Khayyam J. Math. 8 (2022), no. 2, 228-233 DOI: 10.22034/KJM.2022.331453.2498

AN ALGORITHM FOR DOUBLY UNITARY LAURENT POLYNOMIALS

FATEN BEN AMOR¹ AND IHSEN YENGUI^{1*}

Communicated by B. Torrecillas

ABSTRACT. We propose two algorithms that for any ring \mathbf{R} , given a doubly unitary Laurent polynomial $g \in \mathbf{R}[X, X^{-1}]$, compute $h \in \mathbf{R}[X, X^{-1}]$ such that $gh \in \mathbf{R}[X^{-1} + X]$ and gh is monic. The first algorithm is directly extracted from the classical proof. The second algorithm is more direct and simpler. It relies on a symmetrization technique.

1. INTRODUCTION AND PRELIMINARIES

In [2, Proposition 9], it was shown that for any ring \mathbf{R} , any doubly unitary Laurent polynomial in $\mathbf{R}[X, X^{-1}]$ divides a monic polynomial at $X^{-1} + X$. As a consequence of this result, we know that for any ring \mathbf{R} , $\mathbf{R}\langle X, X^{-1}\rangle$ (the localization of the ring $\mathbf{R}[X, X^{-1}]$ at the monoid of doubly monic polynomials) is a finitely-generated free $R\langle X^{-1} + X\rangle$ -module of rank 2, where for a ring \mathbf{A} , $\mathbf{A}\langle X\rangle$ denotes the localization of $\mathbf{A}[X]$ at the monoid U(X) of monic polynomials at X. This also gives a process that systematically translates results related to projective modules over $\mathbf{R}[X_1, \ldots, X_n]$ to projective modules over $\mathbf{R}[X_1^{\pm}, \ldots, X_n^{\pm}]$; see [2, 4]. It is also worth pointing out that doubly unitary Laurent polynomials play an important role in the conception of algorithms for completion of unimodular vectors with entries in a multivariate Laurent polynomial ring $\mathbf{K}[X_1^{\pm}, \ldots, X_n^{\pm}]$, where \mathbf{K} is an infinite field [1, 4].

In this paper, we propose two algorithms realizing the above-mentioned result. The first algorithm is directly extracted from the classical proof. The second algorithm is more direct and simple. It relies on a symmetrization technique.

Date: Received: 28 February 2022; Accepted: 26 June 2022.

^{*}Corresponding author.

²⁰²⁰ Mathematics Subject Classification. Primary 13C10; Secondary 13P20.

Key words and phrases. Doubly unitary Laurent polynomial, doubly monic Laurent polynomial, integral element, symmetric polynomial.

All the considered rings are commutative and unitary. The undefined terminology is standard as in [3].

2. An algorithm extracted from the classical proof

Definition 2.1. Let **R** be a ring.

(1) For $f = a_m X^m + a_{m+1} X^{m+1} + \dots + a_{m+n} X^{m+n} \in \mathbf{R}[X, X^{-1}]$, with $a_m, a_{m+n} \in \mathbf{R} \setminus \{0\}, n \in \mathbb{N}$, and $m \in \mathbb{Z}$, the nonnegative integer n will be called the *degree* of f and denoted by deg(f). We convene that deg(0) = -1.

Also, $\mathfrak{h}(f) := a_{m+n}$ is called the *head coefficient* of f, and $\mathfrak{t}(f) := a_m$ is called the *tail coefficient* of f.

(2) A Laurent polynomial $f(X) \in \mathbf{R}[X, X^{-1}]$ is said to be *doubly monic* (resp., *doubly unitary*) if both $\mathfrak{h}(f)$ and $\mathfrak{t}(f)$ are equal to 1 (resp., are invertible). Note that if the basic ring \mathbf{R} is trivial, so is the ring $\mathbf{R}[X, X^{-1}]$ of Laurent polynomials, and 0 is doubly monic.

Recall that an element b of a ring **B** is said to be *integral* over a subring **A** of **B**, if there are $n \ge 1$ and $a_j \in \mathbf{A}$ such that $b^n + a_{n-1}b^{n-1} + \cdots + a_1b + a_0 = 0$. That is to say, b is a root of a monic polynomial over **A**. If every element of **B** is integral over **A**, then it is said that **B** is integral over **A**, or also, **B** is an integral extension of **A**. Recall also that the integral closure of **A** in **B** is the set of elements in **B** that are integral over **A**. It is a subring of **B** containing **A**.

Proposition 2.2. Let **R** be a ring. Then, for any doubly unitary Laurent polynomial $g \in \mathbf{R}[X, X^{-1}]$, there exists $h \in \mathbf{R}[X, X^{-1}]$ such that gh is a monic polynomial at $X^{-1} + X$.

In other words, for any $g(X) = a_0 X^m + a_1 X^{m+1} + \dots + a_n X^{m+n}$ in $\mathbb{Z}[a_0, a_1, \dots, a_{n-1}, a_n][X, X^{-1}]$, there exists $h \in \mathbb{Z}[a_0^{\pm}, a_1, \dots, a_{n-1}, a_n^{\pm}][X, X^{-1}]$ such gh is a monic polynomial at $X^{-1} + X$ with coefficients in $\mathbb{Z}[a_0^{\pm}, a_1, \dots, a_{n-1}, a_n^{\pm}]$.

Classical proof ([2]). If $g = X^n$ for some $n \in \mathbb{Z}$, then $X^n(X^{-n-1} + X^{-n+1}) = X^{-1} + X \in U(X + X^{-1})$. So, we can suppose that $g \in U(X)$ and $g(0) \in \mathbb{R}^{\times}$. We have the inclusions

$$\mathbf{R} \subseteq \mathbf{R}[X^{-1} + X]/(g\mathbf{R}[X, X^{-1}] \cap \mathbf{R}[X^{-1} + X])$$
$$\subseteq \mathbf{R}[X, X^{-1}]/g\mathbf{R}[X, X^{-1}] = S^{-1}\mathbf{R}[X]/S^{-1}g\mathbf{R}[X]$$
$$\cong \overline{S}^{-1}(\mathbf{R}[X]/g\mathbf{R}[X]) \cong \mathbf{R}[\theta, \theta^{-1}],$$

where \overline{S} is the multiplicative set generated by the class $\theta = \overline{X}$ of X modulo $g\mathbf{R}[X]$. Since g is a doubly unitary polynomial, both θ and θ^{-1} are integral over \mathbf{R} , and thus, $\mathbf{R}[\theta, \theta^{-1}]$ is integral over \mathbf{R} . It follows that $\mathbf{R}[X^{-1} + X]/(g\mathbf{R}[X, X^{-1}] \cap \mathbf{R}[X^{-1} + X])$ is integral over \mathbf{R} , that is, $g\mathbf{R}[X, X^{-1}] \cap \mathbf{R}[X^{-1} + X]$ contains a monic polynomial ($\in U(X^{-1} + X)$), as desired.

Roughly speaking, the proof above says that in the ring $\mathbf{R}[X, X^{-1}]$ modulo g, as both X^{-1} and X are integral over \mathbf{R} , $X^{-1} + X$ is integral over \mathbf{R} as well.

The computation hidden in the classical proof.

The proof above is good, but not enough. Imagine that we pick a polynomial in $g = \mathbf{R}[X, X^{-1}]$, say $g = X^{-2} + 2X^{-2} + 3 - X$, and want to explicitly find $h \in \mathbf{R}[X, X^{-1}]$ such that gh is a monic polynomial at $X^{-1} + X$. How can we find h?

The solution is (as often) to find the algorithm behind the classical proof. In fact, in our situation, it is just a polynomial identity ensuing from equality to zero modulo g in the ring $\mathbf{R}[X, X^{-1}]$. This latter equality follows from "gluing" two integral dependencies over \mathbf{R} (namely, those of X^{-1} and X modulo g). In more details, consider a Laurent polynomial $g(X) = a_0 X^m + a_1 X^{m+1} + \cdots + a_n X^{m+n} =$ $X^m(a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} + a_n X^n) = X^m \tilde{g}$ of degree less than or equal to n, where $m \in \mathbb{Z}$. Set

$$\begin{split} \mathbf{B} &= ((X^{-1})^{n-1}, (X^{-1})^{n-2}, \dots, (X^{-1})^2, X^{-1}, 1, X, X^2, \dots, X^{n-2}, X^{n-1}), \\ &= (u_1, \dots, u_{2n-1}), \\ L_1 &= (X^{-1} + X) \cdot (X^{-1})^{n-1} - a_0^{-1} \tilde{g}(X) X^{-n} \\ &= (-a_0^{-1} a_1, 1 - a_0^{-1} a_2, -a_0^{-1} a_3, \dots, -a_0^{-1} a_{n-1}, -a_0^{-1} a_n, 0, \dots, 0)_{\mathbf{B}}, \\ L_2 &= (X^{-1} + X) \cdot (X^{-1})^{n-2} = (1, 0, 1, \dots, 0, \dots, 0)_{\mathbf{B}}, \\ \vdots \end{split}$$

$$L_{n-1} = (X^{-1} + X) \cdot (X^{-1}) = (0, \dots, 0, 1, 0, 1, 0, \dots, 0)_{\mathbf{B}},$$

$$L_n = (X^{-1} + X) \cdot 1 = (0, \dots, 0, 1, 0, 1, 0, \dots, 0)_{\mathbf{B}},$$

$$L_{n+1} = (X^{-1} + X) \cdot X = (0, \dots, 0, 1, 0, 1, 0, \dots, 0)_{\mathbf{B}},$$

$$\vdots$$

$$L_{2n-2} = (X^{-1} + X) \cdot X^{n-2} = (0, \dots, 0, 1, 0, 1)_{\mathbf{B}},$$

$$L_{2n-1} = (X^{-1} + X) \cdot X^{n-1} - a_n^{-1} \tilde{g}(X)$$

$$= (0, \dots, 0, -a_n^{-1} a_0, -a_n^{-1} a_1, \dots, -a_n^{-1} a_{n-3}, 1 - a_n^{-1} a_{n-2}, -a_n^{-1} a_{n-1})_{\mathbf{B}}.$$

Thus, for $1 \le i \le 2n - 1$, denoting by $L_i = (b_{i,1}, \dots, b_{i,2n-1})_{\mathbf{B}}$, and setting $B = (b_{i,j})_{1 \le i,j \le 2n-1}$

and $A = (X^{-1} + X)\mathbf{I}_{2n-1} - B$, we have

$$B^{t}(u_{1},\ldots,u_{n-1},1,u_{n+1},\ldots,u_{2n-1}) = {}^{t}(a_{0}^{-1}\tilde{g}(X)X^{-n},0,\ldots,0,a_{n}^{-1}\tilde{g}(X)).$$

It follows from Cramer's rule that det A (which is a monic polynomial at $(X^{-1} + X)$) is equal to the determinant of the matrix obtained from A by replacing its *n*th column by ${}^{t}(a_{0}^{-1}\tilde{g}(X)X^{-n}, 0, \ldots, 0, a_{n}^{-1}\tilde{g}(X))$. Thus, denoting by \tilde{h} the determinant of the matrix obtained from A by replacing its *n*th column by ${}^{t}(a_{0}^{-1}X^{-n}, 0, \ldots, 0, a_{n}^{-1})$, we obtain det $A = \tilde{g} \tilde{h}$, where det A is a monic polynomial at $(X^{-1} + X)$ with coefficients in $\mathbb{Z}[a_{0}^{\pm}, a_{1}, \ldots, a_{n-1}, a_{n}^{\pm}]$ and of degree 2n-1. As $X^{m}(X^{-m-1} + X^{-m+1}) = (X^{-1} + X)$, we conclude that

$$(X^{-1} + X) \cdot \det A = g \cdot (X^{-m-1} + X^{-m+1}) \cdot \tilde{h},$$

is a monic polynomial at $(X^{-1} + X)$ with coefficients in $\mathbb{Z}[a_0^{\pm}, a_1, \ldots, a_{n-1}, a_n^{\pm}]$ and of degree 2n.

Now, let us go back to our example $g = X^{-2} + 2X^{-1} + 3 - X = X^{-2}(1 + 2X + 3X^2 - X^3) = X^{-2}\tilde{g}$ with $\tilde{g} = 1 + 2X + 3X^2 - X^3$. Keeping the notation as above, we obtain

$$\det A = \begin{vmatrix} 2 + (X^{-1} + X) & 2 & -1 & 0 & 0 \\ -1 & (X^{-1} + X) & -1 & 0 & 0 \\ 0 & -1 & (X^{-1} + X) & -1 & 0 \\ 0 & 0 & -1 & (X^{-1} + X) & -1 \\ 0 & 0 & -1 & -3 & -3 + (X^{-1} + X) \end{vmatrix}$$
$$= 1 - X - 4X^2 - 16X^3 - 9X^4 - 17X^5 - 9X^6 - 16X^7 - 4X^8 - X^9 + X^{10}$$
$$= \tilde{g}(X) \begin{vmatrix} 2 + (X^{-1} + X) & 2 & X^{-3} & 0 & 0 \\ -1 & (X^{-1} + X) & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & (X^{-1} + X) & -1 \\ 0 & 0 & -1 & -3 & -3 + (X^{-1} + X) \end{vmatrix}$$
$$= \tilde{g}(X) \cdot (1 - 3X - X^2 - 4X^3 - X^4 - 4X^5 - 2X^6 - X^7),$$

and finally,

$$(1 - 3X - X^{2} - 4X^{3} - X^{4} - 4X^{5} - 2X^{6} - X^{7})(X + X^{3}) \cdot g = (X^{-1} + X) \cdot \det A$$
$$= p(X^{-1} + X)$$

with $p(t) = t^6 - t^5 - 9t^4 - 12t^3 + 8t^2 + 13t$.

3. A DIRECT ALGORITHM

We propose in this section a new simple proof (an algorithm) for Proposition 2.2 based on the symmetrization of the considered doubly unitary Laurent polynomial.

Definition 3.1. Let **R** be a ring. A Laurent polynomial $f(X) \in \mathbf{R}[X, X^{-1}]$ is said to be symmetric at X and X^{-1} (or, simply, symmetric) if $f(X^{-1}) = f(X)$.

Lemma 3.2. Let \mathbf{R} be a ring. Then,

 $\mathbf{R}[X^{-1} + X] = \{ f \in \mathbf{R}[X, X^{-1}] \mid f \text{ is symmetric at } X \text{ and } X^{-1} \}.$

In particular, any doubly monic symmetric Laurent polynomial is a monic polynomial at $X^{-1} + X$ (i.e., it can be expressed as $g(X^{-1} + X)$ with a monic polynomial $g \in \mathbf{R}[X]$).

Proof. We clearly have

 $\mathbf{R}[X^{-1} + X] \subseteq \{ f \in \mathbf{R}[X, X^{-1}] \mid f \text{ is symmetric at } X \text{ and } X^{-1} \}.$

Conversely, let $f \in \mathbf{R}[X, X^{-1}] \setminus \{0\}$ be a symmetric Laurent polynomial at X and X^{-1} of degree 2n (the degree of a symmetric Laurent polynomial is necessarily even). We proceed by induction on n. If n = 0, then $f = aX^m$ for some $a \in \mathbf{R} \setminus \{0\}$. As it is symmetric, necessarily m = 0, and thus, $f \in \mathbf{R} \subseteq \mathbf{R}[X^{-1} + X]$. Now, suppose that $n \ge 1$. The polynomial $g = f - a(X^{-1} + X)^n$, where a is the head coefficient of f, is also symmetric with $\deg(g) < \deg(f)$. The induction hypothesis applies and gives the desired result.

From the above proof, the following algorithm follows immediately.

Algorithm 3.3. (Computing the source of a symmetric Laurent polynomial) Input: A symmetric Laurent polynomial $f \in \mathbf{R}[X, X^{-1}]$ of degree 2n. Output: A polynomial $\tilde{f} \in \mathbf{R}[X]$ of degree n such that $f = \tilde{f}(X^{-1} + X)$ (\tilde{f} will be called the *source* of f).

```
1 sourcesymm(Laurent polynomial f) {

2 if (\deg(f) \le 0) {

3 return f;

4 }

5 return \mathfrak{h}(f)X^{\frac{\deg(f)}{2}}+sourcesymm(f - \mathfrak{h}(f)(X^{-1} + X)^{\frac{\deg(f)}{2}});

6 }
```

A direct constructive proof of Proposition 2.2. By virtue of Lemma 3.2, just take $h(X) = \mathfrak{t}(g)^{-1}\mathfrak{h}(g)^{-1}g(X^{-1})$.

From the above proof, the following algorithm follows immediately.

Algorithm 3.4. (Computing a multiple of a doubly unitary Laurent polynomial which is a monic polynomial at $X^{-1} + X$) Input: A doubly unitary Laurent polynomial $g \in \mathbf{R}[X, X^{-1}]$ of degree n. Output: [h, f] where $h \in \mathbf{R}[X, X^{-1}]$ and $f \in \mathbf{R}[X]$ monic of degree n such that $gh = f(X^{-1} + X)$.

1 symmoub(doubly unitary Laurent polynomial g) { 2 return $[\mathfrak{t}(g)^{-1}\mathfrak{h}(g)^{-1}g(X^{-1}), \operatorname{sourcesymm}(\mathfrak{t}(g)^{-1}\mathfrak{h}(g)^{-1}g(X)g(X^{-1}))];$ 3 }

232

Going back to the example $g = X^{-2} + 2X^{-1} + 3 - X$ computed with the algorithm given in Section 2, we find the following result from Algorithm 3.4:

$$(X^{-1} - 3 - 2X - X^2) \cdot g = q(X^{-1} + X)$$
 with $q(t) = t^3 - t^2 - 8t - 13$

of degree 3 instead of degree 6 found by the algorithm given in Section 2.

References

- 1. M. Amidou and I. Yengui, An algorithm for unimodular completion over Laurent polynomial rings, Linear Algebra Appl. **429** (2008), no. 7, 1687–1698.
- S. Barhoumi and I. Yengui, On a localization of the Laurent polynomial ring, JP J. Algebra Number Theory Appl. 5 (2005), no. 3, 591–602.
- H. Lombardi and C. Quitté, Commutative Algebra: Constructive Methods. Finite Projective Modules, Updated and revised edition. Translated from the French by T.K. Roblot, Algebra and Applications 20. Springer, Dordrecht, 2015.
- I. Yengui, Constructive Commutative Algebra. Projective Modules Over Polynomial Rings and Dynamical Gröbner Bases, Lecture Notes in Math. 2138, Springer, Cham, 2015.

¹DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SFAX, 3000, SFAX, TUNISIA. *Email address:* faten.benamor10gmail.com; ihsen.yengui0fss.rnu.tn