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DESCRIPTION OF J-SETS AND C-SETS BY MATRICES

HEDIEH HOSSEINI1 AND MOHAMMAD AKBARI TOOTKABONI2*

Communicated by H.R. Ebrahimi Vishki

Abstract. We redefine the notion of J-sets in a commutative semigroup S
with the help of matrices whose entries are functions from the natural numbers
into S. We show that our definition of J-sets is equivalent to the standard
definition of J-sets. We also introduce a new notion of C-set using matrices
whose entries are functions from the natural numbers into S.

1. Introduction

Let (S,+) be an infinite semigroup. The collection of all ultrafilters on S is
denoted by βS. When provided with the topology generated by

{A = {p ∈ βS : A ∈ p} : A ⊆ S} ,

βS is called the Stone-Čech compactification of the discrete space S. There
exists a unique extension of the operation to βS such that (βS,+) is a compact
right topological semigroup with S contained in its topological center. That is,
ρq : βS → βS defined by ρq(p) = p + q is continuous for each q ∈ βS, and
λx : βS → βS defined by λx(p) = x + p is continuous for each x ∈ S. Also for
p, q ∈ βS and A ⊆ S, A ∈ p + q if and only if {x ∈ S : λ−1

x (A) ∈ q} ∈ p. For
more details, see [3].

If (S,+) is a compact Hausdorff right topological semigroup, then K(S) is the
smallest two-sided ideal of S. Also an idempotent x in K(S) is called a minimal
idempotent. Moreover, L is called a left ideal if and only if S + L ⊆ L, where
S + L = {x + y : x ∈ S, y ∈ L}, and L is called a minimal left ideal if L is a
minimal set of the collection of all left ideals with respect to inclusion.
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Let (S,+) be a commutative semigroup and let
V =

{⟨
⟨yi,t}∞t=1

⟩∞
i=1

: for all i, t ∈ N , yi,t ∈ S
}
.

If Y =
⟨
⟨yi,t}∞t=1

⟩∞
i=1

∈ V , then a set A ⊆ S is called a JY -set if and only
if for each n ∈ N, there exist a ∈ S and H ∈ Pf (N) with minH > n such
that a +

∑
t∈H yi,t ∈ A for each i ∈ {1, 2, . . . , n}. This definition was stated by

Hindman, Maleki, and Strauss in 1996. They showed that JY -sets are partition
regular sets and that JY = {p ∈ βS : for all A ∈ p,A is a JY -set } is a closed
two-sided ideal of βS; see [2, Definition 2.4 and Theorem 2.6].

In 2008, the concept of J-set has been derived from the concept of JY -set by
De, Hindman, and Strauss; see [1, Definition 3.3]. Later, in 2010, they restated
the concept of J-sets. In their definition, NS is the set of sequences in S. Also
Pf (X) denotes the set of finite nonempty subsets of X.
Definition 1.1. Let (S,+) be a commutative semigroup and let A ⊆ S. Then A

is a J-set if and only if whenever F ∈ Pf (
NS), there exist a ∈ S and H ∈ Pf (N)

such that a+
∑

t∈H f(t) ∈ A for all f ∈ F .
In 2015, Johnson stated a simpler version of the central sets theorem with a

simpler definition of J-sets for a noncommutative semigroup; see [4, Definition
2.1].

Let (S,+) be a commutative semigroup and let J be the collection of all J-sets.
Then J is partition regular and J(S) = {p ∈ βS : for all A ∈ p,A is a J-set} is
a closed ideal of βS; see [3, Theorem 14.14.4].
Definition 1.2. Let (S,+) be a commutative semigroup and let A ⊆ S. Then A

is a C-set if and only if there exist functions α : Pf (
NS) → S and

H : Pf (
NS) → Pf (N) such that

(a) whenever F,G ∈ Pf (
NS) and F ⊊ G, then maxH(F ) < minH(G) and

(b) whenever r ∈ N and G1, G2, . . . , Gr ∈ Pf (
NS) such that

G1 ⊊ G2 ⊊ · · · ⊊ Gr and fi ∈ Gi, for each i ∈ {1, . . . , r}, one has∑r
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A.

If e is an idempotent in J(S), then every element of e is a C-set; see [3, Theorem
14.14.9].

In this article, Mn×m(
NS) denotes the collection of all m × n matrices with

entries from NS for n,m ∈ N, and we define a = (a, . . . , a) ∈ Sn for a ∈ S.
By the definition of J-set, A ⊆ S is J-set if for each F = {f1, . . . , fk} ∈ Pf (

NS),
there exist H = {n1, . . . , nm} and a ∈ S such that a +

∑
t∈H f(t) ∈ A for each

f ∈ F . Therefore, for F = {f1, . . . , fk}, a ∈ S, and H = {n1, . . . , nm}, we have
a
a
...
a


k×1

+


f1 f1 . . . f1
f2 f2 . . . f2
... ... . . . ...
fk fk . . . fk


k×m


n1

n2
...
nm


m×1

=


a+

∑
t∈H f1(t)

a+
∑

t∈H f2(t)
...

a+
∑

t∈H fk(t)


k×1

∈ Ak.

(1)
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Therefore, we have a matrix description for the concept of J-set, and the above
way leads to a new version of the definition of J-sets.

Definition 1.3. Let (S,+) be a commutative semigroup and let m ∈ N. We say
that A ⊆ S is a Jm-set if and only if whenever F ∈ Pf

(
M1×m(

NS)
)
, there exist

a ∈ S and H ∈ Pf (Nm) such that a+
∑

t∈H Mt ∈ A for each M ∈ F .

In the above definition, Mt =
∑m

i=1 fi(ti) for each M = [f1 . . . fm] ∈ F and
t = (t1, . . . , tm) ∈ H. In this paper, we show that A is a J-set if and only if A is
a Jm-set. Also, we define Cm-set and prove that C-sets are Cm-sets.

2. Matrix description of J-sets

We now describe the relationship between J-set and Jm-set.

Theorem 2.1. Let (S,+) be a commutative semigroup, let A ⊆ S, and let m ∈ N.
Then A is a J-set if and only if A is a Jm-set.

Proof. Necessity. Let F = {M1,M2, . . . ,Mk} ∈ Pf

(
M1×m(

NS)
)
, where each

Mi =
(
fi,1 fi,2 . . . fi,m

)
. For i ∈ {1, 2, . . . , k}, let gi =

∑m
j=1 fi,j. Then

{g1, g2, . . . , gk} ∈ Pf (
NS), so pick a ∈ S and H ∈ Pf (N) such that a+

∑
t∈H gi(t) ∈

A for i ∈ {1, 2, . . . , k}. Given t ∈ H, let st =
(
t t . . . t

)
∈ Nm. Then {st :

t ∈ H} ∈ Pf (Nm) and a+
∑

t∈H Mist = a+
∑

t∈H gi(t) ∈ A for i ∈ {1, 2, . . . , k}.
Sufficiency. Pick b ∈ S, and define b ∈ NS by b(t) = b for each t ∈ N.

Let F ∈ Pf (
NS). For f ∈ F , let Mf =

(
f b . . . b

)
∈ M1×m(

NS). Then
{Mf : f ∈ F} ∈ Pf

(
M1×m(

NS)
)
. Pick a ∈ S and H ∈ Pf (Nm) such that

a+
∑

t∈H Mft ∈ A for each f ∈ F . Given t ∈ H, we haveMft = f(t1)+(m−1)b.
Hence let K = {t1 : t ∈ H} and let c = a + (m − 1)b. Then for f ∈ F ,
c+

∑
t∈K f(t) ∈ A. □

For H ∈ Pf (Nm), we let maxH = max{max r : r ∈ H} and minH =
min{min r : r ∈ H}.

Definition 2.2. Let (S,+) be a commutative semigroup and let B ⊆ S. Then
B is a Cm-set if and only if there exist functions α : Pf

(
M1×m(

NS)
)
→ S and

H : Pf

(
M1×m(

NS)
)
→ Pf (Nm) such that

(a) if F,G ∈ Pf

(
M1×m(

NS)
)

and F ⊊ G, then maxH(F ) < minH(G), and
(b) whenever r ∈ N, G1, G2, . . . , Gr ∈ Pf

(
M1×m(

NS)
)

such that
G1 ⊊ G2 ⊊ · · · ⊊ Gr and Ai ∈ Gi for each i ∈ {1, . . . , r}, one has∑r

i=1(α(Gi) +
∑

t∈H(Gi)
Ait) ∈ B.

Theorem 2.3. Let (S,+) be a commutative semigroup and let m ∈ N. Then
every C-set is a Cm-set.

Proof. The conclusion is trivial if m = 1, so assume that m ≥ 2, and pick
functions α : Pf (

NS) → S and H : Pf (
NS) → Pf (N) such that

(a) whenever F,G ∈ Pf (
NS) and F ⊊ G, then maxH(F ) < minH(G) and
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(b) whenever r ∈ N and G1, G2, . . . , Gr ∈ Pf (
NS) such that

G1 ⊊ G2 ⊊ · · · ⊊ Gr and fi ∈ Gi for each i ∈ {1, . . . , r}, one has∑r
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A.

Given M =
(
f1 . . . fm

)
∈ G such that G ∈ Pf

(
M1×m(

NS)
)
, let gM :=∑m

j=1 fi. Now we define τ : Pf

(
M1×m(

NS)
)
→ Pf (

NS) by induction on |G|
for G ∈ Pf

(
M1×m(

NS)
)
. If G = {M}, then set τ(G) = {gM}. Now assume

that G ∈ Pf

(
M1×m(

NS)
)
, that |G| > 1, and that τ(F ) is defined whenever

∅ ̸= F ⊊ G. Pick f ∈ NS \
∪
{τ(F ) : ∅ ̸= F ⊊ G} and let

τ(G) =
∪
{τ(F ) : ∅ ̸= F ⊊ G} ∪ {gM : M ∈ G} ∪ {f} .

Then whenever F,G ∈ Pf

(
M1×m(

NS)
)

and F ⊊ G, one has τ(F ) ⊊ τ(G). For
G ∈ Pf

(
M1×m(

NS)
)
, let α′(G) = α

(
τ(G)

)
and H ′(G) = {t : t ∈ H(τ(G))}.

Now assume that F,G ∈ Pf

(
M1×m(

NS)
)

and that F ⊊ G. Then τ(F ) ⊊ τ(G),
so maxH ′(F ) = maxH

(
τ(F )

)
< minH

(
τ(G)

)
= minH ′(F ).

Next assume that r ∈ N, that G1, . . . , Gr ∈ Pf

(
M1×m(

NS)
)
, that G1 ⊊ G2 ⊊

· · · ⊊ Gr, and that Mi ∈ Gi for i ∈ {1, 2, . . . , r}. Then τ(G1) ⊊ τ(G2) ⊊ · · · ⊊
τ(Gr), and for i ∈ {1, 2, . . . , r}, gMi

∈ τ(Gi), so
r∑

i=1

(α′(Gi) +
∑

t∈H′(Gi)

Mit) =
r∑

i=1

(α(τ(Gi)) +
∑

t∈H(τ(Gi))

gMi
(t)) ∈ A.

□
Question: Let m ∈ N \ {1}. Is every Cm-set a C-set?
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