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WHEN NILPOTENCE IMPLIES THE ZERONESS OF LINEAR
OPERATORS
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Abstract. We give conditions forcing nilpotent operators (everywhere bounded
or closed) to be null. More precisely, it is mainly shown that any closed or
everywhere defined bounded nilpotent operator with a positive (self-adjoint)
real part is automatically null. Some other interesting examples and results
accompany our results.

1. Introduction

First, we assume that readers have some familiarity with the standard notions
and results in matrix and operator theories (see, e.g., [3,16]), as well as unbounded
operators (see [25] for the needed notions, cf. [19]).

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear
operators defined from H into H. Recall that T ∈ B(H) is said to be positive,
symbolically T ≥ 0, if ⟨Tx, x⟩ ≥ 0 for all x ∈ H. Recall also that any T may
always be expressed as T = A + iB with A,B ∈ B(H) being both self-adjoint
and i =

√
−1. Necessarily, A = (T + T ∗)/2, which will be denoted by ReT , and

it is called the real part of T . Also, B = (T − T ∗)/2i is the imaginary part of T ,
written ImT .

As is well known, the nilpotence plays an important role in matrix theory, and
in operator theory in general. The following result was shown in [18].

Proposition 1.1. If T ∈ B(H) is such that ReT ≥ 0 and T 2 = 0, then T = 0.

In this paper, we carry on this investigation and deal with the general case.
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We recall a few well-established facts. For example, if T ∈ B(H) is normal,
then

∥T n∥ = ∥T∥n for all n ∈ N.
It seems noteworthy to emphasize that thanks to the previous equality, if T is
nilpotent, then “T = 0 ⇔ T is normal”. Therefore, when we furthermore assume
that ReT ≥ 0 and prove Theorem 2.1 below, then this will become yet another
characterization to be added to the 89 conditions equivalent to the normality of
a matrix already obtained in [9] and [11]. A somehow related paper is [10].

The second main topic of the paper deals with (unbounded) closed operators.
Hence let us recall briefly some notions about non-necessarily bounded operators.

If S and T are two linear operators with domains D(S) and D(T ), respectively,
then T is said to be an extension of S, written as S ⊂ T , whenever D(S) ⊂ D(T )
and S and T coincide on D(S).

The product ST and the sum S + T of two operators S and T are defined in
the usual fashion on the natural domains:

D(ST ) = {x ∈ D(T ) : Tx ∈ D(S)}
and

D(S + T ) = D(S) ∩D(T ).

When D(T ) = H, we say that T is densely defined. In such case, the adjoint
T ∗ exists and is unique. If S ⊂ T and S is densely defined, then T too is densely
defined and T ∗ ⊂ S∗.

An operator T is called closed if its graph is closed in H ⊕H. If T is densely
defined, then we say that T is self-adjoint when T = T ∗; symmetric if T ⊂ T ∗;
normal if T is closed and TT ∗ = T ∗T . A symmetric operator T is called positive
if

⟨Tx, x⟩ ≥ 0 for all x ∈ D(T ).

Note that unlike positive operators in B(H), an unbounded positive operator
need not be self-adjoint.

In the event of the density of all of D(S), D(T ), and D(ST ), then

T ∗S∗ ⊂ (ST )∗,

with equality occurring when S ∈ B(H). Also, when S, T , and S+T are densely
defined, then

S∗ + T ∗ ⊂ (S + T )∗,

and the equality holds if S ∈ B(H).
The real and imaginary parts of a densely defined operator T are defined,

respectively, by

ReT =
T + T ∗

2
and ImT =

T − T ∗

2i
.

Clearly, if T is closed, then ReT is symmetric, but it is not always self-adjoint
(it may even fail to be closed).
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Definition 1.2 ([21]). Let T be a densely defined operator with domain D(T ) ⊂
H. If there exist densely defined symmetric operators A and B with domains
D(A) and D(B), respectively, and such that

T = A+ iB with D(A) = D(B),

then T is said to have a Cartesian decomposition.

Remark 1.3. A densely defined operator T admits a Cartesian decomposition if
and only if D(T ) ⊂ D(T ∗). In this case, T = A+ iB, where

A = ReT and B = ImT.

2. Bounded case

The first result tells us that a (nonzero) operator T with a positive (or negative)
real or imaginary part is never nilpotent. It may be known to some readers
especially when dimH < ∞. The proof when dimH = ∞ here relies on the
finite-dimensional case. In the next section, we generalize this result to closed
operators.

Theorem 2.1. Let T = A+ iB ∈ B(H) and let n ≥ 2. If T n = 0 and A ≥ 0 (or
B ≥ 0), then T = 0.

Proof. The proof is carried out in two steps.
(1) Let dimH < ∞. The proof uses a trace argument. First, assume that

A ≥ 0. Clearly, the nilpotence of T does yield trT = 0. Hence

0 = tr(A+ iB) = trA+ i trB.

Since A and B are self-adjoint, we know that trA, trB ∈ R. By the above
equation, this forces trB = 0 and trA = 0. The positiveness of A now intervenes
to make A = 0. Therefore, T = iB and so T is normal. Thus, as alluded above,

0 = ∥T n∥ = ∥T∥n,

thereby, T = 0.
In the event B ≥ 0, the reason as above obtains T = A and so T = 0, as

wished.
(2) Let dimH = ∞. The condition ReT ≥ 0 is being equivalent to Re⟨Tx, x⟩ ≥

0 for all x ∈ H. Hence if E is a closed invariant subspace of T , then the previous
condition also holds for T |E : E → E.

Now, we proceed to show that T = 0, that is, we must show that Tx = 0 for all
x ∈ H. Therefore, let x ∈ H and let E be the span of x, Tx, . . . , T n−1x (that is,
the orbit of x under the action of T ). Hence E is a finite-dimensional subspace of
H (and so it is equally a Hilbert space). By the nilpotence assumption, we have

T nx = 0,

from which it follows that E is invariant for T . Hence, by the first part of the
proof (the finite-dimensional case), we know that T = 0 on E whereby Tx = 0.
As this holds for any x, it follows that T = 0 on H, as needed. □
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Remark 2.2. For example, the condition A ≥ 0 may not just be dropped. Indeed,
if T =

(
0 1
0 0

)
, then T 2 = 0, but T ̸= 0. Observe finally that

A = ReT =
1

2

(
0 1
1 0

)
is neither positive nor negative for σ(A) = {−1/2, 1/2}.

Remark 2.3. As mentioned above, the power of Theorem 2.1 lies in the fact that
it easily allows us to test the non-nilpotence of a given operator. For example,
let V be the Volterra’s operator defined on L2(0, 1), that is,

V f(x) =

∫ x

0

f(t)dt, f ∈ L2(0, 1).

Then, it is well known that V is not nilpotent. Let us corroborate this fact
using Theorem 2.1. Since ReV ≥ 0 (see, e.g., [16, Exercise 9.3.21]), assuming
the nilpotence of V would make V = 0, and this is impossible. Thus, V is not
nilpotent.

The previous example also tells us that the assumption may not be weakened
to quasinilpotence (recall that quasinilpotence means that spectrum is reduced
to the singleton {0}).

Here is an alternative reformulation of Theorem 2.1 over finite-dimensional
spaces.

Corollary 2.4. Let T ∈ Mn(C) be nilpotent (with T ̸= 0). Then (T + T ∗)/2 (or
(T − T ∗)/2i) has at least two eigenvalues of opposite signs.

In many results in operator theory, the asymmetric condition σ(A)∩ σ(−A) ⊆
{0} yields similar conclusions as when assuming the positivity of A (for instance,
it was used in [1] to define the square root of A2, where A is self-adjoint). It
is also known that this asymmetric condition is weaker than positiveness (and
negativeness) of A.

Nonetheless, we have the following result.

Theorem 2.5. Let H be a Hilbert space of dimension k, where k = 2 or k = 3. Let
T = A+iB ∈ B(H) be nilpotent. If σ(A)∩σ(−A) = {0} or σ(B)∩σ(−B) = {0},
then T = 0.

Proof. (1) Let k = 2. As above, we may obtain that trA = 0. Since A is

self-adjoint, it follows that A is similar to
(

α 0
0 −α

)
, where α ∈ R. Hence, if

α ̸= 0, then σ(A)∩ σ(−A) = {0} will be violated. Thence, α = 0, that is, A = 0.
Consequently, we obtain T = 0 as above. The corresponding case for B can be
dealt with similarly.

(2) Assume now that k = 3. If σ(A) ∩ σ(−A) = {0}, then in view of the self-

adjointness of A, we know that A is similar to

 0 0 0
0 α 0
0 0 −α

 (where α ∈ R)
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given that trA = 0 and 0 ∈ σ(A). As before, we must necessarily have α = 0
and so A = 0. The nilpotence of T = iB then gives T = 0. □

When dimH = 4, a similar idea is just not applicable. Let us therefore give a
counterexample.

Example 2.6. Take

T =


2 2 −2 0
5 1 −3 0
1 5 −3 0
0 0 0 0

 and so A =


2 7/2 −1/2 0
7/2 1 1 0
−1/2 1 −3 0
0 0 0 0

 .

Hence (approximatively)
σ(A) = {0,−3.71,−1.33, 5.04}

and so σ(A) ∩ σ(−A) = {0} is trivially satisfied. Observe finally that T ̸= 0
whereas T 3 = 0, that is, T is nilpotent.

We may easily prove the following result.

Proposition 2.7. Let H be a four-dimensional Hilbert space. Let T = A +
iB ∈ B(H) be nilpotent. If σ(A) ∩ σ(−A) = {0} with 0 being an eigenvalue of
multiplicity 2, then T = 0.

Proof. Just write

A ∼


0 0 0 0
0 0 0 0
0 0 α 0
0 0 0 −α


and obtain A = 0. Hence T = iB and so T = 0, as above. □

We also have the following related result.

Proposition 2.8. If A is a self-adjoint 2×2 matrix such that σ(A)∩σ(−A) = ∅,
then T = A+ iB is never nilpotent.

Proof. If T were nilpotent, then trA = 0. This would necessarily make A look
like

(
α 0
0 −α

)
(with α ∈ R). This condition is, however, not consistent with

σ(A) ∩ σ(−A) = ∅. Thus, T cannot be nilpotent. □
Remark 2.9. Finally, note that there are nilpotent matrices T = A+ iB of higher
order such that σ(A) ∩ σ(−A) = ∅. We may just consider the nonzero block
matrix from Example 2.6.

3. Unbounded case

We confine our attention now to the case of unbounded nilpotent operators.
We choose to use Ôta’s definition in [20] of nilpotence (note that Ôta gave the
definition in the case n = 2).
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Definition 3.1. Let T be a non-necessarily bounded operator with a dense do-
main D(T ). We say that T is nilpotent if T n is well defined and

T n = 0 on D(T )

for some n ∈ N (hence D(T n) = D(T n−1) = · · · = D(T )).

Thanks to the following lemma, there are not any unbounded self-adjoint nilpo-
tent operators!

Lemma 3.2 ([24]). If H and K are two Hilbert spaces and if T : D(T ) ⊂ H → K
is a densely defined closed operator, then

D(T ) = D(T ∗T ) ⇐⇒ T ∈ B(H,K).

Since for a normal T , D(T ∗T ) = D(T 2), we see that there are not any un-
bounded normal nilpotent operators either. Hence, it is natural to ask is whether
there are unbounded closed symmetric unbounded operators? The answer is
still negative! In fact, any densely defined closed nilpotent operator T with
D(T ) ⊂ D(T ∗) is everywhere bounded.

Proposition 3.3. Let T be a densely defined closed nilpotent operator with do-
main D(T ) such that D(T ) ⊂ D(T ∗) ⊂ H. Then T ∈ B(H).

In particular, if T is a closed densely defined nilpotent symmetric or hyponormal
operator, then T = 0 everywhere on H.

Proof. Let T be a densely defined closed operator with domain D(T ) ⊂ H such
that T n = 0 on D(T ) for some n and D(T ) ⊂ D(T ∗). It is seen that

D(T ) = D(T 2) ⊂ D(T ∗T ) ⊂ D(T )

whereby D(T ∗T ) = D(T ). Since T is closed, Lemma 3.2 yields T ∈ B(H).
The last statement of the proposition follows from the general theory. Indeed,

when T ∈ B(H), then T is self-adjoint if and only if it is symmetric. Accordingly,
T = 0 since T n = 0 everywhere on H. The case of hyponormality is also known
to readers. □
Remark 3.4. The previous result may be reformulated as follows: Any closed
densely defined nilpotent operator having a Cartesian decomposition is necessarily
everywhere bounded.

As alluded above, Theorem 2.1 remains valid in the context of closed operators.

Theorem 3.5. Let T = A + iB, where either A or B is positive with D(T ) ⊂
D(T ∗). If T is nilpotent, then T ∈ B(H) is normal thereby T = 0 everywhere on
H.

Proof. Since T n = 0 on D(T ) for some natural integer n, we have D(T 2) = D(T ).
The reason as in Proposition 3.3 obtains T ∈ B(H). We have thus gone back to
the setting of Theorem 2.1, that is, we obtain T = 0, as wished. □

Before stating and proving the last result in this paper, we give some auxil-
iary results, which are also interesting in their own. Note that they might well



NILPOTENCE OF OPERATORS 169

be known to specialists, however, they are not documented (to the best of our
knowledge).

It is worth noting in passing that there are unbounded self-adjoint operators A
and B such that A+iB ⊂ 0 (where 0 designates the zero operator on all of H), yet
A ̸⊂ 0 and B ̸⊂ 0. For example, let A and B be unbounded self-adjoint operators
such that D(A) ∩D(B) = {0H} (see, e.g., [14]). Assuming D(A) = D(B) makes
the whole difference.

Proposition 3.6. Let A and B be two densely defined symmetric operators with
domains D(A), D(B) ⊂ H, respectively. Assume that D(A) = D(B). If A+iB ⊂
0, then A ⊂ 0 and B ⊂ 0. If A (or B) is furthermore taken to be closed, then
A = B = 0 everywhere on H.

Proof. By the assumption, A + iB ⊂ 0. Since D(A) = D(B), it ensures that
A = −iB. Indeed A and B are both symmetric, and so the only possible outcome
is A ⊂ 0 and B ⊂ 0.

Since A ⊂ 0, it follows that A∗ = 0 everywhere on H. By the closedness of A,
we obtain A = 0. A similar reasoning applies to B because A = −iB makes B
closed and so B = 0 as well. □

It is known that the pointwise commutativity of unbounded (self-adjoint or
normal) operators does not always mean their strong commutativity (witness
Nelson’s or Schmüdgen’s counterexamples). Recall here that the pointwise com-
mutativity of two unbounded (self-adjoint) operators A and B means that AB
coincides with BA on some common dense domain. The strong commutativity of
A and B signifies the commutativity of their spectral measures. Hence, the next
result on (strong) commutativity might be unknown to some readers.

Proposition 3.7 (cf. [15]). Let A and B be two unbounded self-adjoint operators
with domains D(A) and D(B), respectively. Assume that A is also positive and
that D(A) = D(B). If BA ⊂ AB, then A commutes strongly with B.

The proof is based on the following auxiliary result.

Lemma 3.8 (see [23, Proposition 5.27]). Let A and B be self-adjoint unbounded
operators. Then A commutes strongly with B if and only if (A − λI)−1B ⊂
B(A− λI)−1 for any λ ∈ ρ(A) (ρ(A) being the resolvent set of A).

Now, we prove Proposition 3.7.

Proof of Proposition 3.7. By the hypothesis, BA ⊂ AB. Hence B(A + I) ⊂
(A+ I)B because

D[B(A+ I)] ⊂ D[(A+ I)B].

Since A is self-adjoint and positive, it results that A+I is boundedly invertible.
Left and right multiplying by (A+ I)−1 yield

(A+ I)−1B ⊂ B(A+ I)−1.

By Lemma 3.8, this means that A commutes strongly with B, which completes
the proof. □
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As readers are aware, the condition D(T 2) = D(T ) is strong. Why not call a
densely defined operator T nilpotent when T n ⊂ 0 for a certain n? The main
issue would be that it is quite conceivable to have T n defined only at 0; see, for
example, [6, 7, 17, 19, 22] (cf. [2, 5]). A recent somewhat related paper [8] might
be of some interest to readers.

Let us treat this case anyway.

Theorem 3.9. Let T = A + iB, where A and B are self-adjoint (one of them
is also positive), with D(A) = D(B) and D(BA) ⊂ D(AB). If T 2 ⊂ 0, then
T ∈ B(H) is normal, and so T = 0 everywhere on H.

Proof. Assume that A is positive (the proof in the case of the positiveness of B
is similar). Let T = A+ iB. Clearly,

A2 −B2 + i(AB +BA) ⊂ (A+ iB)A+ i(A+ iB)B = T 2 ⊂ 0.

Since D(A) = D(B), it follows that
D(A2) = {x ∈ D(A) : Ax ∈ D(A)} = {x ∈ D(A) : Ax ∈ D(B)} = D(BA).

In a similar manner, it is seen that D(B2) = D(AB). Thus,
D(A2 −B2) = D(AB +BA).

We also have D(BA) ⊂ D(AB). Accordingly,
D(A2 −B2) = D(AB +BA) = D(BA) = D(A2).

Since A is self-adjoint, so is A2 and in particular A2 is necessarily densely
defined. Thus, A2 − B2 and AB + BA are both densely defined. Now, by the
symmetricity (only) of both A and B, we have that both AB +BA and A2 −B2

are symmetric. By Proposition 3.6, we get AB + BA ⊂ 0. Hence BA ⊂ −AB
(for D(BA) ⊂ D(AB)) and so

BA2 ⊂ −ABA ⊂ A2B.

As A is positive, we obtain BA ⊂ AB by say [4]. By Proposition 3.7, we
have that A commutes strongly with B. Whence T is normal. Hence T 2 too is
normal, and so by using maximality, T 2 ⊂ 0 becomes T 2 = 0 everywhere on H.
Consequently, D(T 2) = H and hence D(T ) = H. Since T is closed, it follows by
the closed graph theorem that T ∈ B(H). Finally, T = 0 follows by the normality
of T , as needed. □
Remark 3.10. Another way of obtaining A = B = 0 in the result above (and
without using Proposition 3.7) reads: Since B is self-adjoint, B = U |B| = |B|U ,
where U is unitary and self-adjoint, that is, U2 = I and U∗ = U (see, e.g., [12]
or [13]).

As above, we may obtain BA ⊂ −AB and A2−B2 ⊂ 0. Since D(BA) = D(A2)
and D(AB) = D(B2), we get A2 ⊂ B2. Since A2 and B2 are both self-adjoint, a
maximality argument yields A2 = B2 which, upon passing to the unique positive
square root, implies that A = |B| as A is positive. Hence B = UA = AU .
Therefore

UA2 = U |B|A = BA ⊂ −AB = −UA2.
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Hence
U2A2 = A2 ⊂ −U2A2 = −A2.

Thus, A2 = −A2 and so A = 0, thereby B = 0 as well.

A variant of Theorem 3.9 reads as follows.

Theorem 3.11. Let A and B be two self-adjoint operators (one of them is also
positive) such that D(A2) = D(B2). If T = A + iB and T 2 ⊂ 0, then T = 0
everywhere on H.

Proof. We need only go back to the assumptions of Theorem 3.9. Without loss
of generality, assume that A is positive. Since B is self-adjoint, B2 is self-adjoint
and positive. Then, by [25, Theorem 9.4], we obtain

D(A) = D(
√
A2) = D(

√
B2) = D(|B|) = D(B)

by invoking the closedness of B and the positiveness of A. Hence

D(BA) = D(A2) = D(B2) = D(AB).

Therefore, we have recovered all of the assumptions of Theorem 3.9. The remain-
ing parts of the proof stay unchanged. □

We finish with an example showing the importance of the self-adjointness of A
and B.

Example 3.12. There is a densely defined closed symmetric positive operator A
such that T := A+ iA obeys T 2 ⊂ 0 yet T ̸⊂ 0.

To obtain such an example, recall that Chernoff [6] obtained a densely defined
closed, symmetric and positive operator A such that D(A2) = {0}. Now, let
B = A and set T = A+ iA = (1 + i)A. Then

D(T 2) = D(A2) = {0}

and so T 2 ⊂ 0 trivially. Observe in the end that T ̸⊂ 0, that is, T does not vanish
on D(T ). Note in the end that neither A nor B were self-adjoint.

Note that the idea of using the polar decomposition in the remark below the
proof of Theorem 3.9, comes from one of the readers of the paper. This was
suggested when the assumption D(BA) = D(AB) was made instead of D(BA) ⊂
D(AB) in an earlier version of that theorem. Then, we saw the improvement using
the assumption D(BA) ⊂ D(AB).
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