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WEAKLY MID-(p1, . . . , pm)-SUMMING MULTILINEAR
OPERATORS

ABDELHAMID TALLAB1* AND ATHMANE FERRADI1

Communicated by A.M. Peralta

Abstract. We introduce a new ideal of the weakly mid-(p1, . . . , pm)-summing
multilinear operators as multilinear version of weakly mid-p- summing linear
operators. Using the space of mid-p-summable sequences, we present a char-
acterization given by summability property. Also, we give an analogue of the
Pietsch domination theorem.

1. Introduction

Using the notion of operator p-summability, Karn and Sinha [9] introduced the
class of weakly mid-p-summing operators. There are many attempts available in
the literature to study the ideal of weakly mid-p-summing operators in different
textures; see [3, 4, 8, 9]. Recently, Baweja and Philip [1] studied some aspects
of the operator ideal of weakly mid-p-summing operators using the theory of
tensor products. This concept led them to a new space of summability between
p-summable and weakly p-summable sequences. A bounded linear operator T :
X → Y between Banach spaces is weakly mid-p-summing if it sends weakly p-
summable sequences to mid p-summable sequences. Equivalently, by [9, Theorem
4.4], S ◦ T : X → `p is p-summing for all bounded linear operators S from Y
to `p. The aim of this paper is to study the multilinear version of this class by
considering the (p1, . . . , pm)-dominated multilinear operators S ◦ T .

This paper is divided into three sections. In the first section, we recall some
basic definitions and notations concerning the linear and multilinear summing
operators, some facts on sequence spaces. We introduce in the second section, a
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multilinear version of weakly mid-p-summing operators introduced in [9] for which
the resulting vector space is a Banach ideal of multilinear mappings. Finally, in
last section we prove a natural analogue of Pietsch domination theorem of this
new class.

2. Notations and Backgrounds

The notation used in the paper is in the general standard. The letters X and
Y shall denote Banach spaces over K (K = R or C). The closed unit ball of
X is denoted by BX , and its topological dual is denoted by X∗. Let m be in
N and let X1, . . . , Xm, Y be Banach spaces over K (K = R or C). We will de-
note by L(X1, . . . , Xm;Y ) the Banach space of all bounded multilinear operators
from X1 × · · · × Xm into Y equipped with the operator norm. If m = 1, then
L(X1, . . . , Xm;Y ) = L(X;Y ) is the Banach space of all bounded linear operators
T : X → Y endowed with the usual sup norm.

Let X be a Banach space and let 1 ≤ p < ∞. Let us recall some important
Banach sequence spaces, which will be used in what follows.
The Banach space of absolutely p-summable sequences is given by

`p(X) :=

{
(xj)

∞
j=1 ⊂ X : ‖ (xj)

∞
j=1 ‖

p
p:=

∞∑
j=1

‖ xj ‖p< ∞

}
.

The Banach space of weakly p-summable sequences is given by

`wp (X) :=

{
(xj)

∞
j=1 ⊂ X : ‖ (xj)

∞
j=1 ‖

p
w,p:= sup

x∗∈BX∗

∞∑
j=1

|x∗ (xj)|p < ∞

}
.

The Banach space of unconditionally p-summable sequences is given by

`up(X) :=
{
(xj)

∞
j=1 ∈ `wp (X) : limk ‖ (xj)

∞
j=k ‖w,p= 0

}
.

For more details on these spaces, we refer the reader to [6].

Definition 2.1 ([3,9]). A sequence (xj)
∞
j=1 in a Banach space X is said to be mid-

p-summable, 1 ≤ p < ∞, if ((x∗
n(xj))

∞
j=1)

∞
n=1 ∈ `p(`p) whenever (x∗

n)
∞
n=1 ∈ `wp (X

∗).
The space of all such sequences shall be denoted by `mid

p (X), which is a Banach
space under the norm

‖ (xj)
∞
j=1 ‖mid,p:= sup

(x∗
n)

∞
n=1∈Bℓwp (X∗)

(
∞∑
j=1

∞∑
n=1

|x∗
n (xj)|p

) 1
p

.

It can be easily seen that

`p(X) ⊊ `mid
p (X) ⊊ `wp (X).

Consider 1 ≤ p, p1, . . . , pm < ∞ with 1
p
= 1

p1
+ · · · + 1

pm
. A multilinear operator

T from X1 × · · · × Xm into Y is called (p1, . . . , pm)-dominated (see [10–12]) if
(T (x1

j , . . . , x
m
j ))

∞
j=1 ∈ `p(Y ) whenever (xi

j)
∞
j=1 ∈ `wpi(Xi). This is equivalent to say
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that, there is a constant C > 0 such that for any (xi
j)

∞
j=1 ∈ `wpi(Xi), (1 ≤ i ≤ m),

we have ∥∥(T (x1
j , . . . , x

m
j ))

∞
j=1

∥∥
p
≤ C

m∏
i=1

∥∥(xi
j)

∞
j=1

∥∥
w,pi

. (2.1)

The class of all (p1, . . . , pn)-dominated multilinear operators from X1 × · · · ×Xm

into Y is denoted by Πp1,...,pm(X1, . . . , Xm;Y ), which is a Banach space equipped
with the norm πp1,...,pm(T ) that is the smallest constant C such that the inequality
(2.1) holds.
This class satisfies a Pietsch’s domination theorem, so T is (p1, . . . , pm)-dominated
if and only if there are a constant C > 0 and regular Borel probability measures
µi on BX∗

i
, 1 ≤ i ≤ m (with the weak star topology), so that for all (x1, . . . , xm) ∈

X1 × · · · ×Xm, the inequality

∥∥T (x1, . . . , xm
)∥∥ ≤ C

m∏
i=1

(∫
BX∗

i

∣∣〈xi, x∗
i

〉∣∣pi dµi (x
∗
i )

) 1
pi

(2.2)

is valid. In this case, πp1,...,pm(T ) is the least of all C > 0 such that (2.2) holds.

3. Weakly mid-(p1, . . . , pm)-summing multilinear mappings

The following definition was given by Karn and Sinha [9, Definition 4.1] and [3,
Definition 2.1].
Definition 3.1. Let T be in L(X;Y ). For 1 ≤ p < ∞, we say that T is weakly
mid-p-summing, if (T (xj))

∞
j=1 ∈ `mid

p (Y ) whenever (xj)
∞
j=1 ∈ `wp (X). The set of all

weakly mid-p-summing operators from X into Y will be denoted by Ltp(X,Y ).
Moreover, ltp(T ) = sup{πp(ST ) : S ∈ L(Y, `p), ‖S‖ ≤ 1} and (Ltp(X,Y ), ltp(·))
is a Banach operator ideal (see [9, Proposition 4.7]).

The weakly mid-(p1, . . . , pm)-summing operators are characterized by the fol-
lowing theorem (see [9, Theorem 4.4] and [3, Theorem 2.3]).
Theorem 3.2. Let T be in L(X;Y ). For 1 ≤ p < ∞, the following properties
are equivalent:

(1) T is weakly mid-(p1, . . . , pm)-summing.

(2) S ◦ T ∈ Πp(X; `p) for every S ∈ L(Y ; `p).

(3) T ◦ U ∈ Πd
p(`p∗ ;Y ) for every U ∈ L(`p∗ ;X), 1/p+ 1/p∗ = 1 (where Πd

p is
the dual ideal of Πp).

(4) The map T̂ : `wp (X) → `mid
p (Y ) given by T̂ ((xj)

∞
j=1) = (T (xj))

∞
j=1 is well-

defined and continuous, and ‖T̂‖ = ltp(T ).
Now, we extend the preceding definition to the case of multilinear operators.

Definition 3.3. Let 1 ≤ p, p1, . . . , pm < ∞ with 1/p = 1/p1 + · · · + 1/pm. A
multilinear operator T : X1×· · ·×Xm → Y is weakly mid-(p1, . . . , pm)-summing
if (T (x1

j , . . . , x
m
j ))

∞
j=1 ∈ `mid

p (Y ) whenever (xi
j)

∞
j=1 ∈ `wpi(Xi)(1 ≤ i ≤ m). The set
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of all weakly mid-(p1, . . . , pm)-summing operators from X1×· · ·×Xm into Y will
be denoted by Ltp1,...,pm(X1, . . . , Xm;Y ).

Replacing Y in [8, Definition 2.1] by `p, we have the following lemma.

Lemma 3.4. Let (xj)
∞
j=1 ∈ `wp (X). Then the following properties are equivalent.

(1) (xj)
∞
j=1 ∈ `mid

p (X).

(2) (S(xj))
∞
j=1 ∈ `p(`p) for all S ∈ L(X; `p). Moreover

‖(xj)
∞
j=1‖mid,p = sup{‖(S((xj))

∞
j=1‖ : S ∈ L(X; `p), ‖S‖ ≤ 1}.

The following proposition characterizes the weakly mid-(p1, . . . , pm)-summing
multilinear operators.

Proposition 3.5. For T ∈ L(X1, . . . , Xm;Y ), the following statements are equiv-
alent:

(1) T is weakly mid-(p1, . . . , pm)-summing.
(2) S ◦ T ∈ Πp1,...,pm(X1, . . . , Xm; `p) for every S ∈ L(Y ; `p).

Proof. We take T ∈ Ltp1,...,pm(X1, . . . , Xm;Y ). Then by the definition of weakly
mid-(p1, . . . , pm)-summing operators, we have (T (x1

j , . . . , x
m
j ))

∞
j=1 ∈ `mid

p (Y ) for
every (xi

j)
∞
j=1 ∈ `wpi(Xi). Lemma 3.4 gives us (S ◦ T (x1

j , . . . , x
m
j ))

∞
j=1 ∈ `p(`p) for

every S ∈ L(Y ; `p) and (xi
j)

∞
j=1 ∈ `wpi(Xi). Hence (S ◦ T (x1

j , . . . , x
m
j ))

∞
j=1 ∈ `p(`p)

for every (xi
j)

∞
j=1 ∈ `wpi(Xi) and for every S ∈ L(Y ; `p), which yields S ◦ T ∈

Πp1,...,pm(X1, . . . , Xm, `p) for every S ∈ L(Y ; `p). □

Using [3, Proposition 1.9 ] and the abstract approach of [2], we can see that
the next theorem is immediate consequences of [2, Proposition 2.4], with the
equivalences involving due to [2, Corollary 2.6].

Theorem 3.6. For T ∈ L(X1, . . . , Xm;Y ), the following statements are equiva-
lent:

(1) T ∈ Ltp1,...,pm(X1, . . . , Xm;Y ).
(2) The induced map T̃ : `wp1(X1)× · · · × `wpm(Xm) → `mid

p (Y ) given by

T̃ ((x1
j)

∞
j=1, . . . , (x

m
j )

∞
j=1) = (T (x1

j , . . . , x
m
j ))

∞
j=1

is a well-defined continuous multilinear operator.
(3) The induced map T̂ : `up1(X1)× · · · × `upm(Xm) → `mid

p (Y ) given by

T̂ ((x1
j)

∞
j=1, . . . , (x

m
j )

∞
j=1) = (T (x1

j , . . . , x
m
j ))

∞
j=1

is a well-defined and continuous multilinear operator.

(4) There is a constant C > 0 such that for any (xi
j)

∞
j=1 ∈ `wpi(Xi)(1 ≤ i ≤ m),

we have ∥∥∥(T (x1
j , . . . , x

m
j

))∞
j=1

∥∥∥
mid,p

≤ C

m∏
i=1

∥∥∥(xi
j

)∞
j=1

∥∥∥
w,pi

, (3.1)
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with ltp1,...,pm(T ) = ‖T̃‖ = ‖T̂‖ = inf(C) such that the inequality (3.1)
holds.

Proof. Clearly, the implication (2) =⇒ (1) is obvious. Supposing (1), it is easy to
prove that T̃ is well-defined and multilinear. Let us show that it is continuous in
the case m = 2 (identically, we can show that the general case). To do this, let
(x1

j)
∞
j=1 ∈ `wp1(X1) and (x2

j)
∞
j=1 ∈ `wp2(X2) be sequences such that (x1

j , x
2
j) 7→ (x, y)

in `wp1(X1)× `wp2(X2) and T̃ : (xj, yj) −→ z in `mid
p (Y ). Then xj −→ x in `wp1(X1)

and yj −→ y in `wp1(X1). Set
xj = (ξj,m)

∞
m=1 , yj = (ηj,m)

∞
m=1 , x = (ξm)

∞
m=1 , y = (ηm)

∞
m=1 , z = (wm)

∞
m=1 .

By the condition `wp (·)
1
↪→ `∞(·), the convergence in the sequence spaces is guar-

anteed. We are working with coordinatewise convergence, so ξj,m
j−→ ξm in X1

and ηj,m
j−→ ηm in X2 for every m. The continuity of T gives T (ξj,m, ηj,m)

j−→
T (ξm, ηm) in Y for every m. From

(T (ξj,m, ηj,m))
∞
m=1 = T̃ (xj, yj)

j−→ z = (wm)
∞
m=1 in `mid

p (Y ),

it follows that T (ξj,m, ηj,m)
j−→ wm in Y for any m. Therefore T (ξm, ηm) = wm

for every m. Finally,
T̃ (x, y) = T̃ ((ξm)

∞
m=1 , (ηm)

∞
m=1) = (T (ξm, ηm))

∞
m=1 = (wm)

∞
m=1 = z,

showing that the graph of T̃ is closed. It follows from the closed graph theorem
for multilinear operators (see, [7]) that the continuity of T̃ is obvious.
The equivalence (2) ⇔ (3) is obvious by replacing in [2, Corollary 2.6] Xi with
`upi and Zi by `wpi for all 1 ≤ i ≤ m.
For (3) ⇐⇒ (4), it is clear that to see the equivalence (2) ⇐⇒ (4) and we have
(2) ⇐⇒ (3), and then (3) ⇐⇒ (4). □

Recall that, an ideal of multilinear operators (or multi-ideal) is a subclass M
of all continuous multilinear operators between Banach spaces such that for all
m ∈ N and Banach spaces X1, . . . , Xm and Y , the components

M (X1, . . . , Xm;Y ) := L (X1, . . . , Xm;Y ) ∩M
satisfy the following conditions:

(1) M (X1, . . . , Xm;Y ) is a linear subspace of L (X1, . . . , Xm;Y ) that con-
tains the m-linear mappings of finite type.

(2) The ideal property: If T ∈ M (G1, . . . , Gm;F ) , uj ∈ L (Xj, Gj) for j =
1, . . . ,m and v ∈ L(F, Y ), then v◦T◦(u1, . . . , um) is in M (X1, . . . , Xm;Y ).

If ‖ · ‖M : M → R+ satisfies
(a) (M (X1, . . . , Xm;Y ) , ‖ · ‖M) is a normed (Banach) space for all Banach

spaces X1, . . . , Xm, Y and all m;
(b) The m-linear form Tm : Km → K given by Tm (x1, . . . , xm) = x1 . . . xm

satisfies ‖Tm‖M = 1 for all m;
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(c) If T ∈ M (G1, . . . , Gm;F ) , uj ∈ L (Xj, Gj) for j = 1, . . . ,m and v ∈
L(F, Y ). then

‖v ◦ T ◦ (u1, . . . , um)‖M ≤ ‖v‖‖T‖M ‖u1‖ . . . ‖um‖ .

Then we say that (M, ‖ · ‖M) is a normed (Banach) multi-ideal. For more details,
see [12].

Theorem 3.7. The class (Ltp1,...,pm , ltp1,...,pm(·)) is a Banach ideal of multilinear
operators.

Proof. Using the abstract framework, notation, and language in [2], we find that a
multilinear operator T is weakly mid-(p1, . . . , pm)-summing multilinear mappings
if and only if T is (`wp1(·), . . . , `

w
pm(·); `

mid
p (·))-summing. Since 1/p = 1/p1 + · · · +

1/pm, we obtain

`wp1(K) · · · `wpm(K) = `p1(K) · · · `pm(K)
1
↪→ `mid

p (K) = `p(K).

In addition, all the sequence classes involved are linearly stable (see [3]). So,
from [2, Theorem 3.6] it follows that (Ltp1,...,pm , ltp1,...,pm(·)) is a Banach ideal of
multilinear operators. □

Proposition 3.8. For T ∈ Ltp1,...,pm(X1, . . . , Xm;Y ), we have ltp1,...,pm(T ) =
wp1,...,pm(T ), where ltp1,...,pm(T ) = sup{πp1,...,pm(ST ) : S ∈ L(Y ; `p), ‖S‖ ≤ 1}.

Proof. Let T ∈ Ltp1,...,pm(X1, . . . , Xm;Y ) and S ∈ L(Y ; `p) with ‖S‖ ≤ 1. Here we
use that the spaces `wp (Y

∗) and L(Y ; `p) are canonically isometrically isomorphic
via the correspondence S : `wp (Y

∗) −→ L(Y ; `p) defined by S(y∗)(y) = (y∗n)
∞
n=1 for

every y∗ = (y∗n)
∞
n=1 ∈ `wp (Y

∗) and y ∈ Y (see [5, Proposition 8.2(2)]). So there
exists (y∗n)

∞
n=1 ∈ Bℓwp (Y ∗) such that S(y) = (y∗n(y))

∞
n=1 for every y ∈ Y . Thus(

∞∑
j=1

∥∥ST (x1
j , . . . , x

m
j )
∥∥p
p

)1/p

=

(
∞∑
j=1

∞∑
n=1

∣∣〈y∗n, T (x1
j , . . . , x

m
j )〉
∣∣p)1/p

≤ ltp1,...,pm(T )
m∏
i=1

∥∥∥(xi
j

)∞
j=1

∥∥∥
w,pi

for every (xi
j)

∞
j=1 ∈ `wpi(Xi). Therefore ST ∈ Πp1,...,pm(X1, . . . , Xm; `p) and

wp1,...,pm(T ) ≤ ltp1,...,pm(T ). From(
∞∑
j=1

∞∑
n=1

∣∣〈y∗n, T (x1
j , . . . , x

m
j )〉
∣∣p)1/p

=

(
∞∑
j=1

∥∥ST (x1
j , . . . , x

m
j )
∥∥p
p

)1/p

≤ πp1,...,pm(S ◦ T )
m∏
i=1

∥∥∥(xi
j

)∞
j=1

∥∥∥
w,pi

.

we obtain ltp1,...,pm(T ) ≤ wmid
p1,...,pm

(T ), proving that ltp1,...,pm(T ) = wmid
p1,...,pm

(T ).
□
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4. Pietsch domination theorem

Using the domination theorem for the class of Πp1,...,pm , we give the domination
theorem the class of weakly mid-(p1, . . . , pm)-summing multilinear operators.

Theorem 4.1. Let T ∈ L(X1, . . . , Xm;Y ). The following statements are equiva-
lent:

(a) T is weakly mid-(p1, . . . , pm)-summing

(b) There are a constant C > 0 and a regular Borel probability measures µi

on BX∗
i

such that

(
∞∑
n=1

|〈y∗n, T (x1, . . . , xm)〉|p
)1/p

≤ C
m∏
i=1

(∫
BX∗

i

∣∣xi (x∗
i )
∣∣pi dµ(x∗

i )

)1/pi

(4.1)

for all (y∗n)∞n=1 ∈ `wp (Y
∗), xi ∈ Xi(1 ≤ i ≤ m).

Proof. (a)⇒(b) If T ∈ Ltp1,...,pm(X1, . . . , Xm;Y ), then S ◦T : X1×· · ·×Xm → `p
is (p1, . . . , pm)-dominated. Therefore, there are a constant C > 0 and a regular
Borel probability measures µi on BX∗

i
such that

‖S ◦ T (x1, . . . , xm)‖ ≤ C
m∏
i=1

(∫
BX∗

i

∣∣xi (x∗
i )
∣∣pi dµ(x∗

i )

)1/pi

for all xi ∈ Xi and for all S ∈ L(Y ; `p). For S ∈ L(Y ; `p), there exists (y∗n)
∞
n=1 ∈

`wp (Y
∗) such that S(y) = (y∗n(y))

∞
n=1 for every y ∈ Y . Thus

‖S ◦ T (x1, . . . , xm)‖ =

(
∞∑
n=1

|〈y∗n, T (x1, . . . , xm)〉|p
)1/p

for all xi ∈ Xi, that is,

(
∞∑
n=1

|〈y∗n, T (x1, . . . , xm)〉|p
)1/p

≤ C
m∏
i=1

(∫
BX∗

i

∣∣xi (x∗
i )
∣∣pi dµ(x∗

i )

)1/pi

for all (y∗n)∞n=1 ∈ `wp (Y
∗), xi ∈ Xi.

(b)⇒(a) Let (x1
j , . . . , x

m
j ) ∈ (X1 × · · · ×Xm) (1 ≤ j ≤ k). Form (4.1), we get

∞∑
n=1

|〈y∗n, T (x1
j , . . . , x

m
j )〉|p ≤ Cp

m∏
i=1

(∫
BX∗

i

∣∣xi (x∗
i )
∣∣pi dµ(x∗

i )

)p/pi

,
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and by the Hölder’s inequality ((
∑k

j=1

∏m
i=1(λ

i
j)

p)1/p ≤
∏m

i=1(
∑k

j=1(λ
i
j)

pi)1/pi , λi
j ≥

0), we obtain k∑
j=1

∞∑
n=1

|〈y∗n, T (x1
j , . . . , x

m
j )〉|p

1/p

≤ C

 k∑
j=1

m∏
i=1

(∫
BX∗

i

∣∣xi
j (x

∗
i )
∣∣pi

dµ(x∗
i )

)p/pi
1/p

= C

 k∑
j=1

 m∏
i=1

(∫
BX∗

i

∣∣xi
j (x

∗
i )
∣∣pi

dµ(x∗
i )

)1/pi
p1/p

≤ C

m∏
i=1

 k∑
j=1

∫
BX∗

i

∣∣xi
j (x

∗
i )
∣∣pi

dµ(x∗
i )

1/pi

≤ C

m∏
i=1

∫
BX∗

i

k∑
j=1

∣∣xi
j (x

∗
i )
∣∣pi

dµ(x∗
i )

1/pi

≤ C

m∏
i=1

‖(xi
j)

k
j=1‖w,pi

.

We deduce ((〈T (x1
j , . . . , x

m
j ), y

∗
n〉)∞n=1)

k
j=1 ∈ `p(`p) whenever (y∗n)

∞
n=1 ∈ `wp (Y

∗),
(xi

j)
k
j=1 ∈ `wpi(Xi), that is, (T (x1

j , . . . , x
m
j ))

k
j=1 ∈ `mid

p (Y ) whenever (xi
j)

k
j=1 ∈

`wpi(Xi). □
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