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ABSTRACT. We propose a new proximal-type method to solve equilibrium
problems in a real Hilbert space. The new method is analogous to the fa-
mous two-step extragradient method that is used to solve variational inequal-
ities in the Hilbert spaces. The proposed iterative scheme uses a new non-
monotone step size rule based on local bifunction information instead of any
line search method. A strong convergence theorem for the proposed method is
well-established by taking mild conditions on a bifunction. The applications of
the main results to solve fixed point problems and variational inequalities are
presented. Finally, we examine two test problems for computational experi-
ments and demonstrate the validity and effectiveness of the proposed method.

1. INTRODUCTION

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
f:H xH — R be a bifunction with f(y,y) = 0 for each y € C and a equilibrium
problem (EP) for bifunction f on C is defined in the following manner: Find
u* € C such that

f(u*,y) >0, forall yeC. (EP)

In this study, the equilibrium problem is studied based on the following con-
ditions.
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(C1) pseudomonotone on a set C, that is, the bifunction f satisfying (see for more
details [4,5])

fy1,y2) > 0= f(y2,y1) <0, forall y;,y, € C;

(C2) Lipschitz-type continuous on C (see [15]), that is, for the bifunction f :
H x H — R, there exist two constants kq, ko > 0 such that

f(y1,93)
< flyr,y2) + f(y2,us) + kallys — wal” + kally — ysll?,  for all g1, 10,43 € C;

(C3) For any weakly convergent {y,} C C (y, — v*), the following inequality
holds:

limsup f(yn,y) < f(y*,y), forall yeC;

n—-+o0o
(C4) f(y,-) is convex and subdifferentiable on H for each y € H.

The general format of an equilibrium problem greatly interests researchers be-
cause it includes a variety of mathematical problems such as fixed-point problems,
scalar and vector minimization problems, complementarity problems, variational
inequalities problems, Nash equilibrium problems in non-cooperative games, sad-

dle point problems,; and inverse minimization problems [5, 11, 18] and iterative
methods in [2, 16, 17,2124, 26, 27]. The equilibrium problem has applications
in economics [7] or the dynamics of offer and demand [1] and continues to ex-

ploit the theoretical structure of non-cooperative games and Nash’s equilibrium
idea [19,20]. To the best of our knowledge, the term “equilibrium problem” was
first used in 1992 by Muu and Oettli [18] and has since been thoroughly researched
by Blum and Oettli [5].

Flam and Antipin [8] and Tran, Dung, and Nguyen [29] extended the Korpele-
vich extragradient method and proposed the extragradient method for solving
equilibrium problems involving monotone and Lipschitz-type bifunctions. Choose
a random starting point uy € C; based on the given iterate u,, choose the next
iteration using the following scheme:

Yn = arg min{x f (un, y) + 3llun — yll*},
e A (11)
Upy1 = argergm{xf(yn, y) + 3llun —ylI?},
y

where 0 < y < min {ﬁ, ﬁ and k; and ky are two Lipschitz-type constants
of a bifunction. It is important to note that the above well-established method
carries two serious drawbacks. The first is the constant step size that involves the
knowledge or approximation of the Lipschitz constant of the related bifunction,
and it only converges weakly in Hilbert spaces. From the computational point of
view, it might be problematic to use a fixed step size, and hence the convergence
rate and appropriateness of the method could be affected.

As a result, a natural question arises:

Is it possible to develop a mew strongly convergent extragradient method with a
non-monotone step size rule to determine the numerical solution of problem
(EP) involving a pseudomonotone bifunction?
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In this paper, we provide a positive answer to this question by demonstrat-
ing that the gradient method is still valid in the case of nonmonotonic step size
rules for solving equilibrium problems accompanied by pseudomonotone bifunc-
tions and maintains strong convergence. Motivated by the works in [14,29], we
design a new extragradient-type method to solve problem (EP) in the context
of an infinite-dimensional real Hilbert space. (i) We introduce a self-adaptive
subgradient extragradient method for solving equilibrium problems that employ
a non-monotone step size rule, and we demonstrate that the generated sequence
is strongly convergent. These results are regarded as the modification of the
method (1.1). (ii) We numerically investigate Algorithm 1 with [9, Algorithm 2]
and [25, Algorithm 1]. The numerical results show that the proposed method is
appropriate and outperforms the existing ones.

2. PRELIMINARIES

Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
The metric projection Pe(u) of u € H onto a closed and convex subset C of H is

defined by P¢(u) = argmin|ly — u||. Next, some useful properties of the metric
yeC
projection are given.

Lemma 2.1 ([12]). Let Pc : H — C be a metric projection. Then it satisfies the
following properties:

(i) [lyr = Pe(w)ll? + [ Pe(y2) — wall* < llyn — w2ll*, 91 € C,y2 € H;
(i) y3 = Pe(y1) if and only if (y1 —ys,y2 —y3) <0, for all y; € C;
(iii) |lyn — Pe(y)ll < llva — vell, v2 € Coyn € H.

Definition 2.2. Let C be a subset of a real Hilbert space H and let s : C — R
be a given convex function.

(1) The subdifferential of set ¢ at v € C is defined by
Ox(u) ={z € H : »x(y) — s2(u) > (z,y —u), forall yeC}.
(2) The normal cone at u € C is defined by
Ne(u)={z€H:(z,y—u) <0, forall yeC}.

Lemma 2.3 ([28]). Suppose that > : C — R is a convex, subdifferentiable,
and lower semi-continuous function on C. An element u € C is a minimizer
of a function » if and only if 0 € 0s(u) + Nc(u), where 0s(u) stands for the
subdifferential of > at w € C and N¢(u) is the normal cone of C at u.

Lemma 2.4 ([30]). Suppose that {a,} C (0,+00) is a sequence satisfying
ani1 < (1 —=by)ay + bpny, for allm € N.

Moreover, {b,} C (0,1) and {n,} C R are sequences such that lim, b, =
0, Z:{Cxi b, = 400 and limsup,,_,, 7, < 0. Then, lim,_, a, = 0.

Lemma 2.5 ([13]). Let {a,} C R be a sequence, and let there ezist a subsequence
{ni} of {n} such that a,, < ay,,, for alli € N. Then, there exists a nondecreasing
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sequence my, C N such that my — +00 as k — +oo, and the subsequent conditions
are fulfilled by all (sufficiently large) numbers k € N:

Uy < Uy and ap < Ay, -
Indeed, my, = max{j < k:a; <aj}.

Lemma 2.6 ([3]). For all y1,y2 € H and S € R, the following subsequent
relationships hold:

(1) 1891 + (1 = S)ial* = Sl [* + (1 = lyal* = SO = )llyr — 2l
(i) [ly1 + w2l < llyall? + 2(y2, y1 + o).

3. MAIN RESULTS

Next, we introduce a variant of Algorithm (1.1) in which the constant step
size x is chosen adaptively and thus yields a sequence Yy, that improves the
performance of the method.

Algorithm 1

Step 0: Choose ug € C, € (0,1), xo > 0,0 < 0 < min{l,ﬁ,ﬁ},
{bn} C (a,b) C (0,1 —¢,), and {p,} C (0,1) satisfies the conditions

n—-+o0o

+oo
lim ¢, =0 and ngn = +00.
n=1
Step 1: Compute
) 1
Yn = aIg mln{an(una y) + 5”“” - y||2}

yeC

If w,, = y,,, then STOP. Otherwise go to Step 2.

Step 2: Firstly choose w,, € Osf (un,yn) satisfying w, — xnwn — Yn € Ne(yn)
and then create a half-space H,, = {z € H : (up — XnWn — Yn, 2 — Yn) < 0}
and compute

. 1
2 = arg min{xn f (4, y) + 5llun = y[°}-
YEHR
Step 3: Compute
Un4+1 = (]- - ¢n - (;Dn)un + ¢n2n
Step 4: Next, the step size rule x,.1 is evaluated as follows:

: ,U'f(ynyzn)
mn {"’ f(un,znrf(un,yn)fkl||unfyn\\24~c(auznf)yn||2+1 }
= ; wf (Yn,zn 3.1
Xnt1 if funszn) = f (un,yn) =k |lun—yn |2 =kl 2n—yn[2+1 = O’ ( )
o otherwise.

Put n :=n + 1 and move back to Step 1.

Remark 3.1. By the use of x,41 in (3.1), we obtain
Xn+1 [f(una Zn) - f(unayn) - kl””n - yn||2 - k?”yn - Zn”Z] S ,uf(yn7 Zn)-
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Theorem 3.2. Assume that the conditions (C1)—(C4) are satisfied. Then, the
sequence {u,} generated by Algorithm 1 strongly converges to an element u* =

Pgpirey(0).

Proof. First, start to prove the boundedness of the sequence {u,}. By the use of
the definition of z,, we have

0 € 80 (i 9) + g lum — I} (22) + Ne()
Therefore, there exist w, € daf(yn, 2,) and @, € N¢(z,) such that
XnWn + 2n — Uy, + Wy, = 0.
The above relationship implies that
(U — Zn, Y — 2Zn) = X (Wn, Y — 2n) + (W, y — 2,), forall yeC.
Then @,, € N¢(z,) implies that (@,,y — z,) < 0, for every y € C. Thus, we have
XnWny ¥ — 2n) > (Up — 2n,y — 2,), forall y eC. (3.2)

Given wy, € Osf(Yn, zn), We obtain

FWns ) — fWny 20) = {wn,y — 2,,), forall y eC. (3.3)
From expressions (3.2) and (3.3), we have
Xoof Uns ) = XS Y 20) = (i — 20,y — 2), forall y €C. (3.4)

In a similar way, y, gives that

Xn{f(um y) - f(umyn)} > <un —Yn, Y — yn>7 for all Y€ C. (35)

By the use of y = z,, into (3.5), we have

Xn{f(una Zn) - f(una yn)} Z <Un — Yny Zn — yn> (36)
By the use of y = u* into (3.4), we obtain
X Uy W) = XS (Yn 20) 2 (Un — 20, 0" = 20). (3.7)

Since u* € Sgp, so f(u*,y,) > 0 and the pseudomonotonicity of a bifunction f
provides f(y,,u*) < 0. Thus, expression (3.7) implies that

(Un = 2ny 20 — W) 2 X (Yns 20)- (3.8)
From expression (3.1), we have
f(ym Zn) 2 Xn+1 [f(una Zn) - f(umyn> - kluun - ynH2 - k2Hyn - Zn||2]' (3'9)

Combining (3.8) and (3.9) provides that

(Un = 2n, 20 — U") 2 Xnt1 [Xn{f(um Zn) — f(“myn)}
(3.10)

~ EXalltn = vl = Faxalln = val?].
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From expressions (3.6) and (3.10), we obtain

2(Up — Zny Zn — W) > Xoa1 [2{Un — Yny Zn — Yn)

— 21Xl = 92 = 2kl — .

By the use of following formulas:

2(un — 20, 20— U) = |lun — w|* = llzn — unll* = ll2n — w1,

2t = Yny 20 = Yo) = [t = all* + 120 = yall* = llun — 2all?,
we have

120 — @ I1* < flun = wl* = (1 = Xos1) 20— wa®

— Xnt1(1 — QkIXn)Hun - yn||2 - Xn+1(1 - 2k2Xn>||Zn - yn||2'
(3.11)

Since 0 < x, < min {1, ﬁ, ﬁ} for all n > 1. Thus, we have
(1 —xne1) >0, (1 —2kx,) >0and (1 —2kyx,) >0, forall n>1.
Thus, expression (3.11) implies that
2 — u*||* < |Jup — u*||?, forall n>1. (3.12)

Given that u* € EP(f,C), we obtain

|unsr — uw*]| = ||(1 = ¢n — @n)un + Pz, — u*
= |(1 = én — u) (= u") + (20 — u*) — o’
<[ = én = on)(un — ") + G20 — )| + u]
Next, we estimate the following:
(1= ¢n = @) (un —u*) + dnlzn — u*)
= (1= 0 — 0n)?[Jun — w[|* + 62|20 — w*||” + 2((1 = bn — @0) (ttn — ), G (20 — u"))
< (U= gn = @n)fun =" + 9 flon — "+ 200(1 = 60 — o)l fun — [ n — |
< (1= n = on)?[fun = || + 62|20 — v |”
+ 61 = 6n— o) un — v ||* + 80 (1 = dn = )| 20 — "
< (1= 0 = 0a)(1 = @) [Jun = w* + Bu(1 = ) | 20 — w”]” (3.14)
Substituting (3.12) into (3.14), we obtain

H(l — On — @n)(Un — u") + Pnlzn — u’)
< (1= ¢n — n) (1 = @n)|[ttn — w[|* + 60 (1 — @) [Jun — w”[|”
=(1- gpn)QHun —ur|)?

u*|.

(3.13)

2

2

(3.15)

Therefore we have

H(l — On — ) (Un — U") + P20 — U*)H <(1- Spn)Hun - U*H (3.16)
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Combining (3.13) and (3.16), we get

o = ]| < (1= ) —

< maxc { [lu, — | "] }

3

Thus, the above expression implies that {u,} is bounded sequence.
Next, our aim is to prove that the sequence {u,} is strongly convergent. Indeed,
by the use of the definition of {w,,1}, we have

- (1 = ¢ — ©n)un + Gz, — u*
= [|(1 = & = @u)(tn = ") + Gnlzn = ") = pur”|[
= (1= 6 = @u)(un = u) + Sulzn — )" + 47
= 2((1 = &n — ) (U — u*) + G20 — u*), ppu*).  (3.17)

By the use of (3.14), we have
(1 = 0 — 9n) (un = u*) + Gn(z0 — )

u*

+g0n\

u*

< maX{Hul — u*H,

2

*
HunJrl —u

wt|]?

2

< (1= 6= @)1 = o) Jun — [ +6ul = @)z =’ (3.18)
Combining (3.17) and (3.18) (for some Ky > 0), we get
[
< (1= 6 = n)(1 = @n)[lun = w||* + a1 = 1) |20 — " [|” + pu
< (1= — o)1 = 0u)|Jun — w*||* + 00k

+ 01 = )| lltn = w)I* = (1= X220 =

— X1 (1= 2k1X0) [t = 92 = 411 = 2kl 20 =

= (1= o) llun = |+ o

= 01 = @) | (1= Xs1) 120 =

X1 (1= 260t = 9+ X1 (1 = 2kl |20 — 0]

< Jun = |+ o

= 01 = 9u)[(1 = X1l —

X (1= 2k 1 = g2+ s (1= 2xa) [z = ] (3.19)

By following the conditions (C1) and (C2), the solution set EP(f,C) is a closed
and convex set; see, for example, [29]. Given that u* = Pgpc)(0), and by
Lemma 2.1 (ii), we have

(0—u",y —u*) <0, forall ye EP(f,C).

Now we divide the rest of the proof into the following two parts:
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Case 1: Suppose that there is a fixed number n; € N such that
|1 — w*]| < JJu, —u*||, forall n > n;.

Then lim,, o ||ty — v*|| exists. From (3.19), we have

Dn(1 = @) [(1 = Xnt1)ll2n — un||2

< Jup — U*HQ + oo — |Jtpi1 — U*H2 (3.20)

The existence of lim,,_, ;o ||u, — v*|| and ¢,, — 0, we infer that

Jm flun —gall = lim [z, = yal = 0. (3.21)
It follows that
nl_lﬁéo |un, — 2zn|| = 0. (3.22)

It follows from (3.22) and ¢,, — 0, that

Hun—H - un“ = H(l - an - @n)un + ¢nzn - unH

which gives that

|tns1 — un|| =0 as n — +oo.

We can also deduce that {y,} and {z,} are bounded. The reflexivity of H and
the boundedness of {u,} guarantee that there is a subsequence {u,, } such that
{tun, } = @ € H as k — 400. Next, we need to show that & € EP(f,C). By the
use of expression (3.4), the Lipschitz-type continuous of f, and (3.9), we get

X f (Y )
2 XS Wnios Zn) + (g, = Zngy Y = Zny)
> X X+ 1. (Uies Zn) = X X1 (U Y. ) = KXo X1 [, = Y [
— kX Xt 1 Ui, — 20 |2+ (U, = 20, ¥ — 2y
> X+ (Ung, = Yo Zne = Ynie) = B X X1 |8y, — g ||
— kX X+ 1 [Yny, — anH2 + (Uny, — Zniy Y — 2
where y is an arbitrary point in H,,. Using the boundedness of {u,} and from

(3.21) and (3.22), the right-hand side converges to zero. Since X, > 0, using the
condition (C3) and y,, — u, we have

0 <limsup f(yn,,y) < f(4,y), forall y e H,.

k—+o0
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Thus, the above equation implies that f(a,y) > 0, for all y € C, and hence
u e EP(f,C). Thus

lim sup(u®, u* — u,)
n—-+00
= limsup(u*, u* — uy,,) = (u*,u" —a) <O0.
k—+o00
— “’nH = (0, we might conclude that

lim sup(u*, u* — wp11)

n—+400
< limsup(u*, u* — u,) + imsup{u®, u,, — up41) < 0. (3.23)
n——+0o0o n——+0o0

Next, assume that ¢, = (1 — ¢, )u, + ¢nz,. Thus, we obtain
Upy1 = tp — Pply = ( ) Qpn(un - tn) = (1 - @n)tn - 90n¢n<un - Zn)7
where u,, — t,, = u, — (1 — ¢p)ty, — Opn2zn = On(uy — 2,). Thus, we have

* (]2
(e

= |1 = @n)(tn = u") + [Pn@n(zn — un) — @nu’]|?
< (U= @n)?[[tn = [ + 2 bnpn(zn — wn) = ont”, (1= @n)(tn = u") + Snpn(2n — un) = pnu”)
= (1= ¢n)?|[tn — u"||* + 2{bnn(zn — tn) — ©n™, tn — @ntn — On(un —tn) —u™)
= (1= @n)||tn = u"||” + 260n (20 — thn, tns1 — ) + 200 (0", u" — tni1)
< (U= @n)tn = w'[|* + 20nion]|zn — un|flunss = u” || + 20n(u”, u” ~ unta). (3.24)
Next, we need to evaluate

2
[[tn =
2

1 _¢n Un +¢nz'n

L= ¢a)” HUn—u H +¢>n||2n—u || +2(( 1—¢n)( *) én(z n—u*)>

2

2

Hz —u”
+ ulfun — |
H —u’|”. (3.25)

Combining expressions (3.24) and (3.25) gives that

)

26120 — wall s = | + 200 (0", 0"~ wni)].
(3.26)

< (1- Qpn)Hun

By the use of expressions (3.23) and (3.26) and Lemma 2.4, we can derive that
Hun — u*” — 0 as n — 4o00.
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Case 2: Assume that there is a subsequence {n;} of {n} such that
|tn, — w*|| < ||tn,,, —u*||, forall ie N,

By the use of Lemma 2.5, there exists a sequence {my} C N ({my} — +00), such
that

ltomg = @l < Nty — 67l and [ — ]l < iy, — 7]l for all k€N,
(3.27)
By the use of expression (3.20), we have

(bmk(l - Spmk) (1 - XMkJrl)Hzmk - umkH2

+ ka-‘rl(l - 2klxmk)||umk - ymk||2 + ka-‘rl(l - 2k2xmk)||zmk - ymk||2
< ||Umk - U*||2 + Py K2 — “umk—f—l - U*H2
Due to ¢, — 0, we can deduce that

Jm (2 = el = B {fun, = Y]l = Hm |20, — g, [] = 0.

It continues from that
Humkﬂ - UmkH - H(l — Omy = Pmy ) Umy, + Py, — U/mkH
= Humk — O Uy, + Oy 2y — Py Umy, — umkH
< ¢mkHzmk - UmkH + SOmkHUmk” — 0.
By using a similar argument as in Case 1, we get
lim sup(u™, ty,, +1 — u*) < 0. (3.28)

k—4o0
By the use of expressions (3.26) and (3.27), we have

)
etmyosr = ]|
2

*

< (1 - Somk)Humk —u

o [26m i et =+ 20,0 )]

< (1= om) [, = |

+ Oy [Zgbmk |2 = || |[tmie1 — || + 20, (w0, w* — umk+1>} :
It follows that

? S 2¢mk||zmk - umkHHumk—H - U,*H + 2S0mk<u>ka u* — umk+1>-

(3.29)

*
Humkﬂ —u

*

is bounded, (3.28) and (3.29) yield

|ty 11 — u*||* = 0, as k — +oo.

Since ¢, — 0 and Humk —u

The above equation implies that

lim [Jug —u*|* < Hm |, 1 — u*]|* <0.
n—-+400 n—-+00o

As a result, u,, — u* and the desired result will be obtained.
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4. APPLICATIONS

In this section, we derive the results from our main proposed results to solve
variational inequalities. The variational inequality problem for an operator A :
H — H is defined as follows:

Find u* € C such that <A(u*)>y — u*> >0, forall yeC. (VIP)
To study variational inequalities, we consider the following conditions:
(A1) A solution set of problem (VIP) is denoted by VI(A, C) and it is nonemptys;
(A2) A :H — H is pseudomonotone, that is,
<A(u),y — u> > 0= <A(y),u — y> <0, forall u,yeC;
(A3) A :H — H is Lipschitz continuous, that is, there exists a constant L > 0
such that
[A(u) = Al < Lflu = yl|, for all u,y € C;
(A4) A : H — H is sequentially weakly continuous, that is, {A(u,)} weakly
converges to A(u) for every sequence {u,} converges weakly to .
On the other hand, the fixed point problem for an operator B : H — H is
defined as follows:
Find u* € C such that B(u*) = u". (FPP)
The following conditions are taken to study fixed point theorems.
(B1) Solution set of a problem (FPP), denoted by Fixz(B,C), is nonempty;
(B2) B :C — C is k-strict pseudocontraction [6] on C, that is,
1Bu — Byl < lu—yl* + ll(u — Bu) — (y = By)||*, forall u,y € C;

(B3) B : H — H is weakly sequentially continuous, that is, {B(u,)} weakly
converges to B(u) for every sequence {u,} converges weakly to .

Corollary 4.1. Assume that an operator A : C — H satisfies the conditions
(A1)~(A4). Choose ug € C, p € (0,1), xo >0, 0 < o <min{l,1}, {¢,} C
(a,b) C (0,1 — ), and {¢,} C (0,1) satisfying the conditions lim, . @, =
0 and Z:ﬁ o, = +00. Consider the iterative sequence as follows:

Yn = PC(un - XnA<un))7
Zn = PHn (un - XnA(yn))>
Up+1 = (]- - gbn - Qon)un + ¢nzn7
where H, = {z € H : (up, — XnA(Un) — Yn, 2 — yn) < 0}. Compute
#(Aymzn_yn>

min< o
{ " (Aunzn—yn) — 5 un—yn 2= 5 lzn—yn |2 +1 [~

Xn+1 = : p{AYn,2n—yn)
1 >0
/ (Aun,zn—yn) = 5 llun—yn 2= §llzn—yn[2+1 ’

o otherwise.

Then, {u,} strongly converges to u* € VI(A,C).
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Corollary 4.2. Assume that B : C — C is a mapping satisfying the conditions
(B1)—<(B3) and Fixz(B,C) # 0. Choose ug € C, pn € (0,1), xo > 0, 0 < 0 <
min {1,355}, {¢,} C (a,b) C (0,1 — ) and {p,} C (0,1) satisfying the
conditions lim, ., ¢, = 0 and Zn 1 n = +o00. Consider the iterative sequence
update as follows:

Yn = Fe [un - Xn(un - B(un))]v
Zn = P?-Ln [un - Xn(yn - B(Z/n))}’
Up+1 = (1 - ¢n - Qpn)un + ¢nzn>

where Hy, = {z € H : (1 — xn)tn + XaB(Un) — Yn, 2 — yn) < 0}. Compute

. _B _
min 0.7 N;y’g Yn,Zn yn> _— ,
(i —Buun) 2 —yn)— ( 3222 ) =y 12— (3222 ) 20 —yn 241
Xnt1 = if pe et >0,
(un_B(Un)vzn—yW—(ﬁ)||un_ynH2_(2:22)||Zn_ynH2+1

o otherwise.

Then, {u,} converges strongly to Fix(B,C).

5. NUMERICAL ILLUSTRATIONS

In this section, we give two numerical test problems and explain the numerical
behavior of the designed method in comparison to some related works in the
literature. The control parameters are taken in the following way: (1) x = %,

b, = _100(%2 and D, = ||, — ya|| for Algorithm 3.2 (Halp-EGM) in [9]: (2)

X = 5k1, On = m, f(u) = %, and Dy, = |luy — n|| for Algorithm 1 (Visc-

EGM) in [25]; (3) xo = %, =033 0= ﬁ, Op = 50(n+2 o ( — ©n),
and D,, = ||u, — y,|| for Algorithm 1 (Mann-EGM).

Example 5.1. Let the set C be defined by C := {u € R™: —10 < u; < 10} and
let f:C xC — R be defined as follows:

flu,y) = (Mu+ Ny+r,y —u), forall u,y€C,

where 7 € R™, M and N are matrices of order m, and k1 = ky = £||M — N||
(see [29] for details). Two matrices M and N are taken as follows:

312 0 0 0 16 1 0 0 O 1
2 36 0 0 0 1 1.6 0 0 O -2
M=|0 0 35 2 0], N=]10 0 15 1 0}, r=|-1
0 0 2 330 0 0 1 15 0 2
0o 0 0 0 3 0O 0 0 0 2 -1

Numerical results are shown in Figures 1-4 by letting different values of starting
points ug and TOL = 1074,
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FIGURE 1. Numerical comparison of Algorithm 1 with [9, Algo-
rithm 3.2 ] and [25, Algorithm 1 | while ug = (1,1,1,1,1).
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FIGURE 2. Numerical comparison of Algorithm 1 with [9, Algo-
rithm 3.2 ] and [25, Algorithm 1 | while uo = (2,1,0,2,1)T.

10" T T T 10 T T
—e— Halp-EGM 000604 --e-~Mann-EGM
- & - Visc-EGM TOee00t000o,
100 ©ooagy 4
'S
.\q
1l
10 ‘\m
\
-2 \
Y \
IS \
. °
10 i
i
” i
10 i
\
. i
10 IS
10° 10
0 100 200 300 400 500 600 700 800 0 5 10 15 20 25 30
Number of iterations

Number of iterations

FIGURE 3. Numerical comparison of Algorithm 1 with [9, Algo-
rithm 3.2 ] and [25, Algorithm 1 | while ug = (2,3, -1, 3,4)T.
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FIGURE 4. Numerical comparison of Algorithm 1 with [9, Algo-
rithm 3.2 ] and [25, Algorithm 1 | while ug = (-2, -1, 3,4, —5)7.

Example 5.2. Let f : CxC — R be defined by f(u,y) = S0

R3, where C C R® is taken as follows:

C:

{(ul, .o

=2

(yi—ua)lull, forall u,y €

us) s ug > —1uy > 1,2':2,...,5}.

Then, f is Lipschitz-like continuous with k; = ky = 2, and satisfies the conditions
(C1)—(C4). All numerical results are reported in Table 1-3 by letting different
initial points and TOL = 1073.

TABLE 1. Example 5.2: Numerical results of [9, Algorithm 3.2]

while ug = (5,2,1,—3,4)T.

Iter (n)

u1

U2

u3

Uq

us

0~ O ULk W

63
64
65
66
67

4.999999
4.999999
4.999999
4.999999
5.000000
4.999999
5.000000
4.999999

4.999998
4.999998
4.999998
4.999998
4.999998

1.4967643
1.0666826
1.0500000
1.0400009
1.0333342
1.0285714
1.0250009
1.0222222

1.0027778
1.0027397
1.0027027
1.0026667
1.0026316

1.0000000
1.0000007
1.0000000
1.0000008
1.0000008
1.0000000
1.0000008
1.0000000

1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

2.49676432
2.04283026
1.61835734
1.21606861
1.06666832
1.05714290
1.05000099
1.04444449

1.00555560
1.00547949
1.00540545
1.00533337
1.00526320

3.4967643
3.0428300
2.6183571
2.2160654
1.8269685
1.4467949
1.0753428
1.0666667

1.0083333
1.0082192
1.0081081
1.0080000
1.0078947

CPU time is seconds

2.506290
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TABLE 2. Example 5.2: Numerical results of [10, Algorithm 4.1]
while ug = (5,2,1,—-3,4)T.

Iter (n) ul uo us Ug us
1 4.9999999 1.4688068 1.0000000 2.468806 3.468806
2 4.9999999 1.0357217 1.0000007 1.985704 2.985704
3 4.9999999 1.0277778 1.0000000 1.533361 2.533361
4 4.9999999 1.0227281 1.0000008 1.104510 2.104495
5 4.9999999 1.0192308 1.0000000 1.038461 1.688463
6 4.9999999 1.0166673 1.0000008 1.033334 1.281918
7 5.0000000 1.0147068 1.0000008 1.029412 1.044120
8 4.9999999 1.0131579 1.0000000 1.026315 1.039473
31 4.9999988 1.0028090 1.0000000 1.005618 1.008427
32 4.9999988 1.0027472 1.0000000 1.005494 1.008241
33 4.9999988 1.0026882 1.0000000 1.005376 1.008064
34 4.9999987 1.0026316  1.0000000 1.005263 1.007894
35 4.9999987 1.0025773 1.0000000 1.005154 1.007732

CPU time is seconds 0.9549447599

TABLE 3. Example 5.2: Numerical results of Algorithm 1 while
up = (5,2,1,-3,4)T.

Tter (n) ul Uo us3 m us
1 4.9750000 1.194000 0.99500010  1.393000 1.6223834
2 4.9584169 1.035337  0.99567056  1.075005 1.1207291
3 4.9460211 1.004550 0.99663682  1.012464  1.0215860
4 4.9361293 0.998908 0.99732925 1.000488  1.0023091
5 4.9279026 0.998116  0.99780062  0.998431 0.99879493
6 4.9208630 0.998195 0.99813272  0.998251 0.99833130
7 4.9147122 0.998390 0.99837756  0.998405 0.99841722
8 4.9092516 0.998567  0.99856531  0.998570 0.99857323
14 4.8649957 0.999450 0.999450950 0.999450 0.99945092
15 4.8629689 0.999474 0.999474123 0.999474 0.99947412
16 4.8610240 0.999495 0.999495421 0.999495 0.99949542
17 4.8591546 0.999515 0.999515062 0.999515 0.99951506
18 4.8573551 0.999533 0.999533233 0.999533 0.99953323

CPU time is seconds 0.44989097144

CONCLUSIONS

We developed an explicit extragradient-type method to find a numerical so-
lution to the problem of pseudomonotone equilibrium in a real Hilbert space.
This method is a variant of a two-step gradient method. The proposed algorithm
produced a strongly convergent result. Numerical conclusions have been drawn
to demonstrate the numerical potency of our algorithms in comparison to exist-
ing methods. Such computational results showed that the variable step size rule
tends to improve the usefulness of the iterative sequence in this context.
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