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MATRIX SUMMABILITY OF SEQUENCES OF SETS

FATİH NURAY1

Communicated by A.M. Peralta

Abstract. The concept of strong Cesàro summability of sequences of closed
sets with respect to a modulus is extended to a concept of strong T -summability
with respect to a modulus when T is a nonnegative regular matrix summability
method. Also, we show that if a sequence of closed sets is strongly T -summable
with respect to an arbitrary modulus, then it is T -statistically convergent and
that T -statistical convergence and strong T -summability with respect to a
modulus are equivalent on the bounded sequences of closed sets.

1. Introduction and preliminaries

The natural density of a set K of positive integers is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,

where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n.
Statistical convergence of number sequences was introduced by Fast [9]. Schoen-

berg [19] established some basic properties of statistical convergence and studied
the concept as a summability method.

A sequence x = (xk) is said to be statistically convergent to the number ℓ if
for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − ℓ| ≥ ε}| = 0.

In this case, we write st− limxk = ℓ. Moreover,limxk = ℓ implies st− limxk = ℓ,
so statistical convergence may be considered as a regular summability method.
This was observed by Schoenberg [19] along with the fact that the statistical limit
is a linear functional on some sequence spaces.
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If x = (xk) is a sequence such that xk satisfies property P for all k except a set
of natural density zero, then we say that xk satisfies P for almost all k, and we
abbreviate this by “a.a. k.”. Fridy [11] proved that if x = (xk) is a statistically
convergent sequence, then there is a convergent sequence y = (yk) such that
xk = yk a.a. k.

The concepts of strong summability and statistical convergence were sepa-
rately introduced and, until recently, followed independent lines of development.
Strong summability first appeared in the paper by Hardy and Littlewood [12],
who improved Fejer’s theorem on the Cesàro convergence of a Fourier series. The
strong summability of Fourier series continues to be an active area of research.
Connor’s papers [7, 8], on matrix summability and statistical convergence, are
essential articles that contribute significantly to the subject.

Recently, many authors published articles on the Wijsman convergence of set
sequences. The reader can refer to the papers [1–6, 10, 13, 14, 20, 21] for more
detailed information about Wijsman convergence of set sequences.

Let (X, ρ) be a metric space. For any point x ∈ X and any nonempty subset
A of X, we define the distance from x to A as

d(x,A) = inf
a∈A

ρ(x, a).

Let (X, ρ) be a metric space. For any nonempty closed subsets B,Ak ⊆ X, we
say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,B)

for each x ∈ X. In this case, we write W − limAk = B (see [22,23]). All Wijsman
convergent sequences of sets will be denoted by W .

Example 1.1. Consider the following sequence of circles in the (x, y)-plane:
{Ak} = {(x, y) : x2 + y2 − 2ky = 0}. As k → ∞, the sequence is Wijsman
convergent to the x-axis B = {(x, y) : y = 0}.

Example 1.2. Let X = l2 = {(xn) :
∑∞

n=1 |xn|2 < ∞} and let {en} be its
standard orthonormal basis. Set An = {x ∈ X : x = λe1+(1−λ)en, 0 ≤ λ ≤ 1},
n ≥ 1, and B = {e1}. Since

d(0, An) =
1

2
∥e1 + e2∥ =

√
2

2
, d(0, B) = ∥e1∥ = 1,

{An} is not Wijsman convergent to B.

Wijsman convergence was introduced by Wijsman in the seminal paper [23],
where it was shown to be preserved under Fenchel conjugation in finite-dimensional
spaces.

Let (X, ρ) be a metric space. For any nonempty closed subsets Ak ⊆ X, we
say that the sequence {Ak} is bounded if supk d(x,Ak) < ∞ for each x ∈ X. In
addition, W∞ denotes the space of all bounded sequences of sets.

Following [16, Definitions 1.3, 1.6, 1.8, 1.9 and Theorem 1.10], we state the
following definition.
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Definition 1.3. Let (X, ρ) be a metric space. For any nonempty closed subsets
B,Ak ⊆ X, we say that the sequence {Ak} is Wijsman statistically convergent to
B if {d(x,Ak)} is statistically convergent to d(x,B); that is, for each ϵ > 0 and
for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ϵ}| = 0;

in other words,
|d(x,Ak)− d(x,B)| < ϵ a.a.k. (1.1)

In this case, we write st− limW Ak = B.
It is clear that if the inequality in (1.1) holds for all but finitely many k, then

W − limAk = B. It follows that W − limAk = B implies st− limW Ak = B.
Example 1.4. Let X = R and let {Ak} be the following sequence:

Ak :=

{
{x ∈ R : 2 ≤ x ≤ k} if k ≥ 2 and k is a square integer,
{1} otherwise.

This sequence is not Wijsman convergent. However, since
1

n
| {k ≤ n : |d(x,Ak)− d(x, {1})| ≥ ε} | ≤

√
n

n
,

this sequence is Wijsman statistically convergent to set B = {1}.

Example 1.5. Let X = R2 and let {Ak} be the following sequence:

Ak :=

{
{(x, y) ∈ R2 : (x− 1)2 + y2 = 1

k
} if k is a square integer,

{(0, 0)} otherwise.

This sequence is also Wijsman statistically convergent to the set B = {(0, 0)}
but it is not Wijsman convergent.
Definition 1.6. Let (X, ρ) be a metric space. For any nonempty closed subsets
B,Ak ⊆ X, we say that the sequence {Ak} is Wijsman Cesàro summable to B if
{d(x,Ak)} is Cesàro summable to d(x,B); that is, for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Ak) = d(x,B).

Example 1.7. In the extended real numbers R, let {Ak} be the following se-
quence: A1 = [−∞, 0], A2 = [2 + 1

2
,∞], A3 = [−∞, 1− 1

3
], A4 = [2 + 1

4
,∞], . . ..

Since
lim
n

1

n

n∑
k=1

d(x,Ak) = d (x, [−∞, 1] ∪ [2,∞]) ,

this sequence is Wijsman Cesàro summable, but since
lim
k

d(x,Ak) ̸= d (x, [−∞, 1] ∪ [2,∞])

this sequence is not Wijsman convergent.
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Definition 1.8. Let (X, ρ) be a metric space. For any nonempty closed subsets
B,Ak ⊆ X, we say that the sequence {Ak} is Wijsman strongly Cesàro summable
to B if {d(x,Ak)} strongly summable to d(x,B); that is, for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,B)| = 0.

Definition 1.9. Let (X, ρ) be a metric space. For any nonempty closed subsets
B,Ak ⊆ X, we say that the sequence {Ak} is Wijsman strongly p-Cesàro summa-
ble to B if {d(x,Ak)} strongly p-summable to d(x,B); that is, for each p positive
real number and for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,B)|p = 0.

Theorem 1.10. Let (X, ρ) be a metric space and let p be a positive real number.
Then for any nonempty closed subsets B,Ak ⊆ X

(a) {Ak} is bounded and Wijsman statistically convergent to B if it is Wijsman
strongly p-Cesàro summable to B;

(b) if {Ak} is strongly p-Cesàro summable to B, then it is Wijsman statisti-
cally convergent to B.

2. Matrix summability

There have been many studies in the literature on matrix transformation of
sequences of numbers. When it comes to sequences of sets, these questions arise:
Can we define a matrix transformation on the space of set sequences, and if so,
how is defined. In this section, we will answer these questions.

Definition 2.1. Let E and F be any two nonempty subset of the space of all
set sequences and let T = (tnk) be a nonnegative infinite matrix of real numbers.
We write TA = (Tn(A)) if

Tn(A) =
∞∑
k=1

tnkd(x,Ak)

converges for every n ∈ N and x ∈ X. If (Ak) ∈ E implies that TA = (Tn(A)) ∈
F , then we say that T defines a matrix transformations from E into F , and we
denote it by T : E → F . The sequence TA is called the T transform of A. By
(E,F ) we mean the class of matrices T such that T : E → F .

A matrix method T is called regular if all convergent sequences x = (xk) are
T -summable and limn Tnx = lim xk. This is denoted by T ∈ (c, c, P ). It is known
that T is regular if and only if

(R1) limn tnk = 0, (k ∈ N),
(R2) lim

∑
k tnk = 1,

(R3) supn

∑
k |tnk| < ∞.
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If limk d(x,Ak) = d(x,B), ak = d(x,Ak), and b = d(x,B), then for the real
number sequence (ak), we have limk ak = b. Thus T ∈ (W,W,P ) if and only if
(R1), (R2), and (R3) hold.

Definition 2.2. If T = (tnk) is a nonnegative regular matrix summability method,
then we let

W∅(T ) =

{
{Ak} : lim

n→∞

∞∑
k=1

tnkd(x,Ak) = 0

}
,

W (T ) =

{
{Ak} : lim

n→∞

∞∑
k=1

tnk|d(x,Ak)− d(x,B)| = 0, for every x ∈ X

}
.

The collection W (T ) is referred to as the collection of strongly T -summable se-
quences of closed sets. If {Ak} ∈ W (T ), then we say that {Ak} is strongly
T -summable to B. In the case where T = (C, 1), we get the strongly Cesàro
summable sequences of closed sets.

Definition 2.3. Let T be a nonnegative regular summability method and let
{Ak} be a sequence of sets. Then {Ak} is said to be T -statistically convergent to
B if χS(Ak,B;ε) is contained in W∅(T ) for every ε > 0, where

S(Ak, B; ε) = {k ∈ N : |d(x,Ak)− d(x,B)| ≥ ε}.

Theorem 2.4. Let T = (tnk) be a nonnegative regular matrix summability
method.

(i) If {Ak} is bounded and T -statistically convergent to B, then it is strongly
T -summable to B.

(ii) If {Ak} is strongly T -summable to B, then it is T -statistically convergent
to B.

Proof. (i) Let {Ak} is bounded and T -statistically convergent to B. Then for
every x ∈ X,∑

k

tnk|d(x,Ak)− d(x,B)|

≤
∑

k/∈S(Ak,B;ε)

tnk|d(x,Ak)− d(x,B)|+
∑

k∈S(Ak,B;ε)

tnk|d(x,Ak)− d(x,B)|

≤ ε
∑

k/∈S(Ak,B;ε)

tnk + sup
k

|d(x,Ak)− d(x,B)|
∑

k∈S(Ak,B;ε)

tnk.

By using the definition of T -statistical convergence and the regularity of T , since
ε > 0 arbitrary, we get

lim
n

∑
k

tnk|d(x,Ak)− d(x,B)| = 0.

Thus {Ak} is strongly T -summable to B.
(ii) Let {Ak} be strongly T -summable to B. Since∑

k/∈S(Ak,B;ε)

tnk|d(x,Ak)− d(x,B)| ≤
∑
k

tnk|d(x,Ak)− d(x,B)| → 0, as n → ∞,
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for every x ∈ X, {Ak} is T -statistically convergent to B. □
A function f : [0,∞) → [0,∞) is called a modulus, if the following conditions

hold:
(a) f(x) = 0 if and only if x = 0,
(b) f(x+ y) ≤ f(x) + f(y),
(c) f is increasing and
(d) f is continuous from right at 0.

By using the idea of modulus function f , Ruckle [17] introduced the sequence
space

L(f) =

{
x = (xk) :

∞∑
k=1

f(|xk|) < ∞

}
.

Later, Maddox [15] introduced the sequence spaces

w0(f) =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

f(|xk|) = 0

}
,

w(f) =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

f(|xk − ℓ|) = 0 for some number ℓ

}
,

and

w∞(f) =

{
x = (xk) : sup

n

1

n

n∑
k=1

f(|xk|) < ∞

}
,

which generalize the classical spaces of strongly summable sequences.
By using a modulus function f and a nonnegative regular matrix A = (ank),

Connor [8] defined the following sequence spaces:

w0(A, f) =

{
x = (xk) : lim

n→∞

∞∑
k=1

ankf(|xk|) = 0

}
,

w(A, f) =

{
x = (xk) : lim

n→∞

∞∑
k=1

ankf(|xk − ℓ|) = 0 for some number ℓ

}
,

which generalize the strong A-summability.
Now, we introduce and examine some properties of two sequence spaces of

sets that are defined by using a modulus function, which generalize the sequence
spaces W∅(T ) and W (T ).

Definition 2.5. Let f be a modulus function and let T = (tnk) be a nonnegative
regular matrix summability method. Then we let

W∅(T, f) =

{
{Ak} : lim

n→∞

∞∑
k=1

tnkf(d(x,Ak)) = 0

}
,

W (T, f) =

{
{Ak} : lim

n→∞

∞∑
k=1

tnkf(|d(x,Ak)− d(x,B)|) = 0

}
.
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If {Ak} ∈ W (T, f), then we say that {Ak} is strongly T -summable to B with
respect to the modulus f .

Theorem 2.6. If f is a modulus and {Ak} is strongly T -summable to B, then
{Ak} is strongly T -summable to B with respect to the modulus f .

Proof. Let {Ak} be strongly T -summable to B. Then

sn =
∑
k

tnk|d(x,Ak)− d(x,B)| → 0, n → ∞.

Let ε > 0, and choose δ with 0 < δ < 1 such that f(u) < ε for 0 ≤ u ≤ δ. Write
vk = |d(x,Ak)− d(x,B)|, and consider∑

k

tnkf(vk) =
∑

{k: vn≤δ}

tnkf(vk) +
∑

{k: vk>δ}

tnkf(vk).

Then ∑
{k: vk≤δ}

tnkf(vk) ≤ ε
∑

{k: vk≤δ}

tnk,

and for vk > δ, we use the fact that

vk <
vk
δ

< 1 + [
vk
δ
],

where [a] denotes the integer part of a. Since f is a modulus function, we have
for vk > δ,

f(vk) ≤ 1 + [
vk
δ
]f(1) ≤ 2f(1)

vk
δ
.

Hence ∑
{k: vk>δ}

tnkf(vk) ≤ 2δ−1f(1)
∑

{k: vk>δ}

tnk.

Thus ∑
k

tnkf(vk) ≤ ε
∑

{k: vk≤δ}

tnk + 2δ−1f(1)
∑

{k: vk>δ}

tnk.

Since ε > 0 is arbitrary and T is regular, we get the result. □
Lemma 2.7 ([18]). Let f be a modulus and let α > 0 be a given constant. Then
there exists a constant c > 0 such that f(x) > cx (0 < x < α).

The proofs of the following theorems follows from Theorem 2.6 and Lemma
2.7.

Theorem 2.8. Let {Ak} be a bounded sequence of sets, let f be a modulus, and
let T be a nonnegative regular matrix summability method. Then {Ak} is strongly
T -summable to B with respect to the modulus f if and only if {Ak} is strongly
T -summable to B.

Theorem 2.9. Let T be a nonnegative regular matrix summability method and
let f be a modulus.

(i) If {Ak} ∈ W is strongly T -summable to B with respect to f , then {Ak} is
T -statistically convergent to B.
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(ii) If {Ak} ∈ W is bounded and T -statistically convergent to B, then {Ak} is
strongly T -summable to B with respect to the modulus f .

It is easy to check that if a sequence of sets is T -statistically convergent to B,
then it must have a subsequence that is convergent to B. The above theorem
now yields the following corollary.

Corollary 2.10. If {Ak} is strongly T -summable to B with respect to the modulus
f , then {Ak} has a subsequence that is Wijsman convergent to B.

Proposition 2.11. Let {An} ∈ W such that d(x,An) = O(
√
n) and let

lim
n

1√
n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ε}| = 0

for all ε > 0. Then {An} is strongly summable to B.

Proof. Note that |d(x,An)− d(x,B)| ≤ M
√
n for all n. Then

1

n

n∑
k=1

|d(x,An)− d(x,B)| ≤ ε+M
1√
n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ε}|

for all ε > 0. □
This result is unsatisfying since it requires the sequence to be more than sta-

tistically convergent. Theorem 2.9(ii) is the best partial converse we have been
able to find, which only requires the sequence be statistically convergent.
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