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UNCERTAINTY PRINCIPLES ON NILPOTENT LIE GROUPS

AJAY KUMAR1* AND SHARMA2

Communicated by A.M. Peralta

Abstract. We prove Hardy’s type uncertainty principle on connected nilpo-
tent Lie groups for the Fourier transform. An analogue of Hardy’s theorem for
the Gabor transform has been established for connected and simply connected
nilpotent Lie groups. Finally Beurling’s theorem for the Gabor transform is
discussed for groups of the form Rn ×K, where K is a compact group.

1. Introduction

Heisenberg uncertainty principle relates the uncertainties in the measurement
of position and moment of microscopic particles. In harmonic analysis, the un-
certainty principle relates the behavior of a function like support or decay with
that of its Fourier transform. For f ∈ L1(R), the Fourier transform f̂ on R is
given by

f̂(ξ) =

∫
R
f(x) e−2πiξx dx.

One of the uncertainty principles states that a nonzero integrable function f on
R and its Fourier transform f̂ cannot both simultaneously decay rapidly. The
following theorem of Hardy makes the above statement more precise.

Theorem 1.1 ([15]). Let f be a measurable function on R such that
(i) |f(x)| ≤ Ce−aπx

2 for all x ∈ R,
(ii) |f̂(ξ)| ≤ Ce−bπξ

2 for all ξ ∈ R,
where a, b, and C are positive constants. If ab > 1, then f = 0 a.e.

Date: Received: 18 September 2021; Accepted: 27 February 2022.
*Corresponding author.
2020 Mathematics Subject Classification. Primary 43A32; Secondary 22D99; 22E25.
Key words and phrases. Hardy’s type theorem, Fourier transform, Beurling theorem, con-

tinuous Gabor transform, nilpotent Lie group.
143



144 A. KUMAR, J. SHARMA

Several analogues of the above result have been proved in the setting of Rn,
Heisenberg group Hn [26], Heisenberg motion group Hn nK [5], locally compact
abelian groups, various classes of solvable locally compact groups [3], Euclidean
motion group [24], and nilpotent Lie groups [2,18,23]. A generalization of Hardy’s
theorem is Beurling’s theorem, which can be stated as follows.

Theorem 1.2 ([17]). Let f be a square integrable function on R satisfying∫
R

∫
R
|f(x)| |f̂(ξ)|e2π|x·ξ| dx dξ <∞.

Then f = 0 a.e.

Several analogues of Beurling’s theorem for the Fourier transform has been
proved for exponential solvable Lie groups [1] and various classes of nilpotent
Lie groups [4, 22, 23, 27, 31]. Uncertainty principles like Heisenberg uncertainty
inequality and qualitative uncertainty principle have been investigated for the
Fourier transform (see [6,9,28,29]). For a detailed survey of the uncertainty prin-
ciples for the Fourier transform, we refer to [13].
The transformation of a signal using the Fourier transform loses the information
about time, and it is very difficult to tell where a certain frequency has occurred.
Thus, in order to tackle such problems, a joint time-frequency analysis was uti-
lized. Gabor transform is turned out to be one such tool. The approach used in
this technique is cutting the signal into segments using a smooth window function
and then computing the Fourier transform separately on each smaller segment.
In this manner, the Gabor transform provides the local aspect of the Fourier
transform with time resolution equal to the size of the window. It results in a
two-dimensional representation of the signal.

Let ψ ∈ L2(R) be a fixed function usually called a window function. The
Gabor transform of a function f ∈ L2(R) with respect to the window function ψ
is defined by Gψf : R× R̂ → C as

Gψf(t, ξ) =

∫
R
f(x) ψ(x− t) e−2πiξx dx,

for all (t, ξ) ∈ R× R̂.
In [10], the Gabor transform on a second countable, locally compact, unimodular
group G of type I has been studied. The Heisenberg uncertainty inequality was
proved in [7,30] for the Gabor transform for the groups of the form KnRn, where
K is a separable unimodular locally compact group of type I and connected,
simply connected nilpotent Lie groups. Qualitative uncertainty principle was
proved for the Gabor transform for several classes of locally compact groups,
including low dimensional nilpotent Lie groups [25]. Later, Hardy’s uncertainty
principle for the Gabor transform was proved for locally compact abelian groups
having noncompact identity component and groups of the form Rn×K, where K
is a compact group having irreducible representations of bounded dimension [8].
In [11], the spherical Gabor transform using the properties of Gelfand pairs and
the spherical Fourier transform, has been studied and Lieb inequality, Donoho–
Stark’s uncertainty principles, and Beckner’s uncertainty principles were proved.
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In this paper, analogues of above uncertainty principles on nilpotent Lie groups
for the Fourier and Gabor transforms have been studied. Results obtained have
been organized as follows: In section 3, Hardy’s type results for the Fourier
transform have been established for connected nilpotent Lie groups. Section 4
deals with an analogue of Hardy’s theorem for the Gabor transform. In the last
section, we prove Beurling’s theorem for the Gabor transform for locally compact
abelian groups with noncompact connected component and groups of the form
Rn ×K, where K is a compact group.

2. Preliminaries

For a second countable, locally compact, unimodular group G of type I, dx will
denote the Haar measure on G. Let Ĝ be the dual space of G consisting of all
irreducible unitary representations of G equipped with Plancherel measure dπ.
For f ∈ L1 ∩ L2(G), the Fourier transform f̂ of f is an operator-valued function
on Ĝ defined as

f̂(π) =

∫
G

f(x) π(x)∗dx.

Moreover, by the Plancherel theorem [12, Theorem 7.36], f̂(π) is a Hilbert-
Schmidt operator and satisfies the following property:∫

G

|f(x)|2dx =

∫
Ĝ

∥f̂(π)∥2HS dπ. (2.1)

For each (x, π) ∈ G× Ĝ, we define H(x,π) = π(x)HS(Hπ), where π(x)HS(Hπ) =
{π(x)T : T ∈ HS(Hπ)}. Then H(x,π) forms a Hilbert space with the inner product
given by

⟨π(x)T, π(x)S⟩H(x,π)
= tr (S∗T ) = ⟨T, S⟩HS(Hπ).

Also, H(x,π) = HS(Hπ) for all (x, π) ∈ G × Ĝ. Let H2(G × Ĝ) denote the direct
integral of {H(x,π)}(x,π)∈G×Ĝ with respect to the product measure dx dπ. Then
H2(G× Ĝ) forms a Hilbert space with the inner product given by

⟨F,K⟩H2(G×Ĝ) =

∫
G×Ĝ

tr [F (x, π)K(x, π)∗] dx dπ.

Let f ∈ Cc(G), the space of all continuous complex-valued functions on G with
compact support, and let ψ be a fixed function in L2(G). For (x, π) ∈ G× Ĝ, the
continuous Gabor Transform [10, Definition 3.1] of f with respect to the window
function ψ can be defined as a measurable field of operators on G× Ĝ by

Gψf(x, π) :=

∫
G

f(y) ψ(x−1y) π(y)∗ dy. (2.2)

One can verify that Gψf(x, π) is a Hilbert–Schmidt operator for all x ∈ G and
for almost all π ∈ Ĝ. We can extend Gψ uniquely to a bounded linear operator
from L2(G) into a closed subspace of H2(G× Ĝ), which will again be denoted by
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Gψ. As in [10, Corollary 3.4], for f1, f2 ∈ L2(G) and window functions ψ1 and
ψ2, we have

⟨Gψ1f1, Gψ2f2⟩ = ⟨ψ2, ψ1⟩⟨f1, f2⟩. (2.3)
For detailed study of the Gabor transform on second countable, locally compact,
unimodular group G of type I, one can refer to [10].

3. Nilpotent Lie group

For a connected nilpotent Lie group G with its simply connected covering group
G̃, let Γ be a discrete subgroup of G̃ such that G = G̃/Γ. Denoting g by the
Lie algebra of G and G̃, let B = {X1, X2, . . . , Xn} be a strong Malcev basis of g
through the ascending central series of g. The norm function on g is defined as the
Euclidean norm of X with respect to the basis B. Indeed, for X =

∑n
j=1 xjXj ∈ g

with xj ∈ R,

∥X∥ =
( n∑
j=1

x2j

)1/2
.

Define a “norm function” on G by setting
∥x∥ = inf {∥X∥ : X ∈ g such that expGX = x}.

The composed map, Rn → g → G̃ given by

(x1, . . . , xn) →
n∑
j=1

xjXj → expG̃

( n∑
j=1

xjXj

)
is a diffeomorphism and maps the Lebesgue measure on Rn to the Haar measure
on G̃. In this manner, we identify the Lie algebra g, as a set with Rn. Also,
measurable (integrable) functions on G̃ can be viewed as such functions on Rn.

Let g∗ be the vector space dual of g and let {X∗
1 , . . . , X

∗
n} be the basis of g∗,

which is dual to {X1, . . . , Xn}. Then {X∗
1 , . . . , X

∗
n} is a Jordan–Hölder basis for

the coadjoint action of G on g∗. We shall identify g∗ with Rn via the map

ξ = (ξ1, . . . , ξn) →
n∑
j=1

ξjX
∗
j ,

and on g∗, the Euclidean norm relative to the basis {X∗
1 , . . . , X

∗
n} is defined as∥∥∥ n∑

j=1

ξjX
∗
j

∥∥∥ =
( n∑
j=1

ξ2j

)1/2
= ∥ξ∥.

Let U denote the Zariski open subset of g∗ of generic elements under the coadjoint
action of G̃ with respect to the basis {X∗

1 , . . . , X
∗
n}. Suppose that S is the set of

jump indices, T = {1, . . . , n} \ S, and that VT = R-span{X∗
i : i ∈ T}.

Then W = U ∩ VT is a cross-section for the generic orbits, and W supports
the Plancherel measure on G̃. Every element of a connected nilpotent Lie group
G with noncompact center can be uniquely written as (t, z, y), t ∈ R, z ∈ Td, and
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y ∈ Y, where Y = exp(
∑n

j=d+2RXj). We now prove a generalization of the result
proved in [2].

Theorem 3.1. Let G be a connected nilpotent Lie group with noncompact center
and let f : G→ C be a measurable function satisfying

(i) |f(t, z, y)| ≤ C(1 + |t|2)Ne−παt2ϕ(y) for all (t, z, y) ∈ G and for some
ϕ ∈ L1 ∩ L2(Y ).

(ii) ∥πξ(f)∥HS ≤ C(1 + ∥ξ∥2)Ne−πβ∥ξ∥2 for all ξ ∈ W,
where α, β, and C are positive real numbers and N is a nonnegative integer. If
αβ > 1, then f = 0 a.e.

Before proving this main result, we shall first prove some lemmas. Let K be
a compact central subgroup of G and let χ be a character of K. For f ∈ L1(G),
define fχ : G→ C by

fχ(t, z, y) =

∫
K

f(t, zk, y) χ(k) dk.

Lemma 3.2. Let G be a connected nilpotent Lie group with a compact central
subgroup K and let f be a measurable function on G satisfying conditions (i) and
(ii) of Theorem 3.1. Then the function fχ also satisfies these conditions.

Proof. On normalizing the Haar measure on central subgroup K, we obtain

|fχ(t, z, y)| ≤
∫
K

C(1 + t2)N e−απt
2

φ(y) dk

= C(1 + t2)N e−απt
2

φ(y).

Also, πξ(fχ) = πξ(f)
∫
K
χ(k) πξ(k) dk. If πξ|K is a multiple of some character of

K, which is different from χ, then by orthogonality relation of compact groups,
we have ∫

K

χ(k) πξ(k) dk = 0.

Thus, ∥πξ(fχ)∥ ≤ C(1 + ∥ξ∥2)Ne−βπ∥ξ∥2 . □
Denote by Gc, the maximal compact subgroup of G. Then Gc is connected,

contained in Z(G), and G/Gc is simply connected.

Lemma 3.3. Let G be a connected nilpotent Lie group. Suppose that Theorem
3.1 holds for all quotient subgroups H = G/C, where C is a closed subgroup of
Gc = Z(G)c such that either Z(G)c = C or Z(G)c/C = T. Then Theorem 3.1
also holds for G.

Proof. Let K = Z(G)c and let f : G→ C be a measurable function that satisfies
the conditions of Theorem 3.1. For χ in K̂, consider Kχ = {k ∈ K : χ(k) = 1}
and H = G/Kχ. Then fχ is constant on the cosets of the subgroup Kχ and also
by Lemma 3.2, it follows that the function fχ satisfies the Hardy’s type decay
conditions. Since Hc = K/Kχ = T or Hc = {e}, using the hypothesis, we get
fχ = 0 a.e. As χ ∈ K̂ is arbitrarily chosen, we have f = 0 a.e. □
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For a second countable, locally compact group G containing R as a closed
central subgroup, let S denote a Borel cross-section for the cosets of R in G. The
inverse image of Haar measure on G/R under the map s → Rs from S → G/R
is denoted by ds.
Lemma 3.4. Let G and S be as defined above and let f : G→ C be a measurable
function satisfying |f(ts)| ≤ (1+ |t|2)Ne−απt2ϕ(s), for some α > 0 and ϕ ∈ L2(S).
Define a function g on R such that g(t) =

∫
S
(fs ∗ f ∗

s )(t) ds, where

fs ∗ f ∗
s (t) =

∫
R
fs(z)fs(z − t)dz.

Then |g(t)| ≤ C1e
−γπ t2

2 , for some C1 > 0 and 0 < γ < α.

Proof. For each t ∈ R and 0 < γ < α, we have

|g(t)| =
∣∣ ∫

S

∫
R
f(zs) f((z − t)s) dz ds

∣∣
≤
∫
S

∫
R
|f(zs)| |f((z − t)s)| dz ds

≤
∫
S

ϕ(s)2ds

∫
R
(1 + |z|2)N(1 + |z − t|2)Ne−πα(z2+(z−t)2) dz

≤ ∥ϕ∥22
∫
R

N∑
k,j=0

(
N

k

)(
N

j

)
z2k(z − t)2je−(α−γ)πz2e−γπz

2

× e−(α−γ)π(z−t)2e−γπ(z−t)
2

dz.

The function z →
(
N
k

)
z2ke−(α−γ)πz2 is bounded on R, say by Kk.

Set K = max{Kk : 0 ≤ k ≤ N}. Thus, it follows that

|g(t)| ≤ K(N + 1) ∥ϕ∥22
N∑
j=0

(
N

j

)∫
R
(z − t)2je−γπz

2

e−(α−γ)π(z−t)2e−γπ(z−t)
2

dz.

Using the Cauchy–Schwarz inequality, we have

|g(t)| ≤ K(N + 1) ∥ϕ∥22
N∑
j=0

(
N

j

)(∫
R
(z − t)4je−2(α−γ)π(z−t)2dz

)1/2

×
(∫

R
e−2γπz2e−2γπ(z−t)2dz

)1/2

= K(N + 1) ∥ϕ∥22
N∑
j=0

(
N

j

)
Bj

(∫
R
e−2γπ( t

2

2
+ 1

2
(2z−t)2)dz

)1/2

= K(N + 1) ∥ϕ∥22 e−γπ
t2

2

N∑
j=0

(
N

j

)
Bj

∫
R
e−πγ

1
2
(2z−t)2)dz

= K(N + 1) ∥ϕ∥22 e−γπ
t2

2

N∑
j=0

(
N

j

)
Bj

∫
R
e−2πγz2dz
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=
1√
2γ
K(N + 1) ∥ϕ∥22 e−γπ

t2

2

N∑
j=0

(
N

j

)
Bj

= C1e
−γπ t2

2 ,

where C1 =
K(N+1)√

2γ
∥ϕ∥22

N∑
j=0

(
N
j

)
Bj and Bj =

(∫
R z

4je−2(α−γ)πz2dz
) 1

2 . □

We shall now prove Hardy’s type theorem for the Fourier transform for con-
nected nilpotent Lie groups having noncompact center. Consider Vk = [ξ1 −
1
2k
, ξ1 +

1
2k
] for every natural number k, and fix a real number ξ1. For m > 2k,

choose a C∞ function vk,m on real line such that the support of vk,m is contained
in Vk, vk,m = 1 on [ξ1 − 1/2k + 1/m, ξ1 + 1/2k − 1/m] and 0 ≤ vk,m ≤ 1. By the
Plancherel inversion theorem, there exists uk,m ∈ L1(R) such that ûk,m = vk,m.
For f ∈ L1(G), consider fk,m = uk,m ∗ f and define Fk,m : G→ C by

Fk,m(x) =

∫
T
(fk,m ∗ f ∗

k,m)(xz) dz, x ∈ G.

Next, we modify [2, Lemma 3.1] in order to prove Theorem 3.1.
Lemma 3.5. Let f : G→ C be a measurable function satisfying condition (i) of
Theorem 3.1. Then

lim
k,m→∞

kFk,m(e) = 0.

Proof. For fix z, w ∈ T and y ∈ Y , define

Ek,m(z, w, y) =

∫
R
f(t, z, y)

(∫
R
uk,m(s)(uk,m ∗ f)(t+ s, w, y)ds

)
dt.

Then as proved in [2, Lemma 3.1], we have

Fk,m(e) =

∫
Y

∫
T2

Ek,m(z, w, y)dz dw dy (3.1)

and
Ek(z, w, y) = lim

m→∞
Ek,m(z, w, y)

=

∫
R
f(t, z, y)

∫ ξ1+1/2k

ξ1−1/2k

ûk,m(s)ûk,m(t, s)f̂(t+ s, w, y)ds dt.

Now χVk(t + s) = 0 for all s ∈ [ξ1 − 1
2k
, ξ1 +

1
2k
] whenever t /∈ [−1

k
, 1
k
], and if

t ∈ [−1
k
, 1
k
], then

χVk(t+ ·) = χ[ξ1−t−1/2k,ξ1−t+1/2k] ≤ χ[ξ1−3/2k,ξ1+3/2k].

Using condition (i) of hypothesis of Theorem 3.1, we compute

|Ek(z, w, y)| ≤
∫ 1/k

−1/k

|f(t, z, y)|

(∫ ξ1+3/2k

ξ1−3/2k

|f̂(t+ s, w, y)|ds

)
dt

≤ 3

k
∥f̂∥∞

∫ 1/k

−1/k

|f(t, z, y)|dt
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≤ 3C

k
∥f̂∥∞ϕ(y)

∫ 1/k

−1/k

(1 + t2)Ne−απt
2

dt

≤ 3C

k2
2(N+1)∥f̂∥∞ ϕ(y). (3.2)

Therefore, from (3.1) and (3.2), it follows that

lim
m→∞

|Fk,m(e)| ≤
∫
Y

∫
T2

|Ek(z, w, y)|dz dw dy

≤ 3C

k2
2(N+1)∥f̂∥∞

∫
Y

φ(y) dy.

Hence, lim
k,m→∞

Fk,m(e) = 0. □

It may be observed that the proof of Theorem 3.1 now follows from the tech-
nique used in [2, Theorem 1.1]. For the sake of completeness, we briefly sketch
the proof. For fix ξ2 ∈ R, from [2], we have

ĝ(ξ2) = lim
k→∞

∫
Vk

(∫
Xη2

|Pf(η)| · ∥πη(f)∥2HS dη
′

)
and ∫

Xη2

|Pf(η)| · ∥πη(f)∥2HS dη
′

≤ C
∑
n∈Z∗

(∫
VT ′′

|Pf(η)|(1 + ∥η∥2)Nexp(−2β(n2 + η22 + ∥η′′∥2))dη′′
)
,

where V ′′
T =

∑
i∈T,i>2RX∗

i . Let 0 < δ < β. Since Pf is a polynomial function in
η, there exists a constant K > 0 such that for all η ∈ W

|Pf(η)|(1 + ∥η∥2)N exp(−2(β − δ)∥η∥2) ≤ K.

As proved in [2], we have
|ĝ(ξ2)| ≤ D exp(−2δξ22)

for all ξ2 ∈ R and D > 0. By Lemma 3.4, for all t ∈ R, we have
|g(t)| ≤ C1e

−γt2/2

for some C1 > 0 and 0 < γ < α. Since αβ > 1, we can choose γ and δ such
that γδ > 1. Then by Hardy’s theorem for R, we get g = 0 a.e. Indeed, g is the
integral of a positive definite function fs ∗ f ∗

s on R, which implies that f = 0 a.e.
and this completes the proof.

We conclude this section by remarking that if G is a connected nilpotent Lie
group that has no square integrable irreducible representation and all the co-
adjoint orbits in g∗ are flat, then Hardy’s type theorem holds for G. Let K
be any compact central subgroup of G. Then H = G/K has no square inte-
grable irreducible representation and also satisfies the flat orbit condition. By
Lemma 3.3, it is enough to prove Hardy’s type theorem for such group H sat-
isfying Hc = T. Then H must have a noncompact center and by Theorem 3.1,
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H satisfies Hardy’s type theorem. Also in view of [2, Proposition 4.1], it is easy
to see that Theorem 3.1 does not hold for nilpotent Lie groups having an irre-
ducible square integrable representation in particular reduced Weyl–Heisenberg
group, low-dimensional nilpotent Lie groups G5,1/Z, G5,3/Z, and G5,6/Z. For
more details of such groups, one may refer to [20].

4. Analogue of Hardy’s theorem for the Gabor transform

In this section, we deal with an analogue of Hardy’s theorem for the Gabor
transform.

Lemma 4.1. Let G be a second countable locally compact group. For f, ψ ∈ L2(G)
and x ∈ G, define fxψ : G→ C such that

fxψ(y) = f(y) ψ(x−1y).

If fxψ = 0 a.e. for almost all x ∈ G, then either f = 0 a.e. or ψ = 0 a.e.

Proof. Let us assume that ψ is a nonzero function in L2(G). There exists a subset
M of G with measure zero such that for all x ∈ G\M , fxψ = 0 a.e. Indeed G\M is
dense in G and G is second countable, so we can take a sequence (xj)j∈N contained
in G \M, which is dense in G. Let

V =

{
t ∈ G : |ψ(t)| > 1

2||ψ||∞

}
.

Then V is a nonempty open subset of G and
⋃
j∈N

xjV = G. Consider the function

h(t) =
∑
j∈N

1

2j
|ψ(x−1

j t)|, t ∈ G.

Clearly h is a strictly positive function on G. Moreover,

0 ≤
∫
G

|f(t)|h(t) dt =
∫
G

∑
j∈N

1

2j
|f(t)||ψ(x−1

j t)| dt

=
∑
j∈N

1

2j

∫
G

|fxjψ (t)| dt = 0.

Hence,
∫
G
|f(t)|h(t) dt = 0, which implies that f · h = 0 a.e. Since h is strictly

positive, it follows that f = 0 a.e. □

Theorem 4.2. Let f be a measurable function on Rn such that |f(x)| ≤ Ce−απ∥x∥
2

for all x ∈ Rn and let ψ be a window function. Also assume that for almost all
y ∈ Rn,

|Gψf(y, ξ)| ≤ ηy e
−βπ∥ξ∥2 for all ξ ∈ Rn,

where α, β, C, and ηy are positive scalars and ηy depends upon y. If αβ > 1, then
either f = 0 a.e. or ψ = 0 a.e.



152 A. KUMAR, J. SHARMA

Proof. For each y ∈ Rn, define the function Fy : Rn → C such that
Fy(x) = f yψ ∗ (f yψ)

∗(x).

Then for each ξ ∈ Rn, we have

F̂y(ξ) = |f̂ yψ(ξ)|
2 = |Gψf(y, ξ)|2 ≤ η2y e

−2βπ∥ξ∥2 .

Also, for each x ∈ Rn, we obtain

|Fy(x)| ≤
∫
Rn

|f yψ(t)| |f
y
ψ(t− x)| dt

=

∫
Rn

|f(t)| |ψ(t− y)| |f(t− x)| |ψ(t− x− y)| dt

≤
∫
Rn

C2 e−απ∥t∥
2

e−απ∥t−x∥
2|ψ(t− y)| |ψ(t− x− y)| dt

= C2

∫
Rn

e−απ(
∥x∥2

2
+ 1

2
(∥2t−x∥2))|ψ(t− y)| |ψ(t− y − x)| dt

≤ C2 e−απ
∥x∥2

2

∫
Rn

|ψ(t− y)||ψ(t− y − x)| dt

= C2 e−απ
∥x∥2

2 (|ψ| ∗ |ψ|∗)(x)

≤ C2 e−απ
∥x∥2

2 ∥ |ψ| ∗ |ψ|∗∥∞.

Taking C1 = max{η2y, C2 ∥ |ψ| ∗ |ψ|∗∥∞}, then

|Fy(x)| ≤ C1e
−απ ∥x∥2

2 for all x ∈ Rn

and
|F̂y(ξ)| ≤ C1e

−2βπ∥ξ∥2 for all ξ ∈ Rn.

Using Hardy’s theorem for Rn, it follows that Fy = 0 for almost all y ∈ Rn which
further implies that f yψ = 0 for almost all y ∈ Rn. Therefore, using Lemma 4.1,
either f = 0 a.e. or ψ = 0 a.e. □
Theorem 4.3. Let G be a connected and simply connected nilpotent Lie group
with noncompact center. Suppose that ψ ∈ Cc(G) and that f ∈ L2(G) satisfies

∥Gψf(x, πξ)∥HS ≤ Cx e
−πβ∥ξ∥2 ,

where Cx is a positive scalar depending on x. If β > 0, then either f = 0 a.e. or
ψ = 0 a.e.

Proof. For y = (y2, y3, . . . , yn) ∈ Rn−1, define a function fy : R → C such that

fy(x1) = f(exp(x1X1 +
n∑
j=2

yjXj)).

For z ∈ G, define a function Fz : R → C given by

Fz(x1) =

∫
Rn−1

(f zψ)y ∗ (f zψ)∗y(x1) dy.
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As ψ ∈ Cc(G), therefore f zψ has compact support. Moreover,

Fz(x1) =

∫
Rn−1

(f zψ)y ∗ (f zψ)∗y(x1) dy

=

∫
Rn−1

∫
R
f zψ(t, y)f

z
ψ(t− x1, y) dy dt

= f zψ ∗ f zψ(x1, 0).

Therefore, Fz is a continuous function with compact support, say K. Choose
α > 0 such that αβ > 1. Since the function x1 → exp(−απx21) attains minima
on K, therefore r ≤ e−παx

2
1 for some r > 0. Also, there exists C1 > 0 such that

|Fz(x1)| ≤ C1, for all x1 ∈ R. Choose C ′
> 0 satisfying rC ′

> C1 and therefore
for each x ∈ K, we obtain

|Fz(x1)| ≤ C1 < rC
′ ≤ C

′
e−παx

2
1 ,

and for x1 ∈ R \K, we have Fz(x1) = 0. Also f zψ ∈ L1 ∩ L2(G) and

∥πξ(f zψ)∥HS ≤ ∥Gψf(x, πξ)∥HS ≤ Cxe
−πβ∥ξ∥2 .

Using [18, Lemma 2], we get that |F̂z(ξ1)| ≤ c e−2πβ∥ξ∥2 , for some c > 0. Therefore,
using Hardy’s theorem for the Fourier transform, the function Fz = 0 a.e. Since
Fz is integral of a positive definite function (f zψ)y ∗ (f zψ)∗y on R, therefore (f zψ)y = 0
a.e. This holds for all z ∈ G, which further gives that either f = 0 a.e. or ψ = 0
a.e. □

Corollary 4.4. Let G be a connected and simply connected nilpotent Lie group.
Let ψ ∈ Cc(G) and f ∈ L2(G) such that

∥Gψf(x, πξ)∥HS ≤ Ce−π(a∥x∥
2+b∥ξ∥2)/2

for all (x, ξ) ∈ G×W, where a, b, and C are positive real numbers. Then either
f = 0 a.e. or ψ = 0 a.e.

5. Beurling theorem

In the next theorem, we prove a result of the Beurling type theorem.

Theorem 5.1. Let G be a connected and simply connected nilpotent Lie group
and let ψ ∈ Cc(G) and f ∈ L2(G) be such that∫

G

∫
W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)Pf(ξ) dx dξ <∞. (5.1)

Then either f = 0 a.e. or ψ = 0 a.e.

Proof. From (5.1), there exists a zero set M ⊂ G such that for all x ∈ G \M , we
have ∫

W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)Pf(ξ) dξ <∞. (5.2)
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For x ∈ G \M , we consider the function fxψ and compute∫
G

∫
W
|fxψ(z)| ∥f̂xψ(πξ)∥HS e

2π∥z∥∥ξ∥Pf(ξ) dz dξ

≤
∫
G

∫
W
|fxψ(z)| ∥f̂xψ(πξ)∥HS e

π(∥z∥2+∥ξ∥2)Pf(ξ) dz dξ

=

∫
G

∫
W
|fxψ(z)| ∥Gψf(x, πξ)∥HS e

π(∥z∥2+∥ξ∥2)Pf(ξ) dz dξ

=

∫
G

|fxψ(z)|eπ∥z∥
2

dz

∫
W
∥Gψf(x, πξ)∥HS e

π∥ξ∥2Pf(ξ) dξ. (5.3)

Also, ∫
G

|fxψ(z)|eπ∥z∥
2

dz =

∫
G

|f(z)||ψ(x−1z)|eπ∥z∥2dz

≤
(∫

G

|f(z)|2dz
)1/2(∫

G

|ψ(x−1z)|2e2π∥z∥2dz
)1/2

. (5.4)

As ψ ∈ Cc(G), so ψ · eπ∥·∥2 ∈ L2(G) and hence
∫
G
|fxψ(z)|eπ∥z∥

2
dz < ∞. Thus,

using (5.2), (5.3), and (5.4), we get∫
G

∫
W
|fxψ(z)| ∥f̂xψ(πξ)∥HS e

2π∥x∥·∥ξ∥Pf(ξ) dz dξ <∞.

Using the Beurling theorem for connected and simply connected nilpotent Lie
groups [27], it follows that fxψ = 0 a.e. for all x ∈ G \M . Hence, by Lemma 4.1,
either f = 0 a.e. or ψ = 0 a.e. □

Using [1, Theorem 3.1], a careful reading of the proof of the above theorem
shows the following result.
Theorem 5.2. Let G be an exponential solvable Lie group with a nontrivial
center, and let ψ ∈ Cc(G) and f ∈ L2(G) such that∫

G

∫
W
∥KξGψf(x, πξ)∥2HS e

π(∥x∥2+∥ξ∥2) dx dξ <∞,

where Kξ is a semi-invariant operator [1, 2.6]. Then either f = 0 a.e. or ψ = 0
a.e.
Remark 5.3. Let G be a connected nilpotent Lie group with a square integrable
representation. Then as proved in [8, Theorem 5.1], there exist nonzero functions
f and ψ in L2(G) such that for all x ∈ G and ξ ∈ W ,

∥Gψf(x, πξ)∥HS ≤ Ce−π(a∥x∥
2+b∥ξ∥2)/2,

where a and b are nonnegative real numbers with ab > 1 and C is a positive
constant. For a, b > 1, it follows that∫

G

∫
W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)/2 Pf(ξ) dξ dx <∞.

Thus, the analogue of Beurling theorem does not hold for G. Several examples
of such type of group exist including Weyl–Heisenberg group, low-dimensional
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nilpotent Lie groups G5,1/Z, G5,3/Z, and G5,6/Z. More such examples can be
obtained using the following result.

Proposition 5.4. Let G be a group of the form G = A ×K ×D, where A is a
connected nilpotent Lie group, K a compact group, and D a type I discrete group.
If the Beurling theorem fails for A, then it also fails for G.

Proof. Since the Beurling theorem fails for A, there exist nonzero functions f, ψ ∈
L2(A) such that∫

A

∫
W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)/2Pf(ξ) dx dξ <∞.

Define functions F,Ψ : G→ C by
F (x, k, t) = f(x)χe(t) and Ψ(x, k, t) = ψ(x)χe(t),

where e is the identity element of D. Let {eξi}, {eδi}, and {eγi } be orthonormal
basis of Hilbert spaces corresponding to the representations πξ, δ and γ of A,K,
and D, respectively. Then
⟨GΨF (x, k, t, πξ, δ, γ)e

ξ
i ⊗ eδm ⊗ eγp , e

ξ
j ⊗ eδn ⊗ eγq ⟩

=

{
⟨Gψf(x, πξ)e

ξ
i , e

ξ
j⟩ if t = e and δ ≡ I,

0 otherwise.

Also, using [19] or survey in [21], D is a bounded dimensional representation
group. So, there exists a positive scalar M such that dim(γ) ≤M for all γ ∈ D̂.
Therefore, we have
∥GΨF (x, k, e, πξ, I, γ)∥2HS

≤
∑
i,j

∑
m,n

∑
p,q

|⟨GΨF (x, k, e, πξ, I, γ)e
ξ
i ⊗ eδm ⊗ eγp , e

ξ
j ⊗ eδn ⊗ eγq ⟩|2

=
∑
i,j

∑
m,n

∑
p,q

|⟨Gψf(x, πξ)e
ξ
i , e

ξ
j⟩|2 ≤M2∥Gψf(x, πξ)∥2HS.

Thus,∫
A

∫
K

∑
t∈D

∫
W

∑
δ∈K̂

∫
D̂

∥Gψf(x, k, t, πξ, δ, γ)∥HS

× eπ(∥x∥
2+∥ξ∥2)/2Pf(ξ)dx dk dξ dγ

≤
∫
A

∫
K

∫
W

∫
D̂

∥Gψf(x, k, e, πξ, I, γ)∥HS e
π(∥x∥2+∥ξ∥2)/2Pf(ξ)dx dk dξ dγ

=

∫
A

∫
W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)/2Pf(ξ)dx dξ <∞.

Hence, the Beurling theorem fails for G. □
Remark 5.5. Let G be a compactly generated abelian group. Then by the struc-
ture theorem [16, Theorem 9.8], G is topologically isomorphic with Rn×Zm×K
for some nonnegative integers n,m and some compact abelian group K. Let A be
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a connected nilpotent Lie group for which Beurling’s theorem fails. Then there
exist nonzero functions F and Ψ ∈ L2(A× Rn) such that either∫

A

∫
Rn

∫
W

∫
Rn

∥Gψf(x, t, πξ, γu)∥HS e
π(∥x∥2+∥t∥2+∥ξ∥2)dx dt dξ du <∞ (5.5)

or ∫
A

∫
Rn

∫
W

∫
Rn

∥Gψf(x, t, πξ, γu)∥HS e
π(∥x∥2+∥ξ∥2+∥u∥2)dx dt dξ du <∞. (5.6)

Consider the functions F (x, t) = f(x)e−a∥t∥
2 and Ψ(x, t) = ψ(x)e−a∥t∥

2 for some
fixed a ∈ R+ and nonzero functions f, ψ ∈ L2(A) satisfying∫

A

∫
W
∥Gψf(x, πξ)∥HS e

π(∥x∥2+∥ξ∥2)/2Pf(ξ) dx dξ <∞.

Then, for a > π, functions F and Ψ satisfy (5.5) and for a < π, F and Ψ satisfy
(5.6). Thus, by Proposition 5.4 and the structure theorem, it follows that if
Beurling’s theorem fails for the connected nilpotent Lie group A, then the above
functions F and Ψ exist on A × G, where G is a compactly generated abelian
group.

Next we look at an analogue of Beurling’s theorem for the Fourier transform on
abelian groups. Let G be a second countable, locally compact, abelian group with
dual group Ĝ. Using the structure theory of abelian groups [16], G decomposes
into a direct product G = Rn × S, where n ≥ 0 and S contains a compact open
subgroup. Hence, the connected component of identity of G is noncompact if
and only if n ≥ 1. Let G = Rn × S has a noncompact connected component of
identity. The dual group Ĝ is identified with Ĝ = R̂n × Ŝ.

Theorem 5.6. Let f ∈ L1 ∩ L2(Rn × S) be such that∫
Rn

∫
S

∫
Rn

∫
Ŝ

|f(x, s)||f̂(ξ, γ)|e2π|x·ξ| dx ds dξ dγ <∞. (5.7)

Then f = 0 a.e.
Before proving the above theorem, we shall prove some lemmas.

Lemma 5.7. Let f ∈ L1 ∩ L2(Rn ×K), where K is a compact group satisfying∫
Rn

∫
K

∫
Rn

∫
K̂

|f(x, s)| ∥ξ ⊗ γ(f)∥HS e
2π|x·ξ| dx dξ ds dγ <∞.

Then f = 0 a.e.

Proof. For γ ∈ K̂, let Hγ be the Hilbert space of dimension dγ with orthonormal
basis {eγi }

dγ
i=1. For fixed eγi and eγj , define fγ : Rn → C such that

fγ(x) =

∫
K

f(x, k) ⟨γ(k)∗eγi , e
γ
j ⟩ dk.

For ξ ∈ Rn, we obtain

⟨ξ ⊗ γ(f)eγi , e
γ
j ⟩ =

∫
Rn

∫
K

f(x, k)e−2πix·ξ ⟨γ(k)∗eγi , e
γ
j ⟩ dx dk



UNCERTAINTY PRINCIPLES ON NILPOTENT LIE GROUPS 157

=

∫
Rn

fγ(x)e
−2πix·ξ dx = f̂γ(ξ). (5.8)

Thus, it follows that∫
Rn

∫
Rn

|fγ(x)| |f̂γ(ξ)|e2π|x·ξ| dx dξ

≤
∫
Rn

∫
Rn

∫
K

|f(x, k)| ∥ξ ⊗ γ(f)∥HS e
2π|x·ξ| dx dk dξ <∞.

Hence, using the Beurling theorem for Rn, we get fγ = 0 a.e. For fixed γ ∈ K̂
and ξ ∈ Rn, using (5.8), it follows that ⟨ξ ⊗ γ(f)eγi , e

γ
j ⟩ = 0 for all 1 ≤ i, j ≤ dγ.

Since γ ∈ K̂ and ξ ∈ Rn are arbitrarily fixed and f ∈ L1∩L2(G), therefore using
(2.1), we conclude that f = 0 a.e. □
Lemma 5.8. Let M = Rn × H be an open subgroup of an abelian group G =
Rn × S. If f ∈ L1(G) satisfies (5.7), then so does f |M .

Proof. Since Ŝ/H is compact and ̂̂
S/H is identified with S/H [16, Theorem 24.2],

we have ∫
Ŝ/H

η(x) dη =

{
0 if x /∈ H,
1 if x ∈ H.

Thus, ∫
Ŝ/H

f̂(ξ, χη) dη =

∫
Rn

∫
S

f(x, s)e−2πiξx χ(s)
(∫

Ŝ/H

η(s)dη
)
dx ds

=

∫
Rn

∫
H

f(x, s)e−2πiξx χ(s) dx ds = f̂ |M(ξ, χ|M).

Therefore,∫
Rn×H

∫
Rn×Ĥ

|f |M(x, h)| |f̂ |M(ξ, χ)| e2π|x·ξ| dx dh dξ dχ

=

∫
Rn×H

∫
Rn×Ĥ

|f |M(x, h)| |
∫
Ŝ/H

f̂(ξ, χη) dη| e2π|x·ξ| dx dh dξ dχ

≤
∫
Rn×H

∫
Rn

∫
Ĥ

∫
Ŝ/H

|f |M(x, h)| |f̂(ξ, χη)| e2π|x·ξ| dx dh dξ dχ dη

≤
∫
Rn×S

∫
Rn×Ŝ

|f(x, h)| |f̂(ξ, χη)| e2π|x·ξ| dx dh dξ dχ <∞. □

Using Lemmas 5.7 and 5.8, we now prove Theorem 5.6.
Proof of Theorem 5.6. Let s ∈ S be arbitrary. If f ∈ L1 ∩ L2(G) satisfies the
condition of Theorem 5.6, then so does fs, where fs(x, t) = f(x, st). Since S
has a compact open subgroup K, therefore using Lemmas 5.7 and 5.8, we get
fs|Rn×K = 0 a.e. Thus, we get f = 0 a.e. □

For z ∈ G and ω ∈ Ĝ, we define the translation operator Tz on L2(G) as
(Tzf)(y) = f(z−1y)
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and the modulation operator Mω on L2(G) as
(Mωf)(y) = f(y) ω(y),

where f ∈ L2(G) and y ∈ G. For f, ψ ∈ L2(G), the following property of the
Gabor transform can be easily verified:

Gψ(MωTzf)(x, γ) = (ω−1γ)(z−1) Gψf(z
−1x, ω−1γ) (5.9)

for all x, z ∈ G and γ, ω ∈ Ĝ. In the next result, we give a Beurling theorem
version for the Gabor transform on abelian groups by reducing it to the Fourier
transform case.

Theorem 5.9. Let f ∈ L2(G) and let ψ be a window function such that∫
Rn

∫
S

∫
Rn

∫
Ŝ

|Gψf(x, s, ξ, σ)| eπ(∥x∥
2+∥ξ∥2)/2 dx ds dξ dσ <∞.

Then either f = 0 a.e. or ψ = 0 a.e.

Proof. For (x, k), (z, t) ∈ Rn × S and (ξ, γ), (ζ, χ) ∈ R̂n × Ŝ, define
F(z,t,ζ,χ)(x, k, ξ, γ) = e2πiξx γ(k) Gψ(Mζ,χTz,tf)(x, k, ξ, γ)

×Gψ(Mζ,χTz,tf)(−x, k−1,−ξ, γ−1).

The function F(z,t,ζ,χ) is continuous and is in L1∩L2(Rn×S×R̂n×Ŝ). Moreover,
using [8, Lemma 3.2], we have

F̂(z,t,ζ,χ)(ω, δ, y, v) = F(z,t,ζ,χ)(−y, v−1, ω, δ). (5.10)
Using (5.9), F(z,t,ζ,χ)(x, k, ξ, γ) can be written as
F(z,t,ζ,χ)(x, k, ξ, γ)

= e2πiξx γ(k) e−2πi(ξ−ζ)z (χ−1γ)(t−1) Gψf(x− z, t−1k, ξ − ζ, χ−1γ)

× e−2πi(−ξ−ζ)z (χ−1γ−1)(t−1) Gψf(−x− z, t−1k−1,−ξ − ζ, χ−1γ−1). (5.11)
Applying (5.10) and (5.11), we have∫

Rn×S

∫
Rn×Ŝ

∫
Rn×S

∫
Rn×Ŝ

|F(z,t,ζ,χ)(x, k, ξ, γ)| |F̂(z,t,ζ,χ)(ω, δ, y, v)|

× e2π|x·ω+ξ·y| dx dk dξ dγ dω dδ dy dv

≤
∫
Rn×S

∫
Rn×Ŝ

∫
Rn×S

∫
Rn×Ŝ

|F(z,t,ζ,χ)(x, k, ξ, γ)||F(z,t,ζ,χ)(−y, v−1, ω, δ)|

× eπ(∥x∥
2+∥ξ∥2+∥ω∥2+∥y∥2) dx dk dξ dγ dω dδ dy dv

=

(∫
Rn×S

∫
Rn×Ŝ

|F(z,t,ζ,χ)(x, k, ξ, γ)|eπ(∥x∥
2+∥ξ∥2) dx dk dξ dγ

)2

=

(∫
Rn×S

∫
Rn×Ŝ

|Gψf(−x− z, t−1k−1,−ξ − ζ, γ−1χ−1)|

× |Gψf(x− z, t−1k, ξ − ζ, γχ−1)|e(∥x∥2+∥ξ∥2) dx dk dξ dγ
)2
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=

(∫
Rn×S

∫
Rn×Ŝ

|Gψf(−x− 2z, t−2k−1,−ξ − 2ζ, γ−1χ−2)|

× |Gψf(x, k, ξ, γ)|eπ(∥x+z∥
2+∥ξ+ζ∥2) dx dk dξ dγ

)2
= e2π(∥z∥

2+∥ζ∥2)(H ∗H(−2z, t−2,−2ξ, γ−2))2 <∞,

where H(x, s, ξ, σ) = |Gψf(x, s, ξ, σ)|eπ(∥x∥
2+∥ξ∥2)/2. Thus, using Theorem 5.6, it

follows that F(z,t,ζ,χ) ≡ 0 for all (z, t, ζ, χ). Since,

F(−z,t−1,−ζ,χ−1)(0, e, 0, I) = e4πiζz χ(t)2 (Gψf(z, t, ζ, χ))
2,

therefore, Gψf ≡ 0, which using (2.3) implies that either f = 0 a.e. or ψ = 0
a.e. □

We shall next prove an analogue of Beurling’s theorem for the Gabor transform
for the groups of the form Rn ×K, when K is a compact group.

Theorem 5.10. Let f, ψ ∈ L2(Rn ×K), where K is a compact group such that∫
Rn

∫
K

∫
Rn

∑
γ∈K̂

∥Gψf(x, k, ξ, γ)∥HS e
π(∥x∥2+∥ξ∥2)/2 dx dk dξ <∞.

Then either f = 0 a.e. or ψ = 0 a.e.

Proof. Assume that ψ ̸= 0. For ω, γ ∈ K̂, let Hω and Hγ be the Hilbert spaces of
dimensions dω and dγ with orthonormal bases {eωi }dωi=1 and {eγi }

dγ
i=1, respectively.

For fixed eγr , e
γ
s , we define τ : Rn → C by

τ(x) =

∫
K

ψ(x, k) ⟨γ(k)∗eγr , eγs ⟩ dk.

Using the Hölder’s inequality, it follows that τ ∈ L2(Rn). Fix γ ∈ K̂ for which
τ ̸= 0. For σ ∈ K̂, we can write

γ(k)eγr =

dγ∑
j=1

Ck
j,re

γ
j

and γ ⊗ σ =
∑
δ∈Kσ

mδ δ, (5.12)

where Kσ is a finite subset of K̂ and Ck
j,r’s and mδ’s are scalars (see [16]). For

fixed eωp and eωq , we define g : Rn → C such that

g(x) =

∫
K

f(x, k) ⟨ω(k)∗eωp , eωq ⟩ dk.

Clearly, g ∈ L2(Rn). Consider a function φ : Rn ×K → C defined by

φ(x, k) = ψ(x, k) ⟨γ(k)∗eγr , eγs ⟩.
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Then φ ∈ L2(Rn ×K) and Gφf(x, k, ξ, σ) is a Hilbert–Schmidt operator for all
(x, k) ∈ Rn ×K and for almost all (ξ, σ) ∈ R̂n × K̂.
For σ ∈ K̂ and fixed eσl , e

σ
m, using [8], we have

⟨Gφf(x, k, ξ, σ)e
σ
l , e

σ
m⟩ =

dγ∑
j=1

∑
δ∈Kσ

Ck
j,r mδ ⟨Gψf(x, k, ξ, δ)e

δ
l,j, e

δ
m,s⟩.

Let Mσ = max {|mδ| : δ ∈ Kσ}. As |Kσ| ≤ dγdσ < ∞, we have Mσ < ∞. Using
the Cauchy–Schwarz inequality, we have

∥Gφf(x, k, ξ, σ)∥2HS =
dσ∑

l,m=1

|⟨Gφf(x, k, ξ, σ)e
σ
l , e

σ
m⟩|2

≤
dσ∑

l,m=1

( dγ∑
j=1

∑
δ∈Kσ

|Ck
j,r mδ ⟨Gψf(x, k, ξ, δ)e

δ
l,j, e

δ
m,s⟩|

)2
≤

dσ∑
l,m=1

M2
σ |Kσ| dγ

( dγ∑
j=1

∑
δ∈Kσ

|⟨Gψf(x, k, ξ, δ)e
δ
l,j, e

δ
m,s⟩|2

)

≤
dσ∑

l,m=1

M2
σ |Kσ| dγ

dγ∑
j=1

∑
δ∈Kσ

∥Gψf(x, k, ξ, δ)∥2HS

≤ d2σ M
2
σ |Kσ| d2γ

( ∑
δ∈Kσ

∥Gψf(x, k, ξ, δ)∥HS

)2
.

Hence, it follows that

∥Gφf(x, k, ξ, σ)∥HS ≤ Cσ,γ
∑
δ∈Kσ

∥Gψf(x, k, ξ, δ)∥HS, (5.13)

where Cσ,γ = dσ Mσ |Kσ| dγ is a constant depending on σ and γ. Now for every
σ ∈ K̂, using (5.13), we obtain

∫
Rn

∫
K

∫
Rn

∥Gφf(x, k, ξ, σ)∥HS e
π(∥x∥2+∥ξ∥2)/2 dx dk dξ

≤ Cσ,γ

∫
Rn

∫
K

∫
Rn

∑
δ∈Kσ

∥Gψf(x, k, ξ, δ)∥HS e
π(∥x∥2+∥ξ∥2)/2 dx dk dξ <∞. (5.14)

For x, ξ ∈ Rn, the function Gτg is given by

Gτg(x, ξ) =

∫
K

⟨Gφf(x, k, ξ, ω)e
ω
p , e

ω
q ⟩ dk.

Thus,

|Gτg(x, ξ)| ≤
∫
K

∥Gφf(x, k, ξ, ω)∥HS dk.
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On using (5.14), it follows∫
Rn

∫
Rn

|Gτg(x, ξ)|eπ(∥x∥
2+∥ξ∥2)/2 dx dξ

≤
∫
Rn

∫
Rn

∫
K

∥Gφf(x, k, ξ, ω)∥HS e
π(∥x∥2+∥ξ∥2)/2 dx dξ dk <∞.

Then by the Beurling theorem for the Gabor transform on Rn (see [14]) or The-
orem 5.9 above, we conclude that g = 0 a.e. Since ω ∈ K̂ is arbitrary, we get
f = 0 a.e. □
Remark 5.11. Using Theorem 5.2, the above theorem can be proved for the group
G×K, where G is an exponential solvable Lie group with a nontrivial center and
K is a compact group in the following setting:
Let f ∈ L2(G×K) and ψ ∈ Cc(G×K) such that∫

G

∫
K

∫
W

∑
γ∈K̂

∥KξGψf(x, k, πξ, γ)∥2HS e
π(∥x∥2+∥ξ∥2) dx dk dξ <∞.

Then either f = 0 a.e. or ψ = 0 a.e.
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