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ABSTRACT. We prove Hardy’s type uncertainty principle on connected nilpo-
tent Lie groups for the Fourier transform. An analogue of Hardy’s theorem for
the Gabor transform has been established for connected and simply connected
nilpotent Lie groups. Finally Beurling’s theorem for the Gabor transform is
discussed for groups of the form R™ x K, where K is a compact group.

1. INTRODUCTION

Heisenberg uncertainty principle relates the uncertainties in the measurement
of position and moment of microscopic particles. In harmonic analysis, the un-
certainty principle relates the behavior of a function like support or decay with
that of its Fourier transform. For f € L'(R), the Fourier transform f on R is
given by

7e) = /R f(x) e da.

One of the uncertainty principles states that a nonzero integrable function f on

R and its Fourier transform f cannot both simultaneously decay rapidly. The
following theorem of Hardy makes the above statement more precise.

Theorem 1.1 ([15]). Let f be a measurable function on R such that
(i) |f(z)] < Ce ™" for all x € R,

~

(i) |F(&)] < Ce ™ for all € € R,

where a, b, and C' are positive constants. If ab > 1, then f =0 a.e.
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Several analogues of the above result have been proved in the setting of R",
Heisenberg group H,, [26], Heisenberg motion group H,, x K [5], locally compact
abelian groups, various classes of solvable locally compact groups [3], Euclidean
motion group [24], and nilpotent Lie groups [2,18,23]. A generalization of Hardy’s
theorem is Beurling’s theorem, which can be stated as follows.

Theorem 1.2 ([17]). Let f be a square integrable function on R satisfying

[ [ 1@ 11 ar de < o.
RJR
Then f =0 a.e.

Several analogues of Beurling’s theorem for the Fourier transform has been

proved for exponential solvable Lie groups [1] and various classes of nilpotent
Lie groups [4,22,23,27,31]. Uncertainty principles like Heisenberg uncertainty
inequality and qualitative uncertainty principle have been investigated for the
Fourier transform (see [6,9,28,29]). For a detailed survey of the uncertainty prin-
ciples for the Fourier transform, we refer to [13].
The transformation of a signal using the Fourier transform loses the information
about time, and it is very difficult to tell where a certain frequency has occurred.
Thus, in order to tackle such problems, a joint time-frequency analysis was uti-
lized. Gabor transform is turned out to be one such tool. The approach used in
this technique is cutting the signal into segments using a smooth window function
and then computing the Fourier transform separately on each smaller segment.
In this manner, the Gabor transform provides the local aspect of the Fourier
transform with time resolution equal to the size of the window. It results in a
two-dimensional representation of the signal.

Let ¢ € L*(R) be a fixed function usually called a window function. The
Gabor transform of a function f € L*(R) with respect to the window function 1

is defined by G f : R x R — C as
Guf(t.9) = [ Jle) TE=0) e da,
R

for all (,€) € R x R.

In [10], the Gabor transform on a second countable, locally compact, unimodular
group G of type I has been studied. The Heisenberg uncertainty inequality was
proved in [7,30] for the Gabor transform for the groups of the form K x R", where
K is a separable unimodular locally compact group of type I and connected,
simply connected nilpotent Lie groups. Qualitative uncertainty principle was
proved for the Gabor transform for several classes of locally compact groups,
including low dimensional nilpotent Lie groups [25]. Later, Hardy’s uncertainty
principle for the Gabor transform was proved for locally compact abelian groups
having noncompact identity component and groups of the form R" x K, where K
is a compact group having irreducible representations of bounded dimension [&].
In [11], the spherical Gabor transform using the properties of Gelfand pairs and
the spherical Fourier transform, has been studied and Lieb inequality, Donoho—
Stark’s uncertainty principles, and Beckner’s uncertainty principles were proved.
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In this paper, analogues of above uncertainty principles on nilpotent Lie groups
for the Fourier and Gabor transforms have been studied. Results obtained have
been organized as follows: In section 3, Hardy’s type results for the Fourier
transform have been established for connected nilpotent Lie groups. Section 4
deals with an analogue of Hardy’s theorem for the Gabor transform. In the last
section, we prove Beurling’s theorem for the Gabor transform for locally compact
abelian groups with noncompact connected component and groups of the form
R™ x K, where K is a compact group.

2. PRELIMINARIES

For a second countable, locally compact, unimodular group G of type I, dx will
denote the Haar measure on G. Let G be the dual space of G consisting of all
irreducible unitary representations of G equipped with Plancherel measure dr.
For f € L' N L*(G), the Fourier transform f of f is an operator-valued function
on G defined as

Fim) = /G f(2) n(x)dz.

Moreover, by the Plancherel theorem [12, Theorem 7.36], f(mw) is a Hilbert-
Schmidt operator and satisfies the following property:

/G ()P = /éuﬂwuas dr. (2.1)

For cach (z,7) € G x G, we define Hwx) = 7(x)HS(H,), where m(x)HS(H,) =
{m(z)T : T € HS(H)}. Then H, ) forms a Hilbert space with the inner product
given by

(7?($)T,7T(:E)S>H(M) =tr (S™T) = (T, S)us(u,)-
Also, Hzr = HS(H,) for all (z,7) € G x G. Let H2(G x G) denote the direct
integral of {H(x,ﬂ)}(mm)eexé with respect to the product measure dz dm. Then
H2(G x (3) forms a Hilbert space with the inner product given by
(F, K) 2610 =/ tr[F(x, m)K (2, 7)"] do dr.
GxG

Let f € C.(G), the space of all continuous complex-valued functions on G' with

compact support, and let 1 be a fixed function in L?(G). For (z,7) € G x G, the
continuous Gabor Transform [10, Definition 3.1] of f with respect to the window

function v can be defined as a measurable field of operators on G x G by

Gyf(z,m) = /G £(y) P Ty) n(y)* dy. (2.2)

One can verify that Gy f(z,7) is a Hilbert—-Schmidt operator for all z € G and
for almost all 7 € G. We can extend G, uniquely to a bounded linear operator
from L?*(G) into a closed subspace of H*(G x G), which will again be denoted by
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Gy. As in [10, Corollary 3.4], for f1, f» € L*(G) and window functions t; and
1o, we have

<Gw1f17G¢2f2> = <¢2;¢1><f17f2>- (2.3)

For detailed study of the Gabor transform on second countable, locally compact,
unimodular group G of type I, one can refer to [10].

3. NILPOTENT LIE GROUP

For a connected nilpotent Lie group G with its simply connected covering group
G let T' be a discrete subgroup of G such that G = G /T'. Denoting g by the
Lie algebra of G and G, let B = {X;, X5, ..., X,} be a strong Malcev basis of g
through the ascending central series of g. The norm function on g is defined as the
Euclidean norm of X with respect to the basis B. Indeed, for X = 2?21 r;X; €9
with z; € R,

n 1/2
X0 = ()"
j=1
Define a “norm function” on G by setting

|z|| = inf {||X|| : X € g such that exp; X = x}.

The composed map, R" — g — G given by

(X1, ..., Tp) = ijXj — expg <ijXj>
j=1 j=1

is a diffeomorphism and maps the Lebesgue measure on R" to the Haar measure
on G. In this manner, we identify the Lie algebra g, as a set with R™. Also,
measurable (integrable) functions on G can be viewed as such functions on R

Let g* be the vector space dual of g and let {X7,..., X*} be the basis of g*,
which is dual to {Xj,..., X, }. Then {X],..., X} is a Jordan-Hélder basis for
the coadjoint action of G on g*. We shall identify g* with R™ via the map

é.: (517"'7571) _>Z£JX
j=1

and on g*, the Euclidean norm relative to the basis {X7,..., X} is defined as

IS exs] - () = e
P =1

Let % denote the Zariski open subset of g* of generic elements under the coadjoint
action of G with respect to the basis { X7, ..., X*}. Suppose that S is the set of
jump indices, "= {1,...,n} \ S, and that Vp = R-span{ X} : i € T'}.

Then W =2 NVr is a cross-section for the generic orbits, and W supports
the Plancherel measure on G. Every element of a connected nilpotent Lie group
G with noncompact center can be uniquely written as (¢, 2,y), t € R,z € T¢, and
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y €Y, where Y = exp(Z?: 4r2 RX;). We now prove a generalization of the result
proved in [2].

Theorem 3.1. Let G be a connected nilpotent Lie group with noncompact center
and let f : G — C be a measurable function satisfying
() |f(t, 2z, 9)] < CA+ [t])Ne ™ ¢(y) for all (t,z,y) € G and for some
¢ e L' NLAY).
(ii) llme(f)llms < C(L+ €I Ne ™" for all € € W,
where a, 8, and C are positive real numbers and N is a nonnegative integer. If
af > 1, then f =0 a.e.

Before proving this main result, we shall first prove some lemmas. Let K be
a compact central subgroup of G' and let x be a character of K. For f € L}(G),
define f, : G — C by

Felt,z,y) = /K F(t, 2k, y) (k) dk.

Lemma 3.2. Let G be a connected nilpotent Lie group with a compact central
subgroup K and let f be a measurable function on G satisfying conditions (i) and
(71) of Theorem 3.1. Then the function f, also satisfies these conditions.

Proof. On normalizing the Haar measure on central subgroup K, we obtain

mmaws/km+ﬁNwWww%

K
= C1+)V e ™ p(y).

Also, me(fy) = me(f) [ x(k) me(k) dk. If me|x is a multiple of some character of
K, which is different from y, then by orthogonality relation of compact groups,
we have

/Kx(k) me(k) dk = 0.

Thus, [lme(f)]| < 1+ [[€]) Ve Pr1el” .

Denote by G¢, the maximal compact subgroup of G. Then G° is connected,
contained in Z(G), and G/G* is simply connected.

Lemma 3.3. Let G be a connected nilpotent Lie group. Suppose that Theorem
3.1 holds for all quotient subgroups H = G/C, where C' is a closed subgroup of
G¢ = Z(G)° such that either Z(G)* = C or Z(G)/C = T. Then Theorem 3.1
also holds for G.

Proof. Let K = Z(G)¢ and let f : G — C be a measurable function that satisfies

the conditions of Theorem 3.1. For x in K, consider K, = {k € K : x(k) = 1}
and H = G/K,. Then f, is constant on the cosets of the subgroup K, and also
by Lemma 3.2, it follows that the function f, satisfies the Hardy’s type decay
conditions. Since H® = K/K, = T or H® = {e}, using the hypothesis, we get
fy=0ae Asx¢€ K is arbitrarily chosen, we have f =0 a.e. 0J
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For a second countable, locally compact group G containing R as a closed
central subgroup, let S denote a Borel cross-section for the cosets of R in GG. The
inverse image of Haar measure on G/R under the map s — Rs from S — G/R
is denoted by ds.

Lemma 3.4. Let G and S be as defined above and let f : G — C be a measurable
function satisfying | f(ts)] < (1+[t]2)N *‘”tng( ) for some a>0and ¢ € L*(S).
Define a function g on R such that g(t fs fsx f2)(t) ds, where

_ / (TG — Dz

t2
Then |g(t)] < Cie "™z, for some Cy >0 and 0 < v < a.
Proof. For each t € R and 0 < v < a, we have

t)|:}/S/Rf(zs)Mdz ds|
< /S / F(z9)] 1£((= — 1)s)] dz ds

< /¢<S>2d5/(1 2PN (1 + |2 — tP)Ne ™+ E0 g,
S R

N
N\ (N A
< ||¢||% / Z (k)( )z%(z _t)2]6—(a—7)7rz26—77rz2
R 20 J

% e—(a—'y)ﬂ(z—t) e—'ywz t)2 dZ

The function z — (]Z ) 22ke=(@=17m= i hounded on R, say by K.
Set K = max{K} : 0 <k < N}. Thus, it follows that

N

N .
|g(t)| S K(N + 1) ||¢||§ § : ( ) /(Z . t)Qje—%rz?e—(a—“/)w(z—tﬁe—vw(z—t)de‘
J R

§=0
Using the Cauchy—Schwarz inequality, we have
N 1/2

9t < K(N+1) [9]3 S (JJ\[) (/R(z _ t)4je—2<a—v>w<z—t>2dz)

=0

1/2
% (/ 6—27%226—277r(z—t)2dz)
R

al N 2 ) 1/2
= K(N +1) |¢|3 Z (j )Bj (/R o2 (55 +5(22-t) )dz)

=0
N /N
_ K( H¢||2 e fyw%z j)Bj/e—w72(2z_t)2)dZ
R

j=0

NN )
=K 2 'y7r B. —2myz d
(N +1) |]2 e Z() [

J
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L k(v 1) o2 i(N)B

— +1 e 1"z . j

27 2 —\j)"
t2

—016 Ty s

N 1
where Cy = U163 3~ (V) B; and B; = (fR (a—y)ms? dz) ' 2

We shall now prove Hardy’s type theorem for the Fourier transform for con-
nected nilpotent Lie groups having noncompact center. Consider V;, = [ —
2—1,6,51 + i] for every natural number k, and fix a real number &. For m > 2k,
choose a C'*° function vy, on real line such that the support of vy ,, is contained
in Vi, vgm =1on [§ —1/2k+1/m,& + 1/2k — 1/m] and 0 < v, < 1. By the
Plancherel inversion theorem, there exists ug,, € L'(R) such that @, = vgmn.
For f € L'(G), consider fi,, = ugm, * f and define Fj,, : G — C by

Fim(z) = /T(fk’m * f,jm)(xz) dz, x € G.

Next, we modify [2, Lemma 3.1] in order to prove Theorem 3.1.

Lemma 3.5. Let f: G — C be a measurable function satisfying condition (i) of
Theorem 3.1. Then
lim  kFg.,(e) =0.

k,m—o00

Proof. For fix z,w € T and y € Y, define

Epm(z,w,y) = / ft, z,y) (/ Wk (8) (Ugm * f)(E+ 5,w,y)ds> dt.

Then as proved in [2, Lemma 3.1], we have

Fiml(e // Epm(z,w,y)dz dw dy (3.1)
T2
and
Er(z,w,y) = hm Ekm(z w,Y)
€1+1/2k -
~ [ 1tz / T (8) T, 5) F{E + 5, w, y)ds dt.
€1-1/2k
Now XVk(t +s) = 0forall s € [& — 5, & + 5] whenever ¢ ¢ [, 7], and if
t € [Z4, 4], then

XV, (75 + ') = X[e1—t—1/2k,E1—t+1/2K] < X[€1—3/2k,£1+3/2k] -
Using condition (i) of hypothesis of Theorem 3.1, we compute

1/k &1+3/2k
Bz, w, )| < / (2 0) / it + 5,w,)|ds | dt
3

—1/k 1—3/2k

3 1/k
<Pl [ 18zl

1/k
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1/k

C, ~ 2
< 2 Fltt) / (1+ 2)Ve ot gy

“1/k
SC ~
<4 207D Flloo ¢(). (32)

Therefore, from (3.1) and (3.2), it follows that

lim [Fm(e)] < / \Eu(zw,)|d= dw dy
Y JT2

m—0o0
3C ~
<552l [ o) dy
Y

Hence, lim Fjy,(e) =0. O

k,m—o00

It may be observed that the proof of Theorem 3.1 now follows from the tech-
nique used in [2, Theorem 1.1]. For the sake of completeness, we briefly sketch
the proof. For fix & € R, from [2], we have

e - | (]

/ PLW) - ol )2 dif

X"I2

[PF)] - Nl ()l dn’)

2

and

<X ([Pl ) eap=230 45 + 1)’ ).
nezL*
where V' =3 i .0, RXY. Let 0 < < . Since Pf is a polynomial function in
7, there exists a constant K > 0 such that for all n € W

[P )L+ [In]*)™ exp(=2(8 = &) |Inl]*) < K

As proved in [2], we have

[9(&2)| < D exp(—20€3)
for all & € R and D > 0. By Lemma 3.4, for all ¢ € R, we have

l9(t)] < Cre™ /2

for some €} > 0 and 0 < v < a. Since aff > 1, we can choose v and ¢ such
that v0 > 1. Then by Hardy’s theorem for R, we get ¢ = 0 a.e. Indeed, g is the
integral of a positive definite function f, * f on R, which implies that f =0 a.e.
and this completes the proof.

We conclude this section by remarking that if G is a connected nilpotent Lie
group that has no square integrable irreducible representation and all the co-
adjoint orbits in g* are flat, then Hardy’s type theorem holds for G. Let K
be any compact central subgroup of G. Then H = G/K has no square inte-
grable irreducible representation and also satisfies the flat orbit condition. By
Lemma 3.3, it is enough to prove Hardy’s type theorem for such group H sat-
isfying H¢ = T. Then H must have a noncompact center and by Theorem 3.1,
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H satisfies Hardy’s type theorem. Also in view of [2, Proposition 4.1], it is easy
to see that Theorem 3.1 does not hold for nilpotent Lie groups having an irre-
ducible square integrable representation in particular reduced Weyl-Heisenberg
group, low-dimensional nilpotent Lie groups Gsi/Z, Gs53/Z, and G5¢/Z. For
more details of such groups, one may refer to [20].

4. ANALOGUE OF HARDY’S THEOREM FOR THE (GABOR TRANSFORM

In this section, we deal with an analogue of Hardy’s theorem for the Gabor
transform.

Lemma 4.1. Let G be a second countable locally compact group. For f,v € L*(GQ)
and x € G, define fj : G — C such that

foly) = f(y) (zty).
If 1, = 0 a.e. for almost all v € G, then either f =0 a.e. or ¢ =0 a.e.
Proof. Let us assume that ¢ is a nonzero function in L?(G). There exists a subset
M of G with measure zero such that for all z € G\ M, f} = 0 a.e. Indeed G\ M is

dense in G and G is second countable, so we can take a sequence (z;)jen contained
in G\ M, which is dense in G. Let

V:{tEG:|¢(t)|>#}.

2[|9]los
Then V is a nonempty open subset of G and |J z;V = G. Consider the function
jeN
W)=Y ghia ), ted
JEN

Clearly h is a strictly positive function on G. Moreover,

o<ﬁfMdt/24fw—ww
—sz/y Bl dt = 0.

JEN

Hence, [, |f(t)|h(t) dt = 0, which implies that f-h = 0 a.e. Since h is strictly
positive, it follows that f = 0 a.e. 0

Theorem 4.2. Let f be a measurable function on R" such that |f(z)| < Ce~omlel®
for all © € R™ and let v be a window function. Also assume that for almost all
y € R,

Gy f(y, &) <my e EIE forall ¢ € R™,

where o, 3,C, and 1, are positive scalars and 1, depends upony. If a8 > 1, then
either f =0 a.e. or¢Y =0 a.e.
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Proof. For each y € R", define the function F, : R" — C such that
Fy(x) = fi* (f3)"(@).

Then for each ¢ € R", we have

F(©) = 1TLUE) = [Guf (g, O < e 2mlel,

Also, for each x € R", we obtain

[Fy(a)l < | [fg@ Lfy(t — )| di

]Rn

= [ 1 =)l 17 =) ott = — v)] at

gg/ﬁ‘926‘“”twe‘“”m‘wwr¢<t—-yn|¢mt—-x-—y>|dt

_ 02/ e~ (=4 32— ) |y (¢ — )| [ob(t — y — )| dt

)2

< e | =yl -y o)l dr

= ¢ e B (g« [y (@)

2
|Ed]

<C* e || ol [l
Taking Cy = max{n;, C* || [)| x [¢[*[[«c}, then

2
|Ed]

|Fy(x)] < Cie " 2 for all z € R"

and -
[Fy (&) < Cre 2Pl for all € € R™.

Using Hardy’s theorem for R", it follows that F}, = 0 for almost all y € R" which
further implies that fi = 0 for almost all y € R™. Therefore, using Lemma 4.1,

either f =0 a.e. or vy =0 a.e.

Theorem 4.3. Let G be a connected and simply connected nilpotent Lie group
with noncompact center. Suppose that ¢ € C.(G) and that f € L*(G) satisfies

|Gy f (x,7e) || s < Cp e ™PlEIE,

where C,, is a positive scalar depending on x. If > 0, then either f =0 a.e. or

V=0 a.e.

Proof. For y = (2,3, .- .,Yn) € R"!, define a function f, : R — C such that

fylwr) = flexp(1 Xy + Y 4;X))).

j=2
For z € GG, define a function F, : R — C given by

Fo) = [ (s (2t dy
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As ¢ € C,(G), therefore ff has compact support. Moreover,
Fo) = [ (= U2(a) dy

=/°L/ﬁwwm@—awwwﬁ
Rr-1 JR
= £ f(a1,0).

Therefore, F, is a continuous function with compact support, say K. Choose
a > 0 such that @8 > 1. Since the function z; — exp(—amz?) attains minima
on K, therefore r < e~™71 for some r > 0. Also, there exists C; > 0 such that
|F,(z1)| < C4, for all x; € R. Choose C' > 0 satisfying rC" > C, and therefore
for each x € K, we obtain

’Fz(xl)‘ < Cl < TCI < Clefﬂ'o‘x%,
and for z; € R\ K, we have F.(x;) = 0. Also f} € L' N L*(G) and
e (£2)|lus < |Gy f(x, ) |lus < Coe ™NEI,

Using [18, Lemma 2], we get that |77:(£1)] < ce 28 for some ¢ > 0. Therefore,
using Hardy’s theorem for the Fourier transform, the function F, = 0 a.e. Since
F, is integral of a positive definite function (f), * (f7); on R, therefore (f7), = 0
a.e. This holds for all z € G, which further gives that either f = 0 a.e. or ¢ =0
a.e. UJ

Corollary 4.4. Let G be a connected and simply connected nilpotent Lie group.
Let ¢ € C.(Q) and f € L*(G) such that

|Gy f (2, 7e) || s < e (allzl*+blI]1%) /2
for all (x,&) € G X W, where a,b, and C are positive real numbers. Then either
f=0uae oriyY=0a.e.
5. BEURLING THEOREM
In the next theorem, we prove a result of the Beurling type theorem.

Theorem 5.1. Let G be a connected and simply connected nilpotent Lie group
and let ¢ € Co(Q) and f € L*(G) be such that

/ / |Gy f(z,me) || s €™ IHHIED P r(e) de dé < . (5.1)
G JW

Then either f =0 a.e. or Y =0 a.e.

Proof. From (5.1), there exists a zero set M C G such that for all z € G\ M, we
have

/W%Mmm%wWWW%wa%<m. (5.2)
w
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For x € G\ M, we consider the function fy, and compute

| [ 170 175 Re s 101 P () dz de

G JW

< [ [ 155G 1l TP E) d de

= | [ 1 @N1G . me) s AP 6) d e

:/ |£2(2) el dz / Gy f (2, me) s e Pr(e) de. (5.3)
G w
Also,

/|f$(2)|e””2dz:/ ()] [(z12) e
G G

<(/ |f(2)|2d2)1/2 (f |¢<x—lz>|2e%““dz)l/2. (5.4)

As ¢ € C.(G), so - el € L2(G) and hence [, |f2(z)]e™*I"dz < co. Thus,
using (5.2), (5.3), and (5.4), we get

/ / 2] 1T s 1 P£(E) dz de < oo,
GJW

Using the Beurling theorem for connected and simply connected nilpotent Lie
groups [27], it follows that ff = 0 a.e. for all z € G'\ M. Hence, by Lemma 4.1,
either f =0 a.e. or vy =0 a.e. O

Using [1, Theorem 3.1], a careful reading of the proof of the above theorem
shows the following result.

Theorem 5.2. Let G be an exponential solvable Lie group with a nontrivial
center, and let ¢ € C.(G) and f € L*(G) such that

| [ 156Gt mo s 5 o d < o,

where K¢ is a semi-invariant operator [1, 2.6]. Then either f =0 a.e. or ¢ =0
a.e.

Remark 5.3. Let G be a connected nilpotent Lie group with a square integrable
representation. Then as proved in [8, Theorem 5.1], there exist nonzero functions

f and ¢ in L*(G) such that for all z € G and £ € W,
G o f (2, 7¢) s < Ce™mClalP+bliel)/2,

where a and b are nonnegative real numbers with ab > 1 and C is a positive
constant. For a,b > 1, it follows that

/c/w |G f (o me) s " WIHIED2 Pr(e) dé dar < oo,

Thus, the analogue of Beurling theorem does not hold for GG. Several examples
of such type of group exist including Weyl-Heisenberg group, low-dimensional
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nilpotent Lie groups Gs1/Z, G53/Z, and Gj¢/Z. More such examples can be
obtained using the following result.

Proposition 5.4. Let G be a group of the form G = A x K x D, where A is a
connected nilpotent Lie group, K a compact group, and D a type I discrete group.
If the Beurling theorem fails for A, then it also fails for G.

Proof. Since the Beurling theorem fails for A, there exist nonzero functions f, ¢ €
L?(A) such that

/n/mHGwﬂannmse“WW+M2”?Pf@>dxdf<<m.
AJw
Define functions F, ¥ : G — C by

F(l‘7 k7t) = f(m)Xe(t> and \Ij(l‘7 k7t) = ¢($)Xe(t),

where e is the identity element of D. Let {€5},{e’}, and {e]} be orthonormal
basis of Hilbert spaces corresponding to the representations m¢,d and v of A, K,
and D, respectively. Then

(GoF (v, k,t, e, 6, 7)ef ®e ®e) et ® e ® ey)

» i
_ (G¢f(x,7rg)ef,e§) ift=cand § =1,
0 otherwise.

Also, using [19] or survey in [21], D is a bounded dimensional representation

group. So, there exists a positive scalar M such that dim(vy) < M for all v € D.
Therefore, we have

HG@F(Z‘,/{,G,’/T&[,’)/)H?{S
< ZZZ|<G\PF(‘7;7I{;7€J7T£7-[77)6§®efn®€g,€§®€z®€g>|2

,j mn pgq

=D D > NGuf(z,me)el, )P < MP| Gy f (. me) s

4,j mn pgq

Thus,

/A/KZ/W;I;(/B |Gy f (@, k,t,me, 6,7) |lns

teD

Xeﬂ(Hx”2+H£”2)/2Pf(f)dm dk df d’y
S// / /AHwa(x, ke e, I, ls e IFIPHIED2 P ¢ (6Vda di de dy
AJKJIWJID

://W%mwwMJW“WWw@M@<w.
AJW

Hence, the Beurling theorem fails for G. 0

Remark 5.5. Let G be a compactly generated abelian group. Then by the struc-
ture theorem [16, Theorem 9.8], G is topologically isomorphic with R™ x Z™ x K
for some nonnegative integers n, m and some compact abelian group K. Let A be
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a connected nilpotent Lie group for which Beurling’s theorem fails. Then there
exist nonzero functions F' and ¥ € L*(A x R™) such that either

/ / / |Gy f (e, Vo) s e IPHIIEHIED g dt de du < 00 (5.5)
A nJW JR®?

or

/ / / / |Gy f (b, e, vo) s €I HIEFHD 4 dt de du < 00, (5.6)
A n JW n

Consider the functions F(z,t) = f(z)e I and W(z,t) = ¢ (x)e I’ for some
fixed a € RT and nonzero functions f,1 € L*(A) satisfying

/A/W |Gy f(w, me) s e IIFHIEID2 P £ () da de < oo,

Then, for a > 7, functions F' and ¥ satisfy (5.5) and for a < m, F' and W satisfy
(5.6). Thus, by Proposition 5.4 and the structure theorem, it follows that if
Beurling’s theorem fails for the connected nilpotent Lie group A, then the above
functions F' and V¥ exist on A X G, where G is a compactly generated abelian

group.

Next we look at an analogue of Beurling’s theorem for the Fourier transform on
abelian groups. Let G be a second countable, locally compact, abelian group with
dual group G. Using the structure theory of abelian groups [16], G decomposes
into a direct product G = R™ x S, where n > 0 and S contains a compact open
subgroup. Hence, the connected component of identity of GG is noncompact if
and only if n > 1. Let G = R" x S has a noncompact connected component of
identity. The dual group G is identified with G = R" x S.

Theorem 5.6. Let f € L' N LQ(]R" x S) be such that

//// £z, 8)|| F(€,7)|e¥™ ¢ da ds dE dy < oc. (5.7)

Then f =0 a.e.
Before proving the above theorem, we shall prove some lemmas.

Lemma 5.7. Let f € L' N L*(R" x K), where K is a compact group satisfying

L[ [istes g ol s do de ds i < o
nJK Jrn JR

Then f =0 a.e.

Proof. For ~ € K , let H., be the Hilbert space of dimension d, with orthonormal
basis {¢]}%,. For fixed ¢ and ej, define f, : R™ — C such that

/ka (k) el, €]y dk.

For ¢ € R", we obtain

(€ @(f //ka e i€ Lyyer,e]) di dk
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fv(x)e_zmxf dz = fy(£). (5.8)
R
Thus, it follows that

L n@lR e i de
2m|x-¢|
< [ e @ s € de i dg < .

Hence, using the Beurling theorem for R”, we get fy = 0 a.e. For fixed v € K
and £ € R", using (5.8), it follows that (§ ® v(f)e/,e]) =0 for all 1 <4, 5 < d,.

Since v € K and £ € R" are arbitrarily fixed and f € L' N L*(G), therefore using
(2.1), we conclude that f =0 a.e. O

Lemma 5.8. Let M = R"™ x H be an open subgroup of an abelian group G =
R" x S. If f € LY(Q) satisfies (5.7), then so does f|u.

Proof. Since 8//7{ is compact and S//Y-I is identified with S/H [16, Theorem 24.2],

we have
— . |0 if v ¢ H,
/Sﬁ”(’”) d”_{ 1 ifzed

/S/H (& xn) dn_/n/fxs —2mike ()</S/H (s)dn> dx ds

- /. /H [, 8)e727 X(5) de ds = flau(&, Xlar).

Thus,

Therefore,

/ / A flarC )] IFan (€ x01 €24 da dh de dy
R*xH JR*"xH

/ / e 011 [ 6 on) ol ¥l e d
Rnx H R”XH
/ /// |f|Ma:h||f<§ )l = da dh de d di
nxH JR™ S/H
Y 2m|x-€|
<[ s FE ] @ de dn g dx < . 0

Using Lemmas 5.7 and 5.8, we now prove Theorem 5.6.

Proof of Theorem 5.6. Let s € S be arbitrary. If f € L' N L*(GQ) satisfies the
condition of Theorem 5.6, then so does f;, where fs(x,t) = f(z,st). Since S
has a compact open subgroup K, therefore using Lemmas 5.7 and 5.8, we get
fslrnxx = 0 a.e. Thus, we get f =0 a.e. O

For z € G and w € G, we define the translation operator T, on L*(G) as

(T.f)(y) = f(z""y)
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and the modulation operator M, on L*(G) as

(M, f)(y) = fy) w(y),

where f € L*(G) and y € G. For f,¢ € L*(G), the following property of the
Gabor transform can be easily verified:

Gy(MT.f)(2,7) = (w ) (z7) Guf(z a0 1) (5.9)

for all x,2 € G and y,w € G. In the next result, we give a Beurling theorem
version for the Gabor transform on abelian groups by reducing it to the Fourier
transform case.

Theorem 5.9. Let f € L*(G) and let v be a window function such that

/n//n/|G¢f z, 5,6, 0)| e (P +HIE/2 g ds d¢ do < oo.

Then either f =0 a.e. or Y =0 a.e.
Proof. For (z,k),(z,t) € R* x S and (&,7),((,x) € R» x S, define
Fiopcon (0, k,6,7) = €27 y(k) Gy(Mcx Lo f) (@, K, €,7)
X Gy(MepTeaf) (=2, k™ =97,

The function F{, ;¢ ) is continuous and is in L'NL*(R" xS x RxS ). Moreover,
using [8, Lemma 3.2], we have

Flotcoo (@.6,9,0) = Fap g (—y.07,w,0). (5.10)
Using (5.9), Floic) (2, k,&,7) can be written as
Floreno(@, k,§,7)
= 2Ty (f) e 2MEO7 () (47 Gy f(x — 2tk E— G y)
x e 202 (LY (47 G F(—a — 2, kY, —€ — ¢, x Iy D). (5.11)
(5.1

Applying (5.10) and 1), we have
X

/’ / / t/ Floten @k €9 [ Flonem (@, 8,3, 0)]
nxS ”><S nxS S

x e2mlTwt eyl qr dk d¢ dy dw do dy dv

/’ / / t/ Flencoo (@b &N Flopen (—9: 07, w,0)|
Rrx S R"XS R xS R"XS

(22 + 1]+l >+ 1y l1) dx dk d¢ dvy dw db dy dv

2
= (/ / N Flenen (5, & )| WIS qe i dg dv)
R xS JR" xS

= (/ / NGy f(—2 — T == Gy Y|
RnxS JRnx S
2 2 2
X |Gy f (= 2,6k, & = xR dy dk de dv)



UNCERTAINTY PRINCIPLES ON NILPOTENT LIE GROUPS 159

B (/ / NGy f(=e =220k, =€ =20y
xS JR*xS
2
X |Gy sk, € )| g e dy)

= 2 (PP (1 s F(—22, 72, —2¢,772))? < o0,

where H(x,s,£,0) = |Gyf(x, s, 0)|emIeIP+IE%/2 Thus, using Theorem 5.6, it
follows that F. ;) = 0 for all (z,t,¢, x). Since,

F(—z,tfl,—c,xfl)(oa €, 07 I) = 647”(2 X(t>2 (GTZJf(Zu t7 C7 X))27

therefore, G, f = 0, which using (2.3) implies that either f = 0 a.e. or ¢y =0
a.e. O

We shall next prove an analogue of Beurling’s theorem for the Gabor transform
for the groups of the form R™ x K, when K is a compact group.

Theorem 5.10. Let f,v € L*(R" x K), where K is a compact group such that

/ // > NGy f(@ k&) lms NP2 d dk de < oo,
n JK JR™ ~
yeK

Then either f =0 a.e. or v =0 a.e.

Proof. Assume that ¢ # 0. For w,y € [A(, let H,, and H., be the Hilbert spaces of

dimensions d,, and d., with orthonormal bases {e¥}%, and {e] 4 respectively.
For fixed €], e), we deﬁne 7:R" — C by

/@Dx k) (v(k) el el) dk.

Using the Hélder’s inequality, it follows that 7 € L*(R"). Fix v € K for which
7 # 0. For 0 € K, we can write

d~
N =300k
j=1

and TR0 = Z ms 6, (5.12)

0eK,

where K, is a finite subset of K and C¥’s and my's are scalars (see [10]). For
fixed ey and e}, we define g : R" — C such that

— [t TG ) dh
K
Clearly, g € L*(R™). Consider a function ¢ : R" x K — C defined by
o(x, k) =(x, k) (v(k)el, ed).
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Then ¢ € L*(R" x K) and G, f(z,k,&,0) is a Hilbert-Schmidt operator for all
(x,k) € R" x K and for almost all ({,0) € R* x K.
For 0 € K and fixed €7, e, using [8], we have

(Gof(x, k& 0)ef e, :22& ms (Gyf(a,k, & 0)el; €, ).

] 1 6€Ko'

Let M, = max{|m;| : 6 € K,}. As |K,| < d,d, < oo, we have M, < oo. Using
the Cauchy—Schwarz inequality, we have

G f (2, k. & 0)liis = Z (Gof (2, k& a)e] )]

I,m=1

Z (Z ST ICE, my (G f(a,k,€,6)el e m5>|)2

Iim=1  j=1écK,

do d
< MUK dy (D0 UGSk, & 0)ed . eh )

I,m=1 j=1 6eK,
dy dy

<MK dy YD G (ki€ 0) s

I,m=1 j=1 0eK,

2
< & M? |K,| & (Z 1Gy f (2, k,£,5)\|Hs> :
eK,
Hence, it follows that
1Go f (2, k&, 0)llus < Coy D [1Gy f( k&, 6) s, (5.13)
eK,

where C, ., = d, M, |K,| d, is a constant depending on o and y. Now for every
o € K, using (5.13), we obtain

/ / ”Gsé?f(x7k7£70—)”HS eﬂ(”xH2+”§H2)/2 dx dk df
n R
< Cm/ / / > NGy f(a k&, 6) s e™IFHIEIN2 g dk de < 0o, (5.14)

0EK,

For z,& € R", the function G, g is given by
GTg($7£):/< Wf($k£7 )p? q> dk
K
Thus,

Grglz.6)] < /K 1Gof sk, €,00) s .
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On using (5.14), it follows
/ / 1Gg(w, €)™ I=IPHIER/2 gy ge

< / / / |Gy f(z, k, & w)|lus emUlzl2+IEN?)/2 1y d¢ dk < oo.
nJR JK

Then by the Beurling theorem for the Gabor transform on R" (see [14]) or The-

orem 5.9 above, we conclude that ¢ = 0 a.e. Since w € K is arbitrary, we get
f=0ae. O

Remark 5.11. Using Theorem 5.2, the above theorem can be proved for the group
G x K, where G is an exponential solvable Lie group with a nontrivial center and
K is a compact group in the following setting:

Let f € L?(G x K) and ¢ € C.(G x K) such that

/ / / D NEGof (ks me,7) s eI do i dg < oo
GJK W'yeff

Then either f =0 a.e. or v» =0 a.e.
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