:

α(x)
∂u(x, t)

∂γ
+ β(x)u(x, t) = 0, (x, t) ∈ ∂Ω× [0,+∞), (1.2)

where γ is the outer surface normal vector to ∂Ω and α, β ∈ C (∂Ω, [0,+∞)),
α2(x) + β2(x) ̸= 0.

In what follows, we assume that the following hypotheses hold:

(H1) c(t) ∈ Cm([0,+∞), [0,+∞)), a(t) ∈ PC([0,+∞), [0,+∞)), where PC
denotes the class of functions, which are piecewise continuous in t with
discontinuities of first kind only at t = tk, k = 1, 2, . . ., and left continuous
at t = tk, k = 1, 2, . . ., τ(t) ∈ C([0,+∞),R), lim

t→+∞
τ(t) = +∞, τ(t) ≤ t,

q(t, ξ) ∈ C([0,+∞)× [a, b], [0,+∞)).
(H2) b(t, ξ) ∈ C([0,+∞)×[a, b], [0,+∞)), σ(t, ξ), ρ(t, ξ) ∈ C([0,+∞)×[a, b],R),

ρ(t, ξ) ≤ t, σ(t, ξ) ≤ t for ξ ∈ [a, b], σ(t, ξ) and ρ(t, ξ) are nonde-
creasing with respect to t and ξ, respectively, and lim inf

t→+∞, ξ∈[a,b]
σ(t, ξ) =

lim inf
t→+∞, ξ∈[a,b]

ρ(t, ξ) = +∞.

(H3) There exists a function θ(t) ∈ C([0,+∞), [0,+∞)) satisfying θ(t) ≤
σ(t, a), θ′(t) > 0 and lim

t→+∞
θ(t) = +∞, η(ξ) : [a, b] → R is nondecreasing,

and the integral is a Stieltjes integral in (1.1).
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(H4)
∂(i)u(x, t)

∂t(i)
are piecewise continuous in t with discontinuities of the first

kind only at t = tk, k = 1, 2, . . ., and left continuous at t = tk,
∂(i)u(x, tk)

∂t(i)
=

∂(i)u(x, t−k )

∂t(i)
, k = 1, 2, . . ., i = 0, 1, 2, . . . ,m− 1.

(H5) I
(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
∈ PC(Ω̄ × [0,+∞) × R,R), k = 1, 2, . . . , i =

0, 1, 2, . . . ,m− 1, and there exist positive constants a(i)k and b
(i)
k such that

a
(i)
k ≤

I
(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k ,

for i = 0, 1, 2, . . . ,m− 1, k = 1, 2, . . ..

Definition 1.1 ([24]). A solution u of (1.1) is a function u ∈ Cm(Ω̄×[t−1,+∞),R)∩
C(Ω̄× [t̂−1,+∞),R) that satisfies (1.1), where

t−1 := min

{
0, min

ξ∈[a,b]

{
inf
t≥0

ρ(t, ξ)

}}
and

t̂−1 := min

{
0, inf

t≥0
τ(t), min

ξ∈[a,b]

{
inf
t≥0

σ(t, ξ)

}}
.

Definition 1.2. The solution u of problem (1.1) with boundary condition (1.2)
is said to be oscillatory in the domain G if for any positive number ℓ, there exists
a point (x0, t0) ∈ Ω× [ℓ,+∞) such that u(x0, t0) = 0.

Definition 1.3. A function V (t) is said to be eventually positive (negative) if
there exists t1 ≥ t0 such that V (t) > 0 (V (t) < 0) for all t ≥ t1.

Lemma 1.4 ([23]). Assume that λ0 > 0 is the smallest eigenvalue of the problem
∆ω(x) + λω(x) = 0 in Ω

α(x)
∂ω(x)

∂γ
+ β(x)ω(x) = 0 on ∂Ω

 (1.3)

and Φ(x) > 0 is the corresponding eigenfunction of λ0. Then λ0 = 0, Φ(x) = 1
as β = 0 (x ∈ Ω) and λ0 > 0, Φ(x) > 0 (x ∈ Ω) as β(x) ̸≡ 0 (x ∈ ∂Ω).

Lemma 1.5 ([6]). Let y(t) be a positive and n times differentiable function
on [0,+∞). If y(n)(t) has constant sign and not identically zero on any ray
[t1,+∞) for t1 > 0, then there exist ty ≥ t1 and an integer l (0 ≤ l ≤ n), with
n + l even for y(t)y(n)(t) ≥ 0 or n + l odd for y(t)y(n)(t) ≤ 0 and for t ≥ ty,
y(t)y(k)(t) > 0, 0 ≤ k ≤ l; (−1)k−ly(t)y(k)(t) > 0, l ≤ k ≤ n.

Lemma 1.6 ([16]). Suppose that the conditions of Lemma 1.5 are satisfied and
that y(n−1)(t)y(n)(t) ≤ 0, t ≥ ty. Then there exist constants µ ∈ (0, 1) and M > 0
such that for sufficiently large t, |y′(µt)| ≥ Mtn−2

∣∣y(n−1)(t)
∣∣ .
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Lemma 1.7 ([4]). If X and Y are nonnegative, then

Xµ − µXY µ−1 + (µ− 1)Y µ ≥ 0, µ > 1,

Xµ − µXY µ−1 − (1− µ)Y µ ≤ 0, 0 < µ < 1,

where the equality holds if and only if X = Y .

For each positive solution u of problem (1.1) with boundary condition (1.2),
we combine the functions V (t), A(t), and B(t) defined by

V (t) =

∫
Ω

u(x, t)Φ(x)dx, A(t) = g0

∫ b

a

q(t, ξ)dη(ξ), and

B(t) = M(θ(t))m−2θ′(t),

respectively, where g0 = 1− c(σ(t, ξ)).
This work is planned as follows: In Section 2, we discuss the oscillation of prob-

lem (1.1) with boundary condition (1.2). In Section 3, we present two examples
to illustrate the main results.

2. Main results

In this section, we establish the oscillation criteria of problem (1.1) with bound-
ary condition (1.2). Lemma 1.4 is very useful for establishing our main results.

Theorem 2.1. Assume that β(x) ̸≡ 0 for x ∈ ∂Ω. All solutions of (1.1) with
boundary condition (1.2) are oscillatory if and only if all solutions of the equation

[V (t) + c(t)V (τ(t))](m) +
∫ b

a
q(t, ξ)V (σ(t, ξ))dη(ξ)

+λ0a(t)V (t) + λ0

∫ b

a
b(t, ξ)V (ρ(t, ξ))dη(ξ) = 0, t ̸= tk,

a
(i)
k ≤

∂(i)V (t+k )

∂t(i)

∂(i)V (tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, . . . , i = 0, 1, 2, . . . ,m− 1,


(2.1)

are oscillatory, where λ0 is the smallest eigenvalue of (1.3).

Proof. (i) Sufficiency: Assume, for the sake of contradiction, that there is a
nonoscillatory solution u of (1.1) with boundary condition (1.2), which has no
zero in Ω × [t0,+∞) for some t0 ≥ 0. Without loss of generality, we assume
that u(x, t) > 0, where (x, t) ∈ Ω × [t0,+∞)and t0 ≥ 0. Because of conditions
(H2) and (H3), there exists t1 > t0 > 0 such that τ(t) ≥ t0, σ(t, ξ) ≥ t0, and
ρ(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞) × [a, b]. Then u(x, τ(t)) > 0 for (x, t) ∈ Ω ×
[t1,+∞), u(x, σ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b], and u(x, ρ(t, ξ)) >
0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].
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For t ≥ t0, t ̸= tk, k = 1, 2, . . . , multiplying both sides of equation (1.1) with
Φ(x) > 0 and integrating with respect to x over the domain Ω, we obtain

dm

dtm
(∫

Ω
u(x, t)Φ(x)dx+

∫
Ω
c(t)u(x, τ(t))Φ(x)dx

)
+
∫
Ω

∫ b

a
q(t, ξ)u(x, σ(t, ξ))Φ(x)dη(ξ)dx

= a(t)
∫
Ω
∆u(x, t)Φ(x)dx+

∫
Ω

∫ b

a
b(t, ξ)∆u(x, ρ(t, ξ))Φ(x)dη(ξ)dx.


(2.2)

From Green’s formula and boundary condition (1.2), it follows that∫
Ω

∆u(x, t)Φ(x)dx =

∫
∂Ω

[
Φ(x)

∂u(x, t)

∂γ
− u(x, t)

∂Φ(x)

∂γ

]
dS +

∫
Ω

u(x, t)∆Φ(x)dx

=

∫
∂Ω

[
Φ(x)

∂u(x, t)

∂γ
− u(x, t)

∂Φ(x)

∂γ

]
dS

− λ0

∫
Ω

u(x, t)Φ(x)dx, t ≥ t1,

where dS is the surface element on ∂Ω. If α(x) ≡ 0, x ∈ ∂Ω, then from (1.2), we
have β(x) ̸≡ 0, u(x, t) = 0, and (x, t) ∈ ∂Ω× [0,+∞). Hence,∫

∂Ω

(
Φ(x)

∂u(x, t)

∂γ
− u(x, t)

∂Φ(x)

∂Ω

)
dS ≡ 0, t ≥ t1, t ̸= tk.

If α(x) ̸≡ 0, then x ∈ ∂Ω. Note that ∂Ω is piecewise smooth, that α, β ∈
C(∂Ω, [0,+∞)), and that α2(x) + β2(x) ̸= 0. Without loss of generality, we can
assume that α(x) > 0, x ∈ ∂Ω. Then by (1.2) and (1.3), we have∫

∂Ω

(
Φ(x)

∂u(x, t)

∂γ
− u(x, t)

∂Φ(x)

∂γ

)
dS

=

∫
∂Ω

(
−Φ(x)

β(x)

α(x)
u(x, t) +

β(x)

α(x)
Φ(x)u(x, t)

)
dS = 0, t ≥ t1.

Using Lemma 1.4, we obtain∫
Ω

∆u(x, t)Φ(x)dx = −λ0

∫
Ω

u(x, t)Φ(x)dx = −λ0V (t), t ≥ t1, (2.3)

and∫
Ω

∆u(x, ρ(t, ξ))Φ(x)dx = −λ0

∫
Ω

u(x, ρ(t, ξ))Φ(x)dx = −λ0V (ρ(t, ξ)), t ≥ t1.

(2.4)

It is easy to see that∫
Ω

∫ b

a

q(t, ξ)u(x, σ(t, ξ))Φ(x)dη(ξ)dx =

∫ b

a

q(t, ξ)

∫
Ω

u(x, σ(t, ξ))Φ(x)dxdη(ξ)

=

∫ b

a

q(t, ξ)V (σ(t, ξ))dη(ξ). (2.5)
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From (2.2)–(2.5), we get

[V (t) + c(t)V (τ(t))](m) +
∫ b

a
q(t, ξ)V (σ(t, ξ))dη(ξ) + λ0a(t)V (t)

+λ0

∫ b

a
b(t, ξ)V (ρ(t, ξ))dη(ξ) = 0, t ≥ t1, t ̸= tk.

}
For t ≥ t0, t = tk, k = 1, 2, . . . , i = 0, 1, 2, . . . ,m − 1, multiplying both sides

of equation (1.1) with Φ(x) > 0, and then integrating with respect to x over the
domain Ω, and from (H5), we obtain

a
(i)
k ≤

∂(i)u(x, t+k )

∂t(i)

∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k .

According to V (t) =
∫
Ω
u(x, t)Φ(x)dx, we have

a
(i)
k ≤

∂(i)V (t+k )

∂t(i)

∂(i)V (tk)

∂t(i)

≤ b
(i)
k ,

that is, V (t) is a positive solution of (2.1), which contradicts the fact that all
solutions of (2.1) are oscillatory.

(ii) Necessity: Suppose that (2.1) has a nonoscillatory solution Ṽ (t). Without
loss of generality, we assume that Ṽ (t) > 0 for t ≥ t∗ ≥ 0, where t∗ is some large
number. From (2.1), we have[

Ṽ (t) + c(t)Ṽ (τ(t))
](m)

+
∫ b

a
q(t, ξ)Ṽ (σ(t, ξ))dη(ξ) + λ0a(t)Ṽ (t)

+λ0

∫ b

a
b(t, ξ)Ṽ (ρ(t, ξ))dη(ξ) = 0, t ≥ t∗, t ̸= tk, x ∈ Ω,

a
(i)
k ≤

∂(i)Ṽ (t+k )

∂t(i)

∂(i)Ṽ (tk)

∂t(i)

≤ b
(i)
k .


(2.6)

For t ≥ t0, t ̸= tk, k = 1, 2, . . ., multiplying both sides of (2.6) with Φ(x) > 0, we
obtain

∂m

∂tm

(
Ṽ (t)Φ(x) + c(t)Ṽ (τ(t))Φ(x)

)
+
∫ b

a
q(t, ξ)Ṽ (σ(t, ξ))Φ(x)dη(ξ)

+λ0a(t)Ṽ (t)Φ(x) + λ0

∫ b

a
b(t, ξ)Ṽ (ρ(t, ξ))Φ(x)dη(ξ) = 0, t ≥ t∗, x ∈ Ω.


(2.7)

Let ũ(x, t) = Ṽ (t)Φ(x), (x, t) ∈ Ω× [0,+∞). From Lemma 1.4, we have ∆w(x) =
−λ0w(x), x ∈ Ω. Then (2.7) implies

∂m

∂tm
(ũ(x, t) + c(t)ũ(x, τ(t))) +

∫ b

a
q(t, ξ)ũ(x, σ(t, ξ))dη(ξ)

= λ0a(t)∆ũ(x, t) + λ0

∫ b

a
b(t, ξ)∆ũ(x, ρ(t, ξ))dη(ξ), t ≥ t∗, x ∈ Ω.

 (2.8)
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For t ≥ t0, t = tk, k = 1, 2, . . ., multiplying both sides of equation (2.6) with
Φ(x) > 0, we have

a
(i)
k

∂(i)

∂t(i)
Ṽ (tk)Φ(x) ≤

∂(i)

∂t(i)
Ṽ (t+k )Φ(x) ≤ b

(i)
k

∂(i)

∂t(i)
Ṽ (tk)Φ(x).

Since ũ(x, t) = Ṽ (t)Φ(x), (x, t) ∈ Ω× [0,+∞), we get

a
(i)
k

∂(i)

∂t(i)
ũ(x, tk) ≤

∂(i)

∂t(i)
ũ(x, t+k ) ≤ b

(i)
k

∂(i)

∂t(i)
ũ(x, tk),

∂(i)

∂t(i)
ũ(x, t+k ) = I

(i)
k

(
x, tk,

∂(i)

∂t(i)
ũ(x, tk)

)
,

which means that ũ(x, t) = Ṽ (t)Φ(x), (x, t) ∈ Ω × [t∗,+∞) satisfies (1.1). On
the other hand, from Lemma 1.4, we get

α(x)
∂w(x)

∂γ
+ β(x)w(x) = 0, x ∈ ∂Ω,

which implies

α(x)
∂ũ(x, t)

∂γ
+ β(x)ũ(x, t) = 0, (x, t) ∈ ∂Ω× [0,+∞). (2.9)

Hence ũ(x, t) = Ṽ (t)Φ(x) > 0 is a nonoscillatory solution of (1.1) with boundary
condition (1.2), which is a contradiction. □
Theorem 2.2. If β(x) ̸≡ 0 for x ∈ ∂Ω and the impulsive differential inequality

Z(m)(t) + g0
∫ b

a
q(t, ξ)Z(θ(t))dη(ξ) ≤ 0, t ̸= tk

a
(i)
k ≤

∂(i)Z(t+k )

∂t(i)

∂(i)Z(tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, . . . , i = 0, 1, 2, . . . ,m− 1

 (2.10)

has no eventually positive solution, then all solutions of (1.1) with boundary
condition (1.2) are oscillatory in G.

Proof. Assume, for the sake of contradiction, that there is a nonoscillatory solu-
tion u of (1.1) with boundary condition (1.2), which has no zero in Ω× [t0,+∞)
for some t0 ≥ 0. Without loss of generality, we assume that u(x, t) > 0,
(x, t) ∈ Ω × [t0,+∞), t0 ≥ 0. By the assumption that there exists t1 > t0
such that τ(t) ≥ t0, σ(t, ξ) ≥ t0, ρ(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞) × [a, b], then
u(x, τ(t)) > 0 for (x, t) ∈ Ω × [t1,+∞), u(x, σ(t, ξ)) > 0 for (x, t, ξ) ∈
Ω× [t1,+∞)× [a, b] and u(x, ρ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].

For t ≥ t0, t ̸= tk, k = 1, 2, . . . , we obtain (2.1). In view of Lemma 1.4, we
have

[V (t) + c(t)V (τ(t))](m) +
∫ b

a
q(t, ξ)V (σ(t, ξ))dη(ξ)

= −λ0a(t)V (t)− λ0

∫ b

a
b(t, ξ)V (ρ(t, ξ))dη(ξ) ≤ 0, t ≥ t1, t ̸= tk.

}
(2.11)
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Set Z(t) = V (t) + c(t)V (τ(t)). Equation (2.11) can be written as

Z(m)(t) +

∫ b

a

q(t, ξ)V (σ(t, ξ))dη(ξ) ≤ 0, t ̸= tk. (2.12)

Furthermore, from Lemma 1.5, there exist t2 ≥ t1 and an odd number l, 0 ≤ l ≤
m− 1, such that

Z(i)(t) > 0, 0 ≤ i ≤ l, (−1)(i−1)Z(i)(t) > 0, t ≥ t2, l ≤ i ≤ m− 1.

By choosing i = 1, we have Z ′(t) > 0. Since Z(t) ≥ x(t) > 0, Z ′(t) ≥ 0, we
have Z(σ(t, ξ)) ≥ Z(σ(t, ξ) − τ(t)) ≥ x(σ(t, ξ) − τ(t)), and therefore Z(m)(t) +∫ b

a
q(t, ξ)Z(σ(t, ξ)) (1− c(σ(t, ξ))) dη(ξ) ≤ 0. From (2.12), we get

Z(m)(t) + g0

∫ b

a

q(t, ξ)Z(σ(t, ξ))dη(ξ) ≤ 0. (2.13)

From (H2) and (H3), we obtain Z(σ(t, ξ)) ≥ Z(σ(t, a)) > 0, ξ ∈ [a, b] and θ(t) ≤
σ(t, ξ) ≤ t. Thus Z(θ(t)) ≤ Z(σ(t, a)) for t ≥ t2. Hence (2.13) can be written as

Z(m)(t) + g0

∫ b

a

q(t, ξ)Z(θ(t))dη(ξ) ≤ 0. (2.14)

For t ≥ t0, t = tk, k = 1, 2, . . ., from (2.1), we have

a
(i)
k ≤

∂(i)Z(t+k )

∂t(i)

∂(i)Z(tk)

∂t(i)

≤ b
(i)
k .

That is, Z(t) is an eventually positive solution of (2.10), which contradicts our
hypothesis. □
Theorem 2.3. Let β(x) ̸≡ 0 for some x ∈ ∂Ω. If for some t0 > 0, there exists
a function φ(t) ∈ C ′([0,+∞), (0,+∞)) that is nondecreasing with respect to t,
such that∫ +∞

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1 [
A(s)φ(s)− (φ′(s))2

4B(s)φ(s)

]
ds = +∞, (2.15)

then all solutions of (1.1) with boundary condition (1.2) are oscillatory in G.

Proof. From Theorem 2.2, it is enough to prove that the impulsive differential
inequality (2.10) has no eventually positive solution. Suppose that Z(t) > 0 is a
solution of (2.10). Set

W (t) = φ(t)
Z(m−1)(t)

Z(θ(t))
, t ≥ t0. (2.16)

Clearly W (t) ≥ 0 for t ≥ t0, and

W ′(t) =
φ′(t)

φ(t)
W (t) +

φ(t)z(m)(t)

Z(θ(t))
− φ(t)Z(m−1)(t)Z ′(θ(t))θ′(t)

Z2(θ(t))
.
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Since Z(m)(t) ≤ 0, according to Lemma 1.6, we obtain

Z ′m−2Z(m−1)(t). (2.17)

Thus

W ′(t) ≤ φ′(t)

φ(t)
W (t)− A(t)φ(t)− B(t)

φ(t)
W 2(t),

W (t+k ) ≤
b
(m−1)
k

a
(0)
k

W (tk).

Define

U(t) =
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1

W (t).

In fact, W (t) is continuous on each interval (tk, tk+1], and in the consideration of

W (t+k ) ≤
b
(m−1)
k

a
(0)
k

W (tk), it follows that for t ≥ t0,

U(t+k ) =
∏

t0≤tj≤tk

(
b
(m−1)
k

a
(0)
k

)−1

W (t+k ) ≤
∏

t0≤tj<tk

(
b
(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk)

and

U(t−k ) =
∏

t0≤tj≤tk−1

(
b
(m−1)
k

a
(0)
k

)−1

W (t−k ) ≤
∏

t0≤tj<tk

(
b
(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk),

which implies that U(t) is continuous on [t0,+∞). Moreover,

U ′(t) +
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)
U2(t)B(t)

φ(t)
+

∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1

A(t)φ(t)− φ′(t)

φ(t)
U(t)

=
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1 [
W ′2(t)

B(t)

φ(t)
−W (t)

φ′(t)

φ(t)
+ A(t)φ(t)

]
≤ 0.

That is,

U ′(t) ≤ −
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)
B(t)

φ(t)
U2(t) +

φ′(t)

φ(t)
U(t)−

∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1

A(t)φ(t).

(2.18)

Taking

X =

√√√√ ∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)
B(t)

φ(t)
U(t), Y =

φ′(t)

2

√√√√ ∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1
1

φ(t)B(t)
,
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from Lemma 1.7, we have

φ′(t)

φ(t)
U(t)−

∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)
B(t)

φ(t)
U2(t) ≤ (φ′2

4B(t)φ(t)

∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1

.

Thus

U ′(t) ≤ −
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1 [
A(t)φ(t)− (φ′2

4B(t)φ(t)

]
. (2.19)

Integrating both sides from t0 to t, we have

U(t) ≤ U(t0)−
∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1 [
A(s)φ(s)− (φ′2

4B(s)φ(s)

]
ds.

Letting t → +∞, and taking into account the fact that (2.15) holds, we have
lim

t→+∞
U(t) = −∞, which contradicts with U(t) ≥ 0. □

Theorem 2.4. Let β(x) ̸≡ 0 for x ∈ ∂Ω. Moreover, suppose that there exist
functions φ(t) and ϕ(s) ∈ C ′([0,+∞), (0,+∞)), where φ(t) is nondecreasing with
respect to t, and the functions H(t, s), h(t, s) ∈ C ′(D,R), where D = {(t, s)|t ≥
s ≥ t0 > 0}, such that

(H6) H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0,
(H7) H

′
t(t, s) ≥ 0, H

′
s(t, s) ≤ 0,

(H8) − ∂

∂s
[H(t, s)ϕ(s)]−H(t, s)ϕ(s)

φ′(s)

φ(s)
= h(t, s).

If

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

[
A(s)φ(s)H(t, s)ϕ(s)− 1

4

|h(t, s)|2 φ(s)
B(s)H(t, s)ϕ(s)

]
ds = +∞, (2.20)

then all solutions of (1.1) with boundary condition (1.2) are oscillatory in G.

Proof. Assume, for the sake of contradiction, that (1.1) with boundary condition
(1.2) has a nonoscillatory solution u(x, t). Without loss of generality, assume
that u(x, t) > 0, (x, t) ∈ Ω × [0,+∞). Proceeding as in the proof of Theorem
2.3, we have u(x, τ(t)) > 0, u(x, σ(t, ξ)) > 0, u(x, ρ(t, ξ)) > 0, for (x, t) ∈
Ω× [t1,+∞), (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b], and

U ′(t) ≤ −
∏

t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)
B(t)

φ(t)
U2(t) +

φ′(t)

φ(t)
U(t)−

∏
t0≤tk<t

(
b
(m−1)
k

a
(0)
k

)−1

A(t)φ(t).
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Multiplying the above inequality with H(t, s)ϕ(s) for t ≥ s ≥ T , and integrating
from T to t, we get∫ t

T

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

A(s)φ(s)H(t, s)ϕ(s)ds

≤ U(T )H(t, T )ϕ(T ) +

∫ t

T

|h(t, s)U(s)| ds

−
∫ t

T

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)
B(s)

φ(s)
U2(s)H(t, s)ϕ(s)ds.

(2.21)
Put

X =

√√√√ ∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)
B(s)

φ(s)
H(t, s)ϕ(s)U(s),

Y =
1

2
|h(t, s)|

√√√√ ∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1
φ(s)

B(s)H(t, s)ϕ(s)
.

From Lemma 1.7, we attain for t ≥ T ≥ t0 that

|h(t, s)U(s)| −
∏

t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)
B(s)

φ(s)
H(t, s)ϕ(s)U2(s)

≤ 1

4

|h(t, s)|2 φ(s)
B(s)H(t, s)ϕ(s)

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

. (2.22)

In addition, from (2.21) and (2.22), we have∫ t

T

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

A(s)φ(s)H(t, s)ϕ(s)ds

− 1

4

∫ t

T

|h(t, s)|2 φ(s)
B(s)H(t, s)ϕ(s)

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

ds

≤ U(T )H(t, T )ϕ(T ) ≤ H(t, t0)ϕ(T )U(T ), t ≥ T ≥ t0.
(2.23)

Thus

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1 [
A(s)φ(s)H(t, s)ϕ(s)− 1

4

|h(t, s)|2 φ(s)
B(s)H(t, s)ϕ(s)

]
ds

≤
∫ T

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

G(s)φ(s)ϕ(s)ds+ ϕ(T )U(T ).
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Letting t → +∞, we get

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

×

[
A(s)φ(s)H(t, s)ϕ(s)− 1

4

|h(t, s)|2 φ(s)
B(s)H(t, s)ϕ(s)

]
ds

≤
∫ T

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

A(s)φ(s)ϕ(s)ds+ ϕ(T )U(T ) < +∞,

which contradicts (3.21). □

Remark 2.5. In Theorem 2.4, by choosing ϕ(s) = φ(s) ≡ 1, we have the following
corollary.

Corollary 2.6. Assume that all the conditions of Theorem 2.4 hold, and that

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1 [
A(s)H(t, s)− 1

4

|h(t, s)|2

B(s)H(t, s)

]
ds = +∞.

Then all solutions of (1.1) with boundary condition (1.2) are oscillatory in G.

Remark 2.7. From Theorem 2.4 and Corollary 2.6, we can obtain a variety of
oscillatory criteria by different choices of the weighted function H(t, s). For ex-
ample, choosing H(t, s) = (t − s)µ−1, t ≥ s ≥ t0, in which µ > 2 is an integer,
then h(t, s) = (µ − 1)(t − s)µ−2, t ≥ s ≥ t0. From Corollary 2.6, we have the
following result.

Corollary 2.8. If there is an integer µ > 2 such that

lim sup
t→+∞

1

(t− t0)µ−1

∫ t

t0

∏
t0≤tk<s

(
b
(m−1)
k

a
(0)
k

)−1

× (t− s)µ−1

[
A(s)− 1

4B(s)

(µ− 1)2

(t− s)2

]
ds = +∞,

then all solutions of (1.1) with boundary condition (1.2) are oscillatory in G.

3. Examples

We illustrate the significance of our results by the following examples.
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Example 3.1. Consider the equation

∂6

∂t6

(
u(x, t) +

2

5
u(x, t− π

2
)

)
+

4

5

∫ −π/4

−π/2
u(x, t+ 2ξ)dξ

=
11

5
∆u(x, t) +

8

5

∫ −π/4

−π/2
∆u(x, t+ 2ξ)dξ, t ̸= tk,

u(x, t+k ) =
k

k + 1
u(x, tk),

∂(i)

∂t(i)
u(x, t+k ) =

∂(i)

∂t(i)
u(x, tk), i = 1, 2, 3, 4, 5, k = 1, 2, . . . ,


(3.1)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

u(0, t) = u(π, t) = 0, t ̸= tk. (3.2)

Here Ω = (0, π), m = 6, a
(0)
k = b

(0)
k =

k

k + 1
, a

(i)
k = b

(i)
k = 1, i = 1, 2, 3, 4, 5,

c(t) =
2

5
, τ(t) = t − π

2
, q(t, ξ) =

4

5
, σ(t, ξ) = ρ(t, ξ) = t + 2ξ, a(t) =

11

5
,

b(t, ξ) =
8

5
, [a, b] = [−π/2,−π/4], η(ξ) = ξ, M = 1, θ(t) = t, θ′(t) = 1, µ = 3,

t0 = 1, tk = 2k, g0 =
4

5
, A(s) = 3π

25
, B(s) = s4.

Clearly (H1)-(H5) hold, and moreover

lim
t→+∞

∫ t

t0

∏
t0≤tk<s

a
(0)
k

b
(i)
k

ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds

+

∫ t3

t+2

∏
1<tk<s

k

k + 1
ds + · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 +

1

2
× 2

3
× 3

4
× 23 + · · ·

=
+∞∑
n=0

2n

n+ 1
= +∞.

Thus,

lim sup
t→+∞

1

(t− 1)2

{∫ t

1

∏
1<tk<s

k

k + 1
(t− s)2

[
3π

25
− 1

s4(t− s)2

]
ds

}
= +∞.

That is, all the conditions of Corollary 2.8 are satisfied, and therefore all solutions
of (3.1)–(3.2) are oscillatory in G. In fact, u(x, t) = sin x cos t is such a solution.
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Example 3.2. Consider the equation
∂4

∂t4

(
u(x, t) +

1

2
u(x, t− π)

)
+

3

4

∫ 0

−π
u(x, t+ ξ)dξ

=
1

2
∆u(x, t) +

3

4

∫ 0

−π
∆u(x, t+ ξ)dξ, t ̸= tk,

u(x, t+k ) =
k

k + 1
u(x, tk),

∂(i)

∂t(i)
u(x, t+k ) =

∂(i)

∂t(i)
u(x, tk), i = 1, 2, 3, k = 1, 2, . . . ,


(3.3)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition
ux(0, t) + u(0, t) = ux(π, t) + u(π, t) = 0, t ̸= tk. (3.4)

Here Ω = (0, π), m = 4, a
(0)
k = b

(0)
k =

k

k + 1
, a

(i)
k = b

(i)
k = 1, i = 1, 2, 3, c(t) = 1

2
,

τ(t) = t − π, q(t, ξ) =
3

4
, σ(t, ξ) = ρ(t, ξ) = t + ξ, a(t) =

1

2
, b(t, ξ) =

3

4
,

[a, b] = [−π, 0], η(ξ) = ξ, M = 1, θ(t) = t, θ′(t) = 1, µ = 3, t0 = 1, tk = 2k,

g0 =
1

2
, A(s) = 3π

8
, B(s) = s2.

Clearly (H1)-(H5) hold, and moreover

lim sup
t→+∞

1

(t− 1)2

{∫ t

1

∏
1<tk<s

k

k + 1
(t− s)2

[
3π

8
− 1

s2(t− s)2

]
ds

}
= +∞.

That is, all the conditions of the Corollary 2.8 are satisfied, and therefore all
solutions of (3.3)–(3.4) are oscillatory in G. In fact u(x, t) = e−x cos t is such a
solution.

Acknowledgement: The third author was supported by the Special Account
for Research of ASPETE through the funding program “Strengthening research
of ASPETE faculty members”. The authors thank the Reviewers for their con-
structive suggestions and useful corrections that improved the content of the
paper.

References
[1] L. Erbe, H. Freedman, X.Z. Liu and J.H. Wu, Comparison principles for impulsive parabolic

equations with applications to models of single species growth, J. Aust. Math. Soc. 32 (1991)
382–400.

[2] K. Gopalsamy and B.G. Zhang, On delay differential equations with impulses, J. Math.
Anal. Appl. 139 (1989) 110–122.

[3] G. Gui and Z. Xu, Oscillation of even order partial differential equations with distributed
deviating arguments, J. Comput. Appl. Math. 228 (2009) 20–29.

[4] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cam-
bridge, UK, 1988.

[5] P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential
equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955) 862–865.

[6] I.T. Kiguradze, On the oscillation of solutions of the equation dmu
dtm + a(t) |u|n sgnu = 0,

Math. Sb. (in Russian) 65 (1964) 172–187.



142 Y. BOLAT, G.E. CHATZARAKIS, S.L. PANETSOS, T. RAJA

[7] G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation Theory of Differential Equa-
tions with Deviating Arguments, Marcel Dekker, Inc. New York, 1987.

[8] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential
Equations, World Scientific, Singapore, 1989.

[9] T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with
different sources and boundary conditions, Z. Angew. Math. Phys. 70 (2019) no. 3, 1–18.

[10] T. Li and G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the
attraction-dominated regime, Differ. Integral Equations 34 (2021) 315–336.

[11] W.N. Li and B.T. Cui, Oscillation of solutions of neutral partial functional differential
equations, J. Math. Anal. Appl. 234 (1999) 123–146.

[12] W.N. Li and L. Debnath, Oscillation of higher-order neutral partial functional differential
equations, Appl. Math. Lett. 16 (2003) 525–530.

[13] W.N. Li and W. Sheng, Oscillation of certain higher-order neutral partial functional dif-
ferential equations, Springer Plus 5 (2016) 1–8.

[14] Y. Liu, J. Zhang and J. Yan, Oscillation properties for systems of higher-order partial
differential equations with distributed deviating arguments, Discrete Dyn. Nat. Soc. 2015
(2015), Art. ID 739636, 9 pp.

[15] V. Mil’man and A. Myškis, On the stability of motion in the presence of impulse, Siberian
Math. J. 1 (1960), no. 2, 233–237.

[16] Ch.G. Philos, A new criterion for the oscillatory and asymptotic behavior of delay differ-
ential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. 39 (1981) 61–64.

[17] V. Sadhasivam, J. Kavitha and T. Raja, Forced oscillation of nonlinear impulsive hyperbolic
partial differential equation with several delays, J. Appl. Math. Phys. 3 (2015) 1491–1505.

[18] V. Sadhasivam, J. Kavitha and T. Raja, Forced oscillation of impulsive neutral hyperbolic
differential equations, Int. J. Appl. Eng. Res. 11 (2016), no. 1, 58–63.

[19] V. Sadhasivam, T. Raja and T. Kalaimani, Oscillation of nonlinear impulsive neutral
functional hyperbolic equations with damping, Int. J. Pure Appl. Math. 106 (2016) no. 8,
187–197.

[20] V. Sadhasivam, T. Raja and T. Kalaimani, Oscillation of impulsive neutral hyperbolic
equations with continuous distributed deviating arguments, Glob. J. Pure Appl. Math. 12
(2016), no. 3, 163–167.

[21] P.G. Wang, Y.H. Yu and L. Caccetta, Oscillation criteria for boundary value problems of
high-order partial functional differential equations, J. Comput. Appl. Math. 206 (2007)
567–577.

[22] J.H. Wu, Theory and Applications of Partial Functional Differential Equations, Springer,
New York, 1996.

[23] Q.X. Ye and Z.Y. Li, Theory of Reaction Diffusion Equation, (in Chinese), Science Press,
Beijing 1990.

[24] N. Yoshida, Oscillation Theory of Partial Differential Equations, World Scientific, Singa-
pore, 2008.

1Department of Mathematics, Kastamonu University, Turkey.
Email address: ybolat@kastamonu.edu.tr

2Department of Electrical and Electronic Engineering Educators, School of
Pedagogical and Technological Education (ASPETE), Marousi 15122, Athens,
Greece.

Email address: geaxatz@otenet.gr; spanetsos@aspete.gr

3Department of Mathematics, Mahendra College of Engineering, (Affiliated
to Anna University, Chennai), Salem (Dt), Tamil Nadu, India.

Email address: trmaths19@gmail.com


	1. Introduction and preliminaries
	2. Main results
	3. Examples
	References

