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Abstract. We propose two algorithms that for any ring R, given a doubly
unitary Laurent polynomial g ∈ R[X,X−1], compute h ∈ R[X,X−1] such that
gh ∈ R[X−1 + X] and gh is monic. The first algorithm is directly extracted
from the classical proof. The second algorithm is more direct and simpler. It
relies on a symmetrization technique.

1. Introduction and preliminaries

In [2, Proposition 9], it was shown that for any ring R, any doubly unitary Lau-
rent polynomial in R[X,X−1] divides a monic polynomial at X−1 + X. As a
consequence of this result, we know that for any ring R, R⟨X,X−1⟩ (the local-
ization of the ring R[X,X−1] at the monoid of doubly monic polynomials) is a
finitely-generated free R⟨X−1 +X⟩-module of rank 2, where for a ring A, A⟨X⟩
denotes the localization of A[X] at the monoid U(X) of monic polynomials at
X. This also gives a process that systematically translates results related to pro-
jective modules over R[X1, . . . , Xn] to projective modules over R[X±

1 , . . . , X
±
n ];

see [2, 4]. It is also worth pointing out that doubly unitary Laurent polynomials
play an important role in the conception of algorithms for completion of unimodu-
lar vectors with entries in a multivariate Laurent polynomial ring K[X±

1 , . . . , X
±
n ],

where K is an infinite field [1, 4].
In this paper, we propose two algorithms realizing the above-mentioned result.

The first algorithm is directly extracted from the classical proof. The second
algorithm is more direct and simple. It relies on a symmetrization technique.
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All the considered rings are commutative and unitary. The undefined termi-
nology is standard as in [3].

2. An algorithm extracted from the classical proof

Definition 2.1. Let R be a ring.
(1) For f = amX

m + am+1X
m+1 + · · · + am+nX

m+n ∈ R[X,X−1], with
am, am+n ∈ R \ {0}, n ∈ N, and m ∈ Z, the nonnegative integer n
will be called the degree of f and denoted by deg(f). We convene that
deg(0) = −1.

Also, h(f) := am+n is called the head coefficient of f , and t(f) := am is
called the tail coefficient of f .

(2) A Laurent polynomial f(X) ∈ R[X,X−1] is said to be doubly monic (resp.,
doubly unitary) if both h(f) and t(f) are equal to 1 (resp., are invertible).
Note that if the basic ring R is trivial, so is the ring R[X,X−1] of Laurent
polynomials, and 0 is doubly monic.

Recall that an element b of a ring B is said to be integral over a subring A of
B, if there are n ≥ 1 and aj ∈ A such that bn + an−1b

n−1 + · · · + a1b + a0 = 0.
That is to say, b is a root of a monic polynomial over A. If every element of
B is integral over A, then it is said that B is integral over A, or also, B is an
integral extension of A. Recall also that the integral closure of A in B is the set
of elements in B that are integral over A. It is a subring of B containing A.

Proposition 2.2. Let R be a ring. Then, for any doubly unitary Laurent poly-
nomial g ∈ R[X,X−1], there exists h ∈ R[X,X−1] such that gh is a monic
polynomial at X−1 +X.

In other words, for any g(X) = a0X
m + a1X

m+1 + · · ·+ anX
m+n in

Z[a0, a1, . . . , an−1, an][X,X−1], there exists h ∈ Z[a±0 , a1, . . . , an−1, a
±
n ][X,X−1]

such gh is a monic polynomial at X−1+X with coefficients in Z[a±0 , a1, . . . , an−1, a
±
n ].

Classical proof ([2]). If g = Xn for some n ∈ Z, then Xn(X−n−1 +X−n+1) =
X−1+X ∈ U(X +X−1). So, we can suppose that g ∈ U(X) and g(0) ∈ R×. We
have the inclusions

R ⊆ R[X−1 +X]/(gR[X,X−1] ∩R[X−1 +X])

⊆ R[X,X−1]/gR[X,X−1] = S−1R[X]/S−1gR[X]

∼= S
−1
(R[X]/gR[X]) ∼= R[θ, θ−1],

where S is the multiplicative set generated by the class θ = X of X modulo gR[X].
Since g is a doubly unitary polynomial, both θ and θ−1 are integral over R, and
thus, R[θ, θ−1] is integral over R. It follows that R[X−1 + X]/(gR[X,X−1] ∩
R[X−1 + X]) is integral over R, that is, gR[X,X−1] ∩ R[X−1 + X] contains a
monic polynomial (∈ U(X−1 +X)), as desired.

Roughly speaking, the proof above says that in the ring R[X,X−1] modulo g,
as both X−1 and X are integral over R, X−1 +X is integral over R as well.

The computation hidden in the classical proof.
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The proof above is good, but not enough. Imagine that we pick a polynomial
in g = R[X,X−1], say g = X−2 + 2X−2 + 3 − X, and want to explicitly find
h ∈ R[X,X−1] such that gh is a monic polynomial at X−1+X. How can we find
h?
The solution is (as often) to find the algorithm behind the classical proof. In fact,
in our situation, it is just a polynomial identity ensuing from equality to zero
modulo g in the ring R[X,X−1]. This latter equality follows from “gluing” two
integral dependencies over R (namely, those of X−1 and X modulo g). In more
details, consider a Laurent polynomial g(X) = a0X

m+a1X
m+1+ · · ·+anX

m+n =
Xm(a0 + a1X + · · · + an−1X

n−1 + anX
n) = Xmg̃ of degree less than or equal to

n, where m ∈ Z. Set

B = ((X−1)n−1, (X−1)n−2, . . . , (X−1)2, X−1, 1, X,X2, . . . , Xn−2, Xn−1),

= (u1, . . . , u2n−1),

L1 = (X−1 +X) · (X−1)n−1 − a−1
0 g̃(X)X−n

= (−a−1
0 a1, 1− a−1

0 a2,−a−1
0 a3, . . . ,−a−1

0 an−1,−a−1
0 an, 0, . . . , 0)B,

L2 = (X−1 +X) · (X−1)n−2 = (1, 0, 1, . . . , 0, . . . , 0)B,

...

Ln−1 = (X−1 +X) · (X−1) = (

n−3︷ ︸︸ ︷
0, . . . , 0, 1, 0, 1,

n−1︷ ︸︸ ︷
0, . . . , 0)B,

Ln = (X−1 +X) · 1 = (

n−2︷ ︸︸ ︷
0, . . . , 0, 1, 0, 1,

n−2︷ ︸︸ ︷
0, . . . , 0)B,

Ln+1 = (X−1 +X) ·X = (

n−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, 1,

n−3︷ ︸︸ ︷
0, . . . , 0)B,

...
L2n−2 = (X−1 +X) ·Xn−2 = (0, . . . , 0, 1, 0, 1)B,

L2n−1 = (X−1 +X) ·Xn−1 − a−1
n g̃(X)

= (0, . . . , 0,−a−1
n a0,−a−1

n a1, . . . ,−a−1
n an−3, 1− a−1

n an−2,−a−1
n an−1)B.

Thus, for 1 ≤ i ≤ 2n− 1, denoting by Li = (bi,1, . . . , bi,2n−1)B, and setting
B = (bi,j)1≤i,j≤2n−1

=



−a−1
0 a1 1− a−1

0 a2 a−1
0 a3 · · · −a−1

0 an 0 · · · 0
1 0 1

. . . . . . . . .
1 0 1

. . . . . . . . .
1 0 1

0 · · · 0 −a−1
n a0 · · · −a−1

n an−3 1− a−1
n an−2 −a−1

n an−1


,

and A = (X−1 +X)I2n−1 −B, we have
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B t(u1, . . . , un−1, 1, un+1, . . . , u2n−1) =
t(a−1

0 g̃(X)X−n, 0, . . . , 0, a−1
n g̃(X)).

It follows from Cramer’s rule that detA (which is a monic polynomial at
(X−1 + X)) is equal to the determinant of the matrix obtained from A by re-
placing its nth column by t(a−1

0 g̃(X)X−n, 0, . . . , 0, a−1
n g̃(X)). Thus, denoting by

h̃ the determinant of the matrix obtained from A by replacing its nth column by
t(a−1

0 X−n, 0, . . . , 0, a−1
n ), we obtain detA = g̃ h̃, where detA is a monic polyno-

mial at (X−1+X) with coefficients in Z[a±0 , a1, . . . , an−1, a
±
n ] and of degree 2n−1.

As Xm(X−m−1 +X−m+1) = (X−1 +X), we conclude that

(X−1 +X) · detA = g · (X−m−1 +X−m+1) · h̃,
is a monic polynomial at (X−1 +X) with coefficients in Z[a±0 , a1, . . . , an−1, a

±
n ]

and of degree 2n.
Now, let us go back to our example g = X−2+2X−1+3−X = X−2(1+2X +

3X2−X3) = X−2 g̃ with g̃ = 1+2X+3X2−X3. Keeping the notation as above,
we obtain

detA =

2 + (X−1 +X) 2 −1 0 0
−1 (X−1 +X) −1 0 0
0 −1 (X−1 +X) −1 0
0 0 −1 (X−1 +X) −1
0 0 −1 −3 −3 + (X−1 +X)

= 1−X − 4X2 − 16X3 − 9X4 − 17X5 − 9X6 − 16X7 − 4X8 −X9 +X10

= g̃(X)

2 + (X−1 +X) 2 X−3 0 0
−1 (X−1 +X) 0 0 0
0 −1 0 −1 0
0 0 0 (X−1 +X) −1
0 0 −1 −3 −3 + (X−1 +X)

= g̃(X) · (1− 3X −X2 − 4X3 −X4 − 4X5 − 2X6 −X7),

and finally,

(1− 3X −X2 − 4X3 −X4 − 4X5 − 2X6 −X7)(X +X3) · g = (X−1 +X) · detA
= p(X−1 +X)

with p(t) = t6 − t5 − 9t4 − 12t3 + 8t2 + 13t.

3. A direct algorithm

We propose in this section a new simple proof (an algorithm) for Proposi-
tion 2.2 based on the symmetrization of the considered doubly unitary Laurent
polynomial.

Definition 3.1. Let R be a ring. A Laurent polynomial f(X) ∈ R[X,X−1] is
said to be symmetric at X and X−1 (or, simply, symmetric) if f(X−1) = f(X).
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Lemma 3.2. Let R be a ring. Then,

R[X−1 +X] = {f ∈ R[X,X−1] | f is symmetric at X and X−1}.
In particular, any doubly monic symmetric Laurent polynomial is a monic polyno-
mial at X−1+X (i.e., it can be expressed as g(X−1+X) with a monic polynomial
g ∈ R[X]).

Proof. We clearly have

R[X−1 +X] ⊆ {f ∈ R[X,X−1] | f is symmetric at X and X−1}.

Conversely, let f ∈ R[X,X−1]\{0} be a symmetric Laurent polynomial at X and
X−1 of degree 2n (the degree of a symmetric Laurent polynomial is necessarily
even). We proceed by induction on n. If n = 0, then f = aXm for some a ∈
R \ {0}. As it is symmetric, necessarily m = 0, and thus, f ∈ R ⊆ R[X−1 +X].
Now, suppose that n ≥ 1. The polynomial g = f − a(X−1 + X)n, where a is
the head coefficient of f , is also symmetric with deg(g) < deg(f). The induction
hypothesis applies and gives the desired result.

□

From the above proof, the following algorithm follows immediately.

Algorithm 3.3. (Computing the source of a symmetric Laurent polynomial)
Input: A symmetric Laurent polynomial f ∈ R[X,X−1] of degree 2n.
Output: A polynomial f̃ ∈ R[X] of degree n such that f = f̃(X−1 +X) (f̃ will
be called the source of f).

1 sourcesymm ( Laurent po l ynom ia l f ) {
2 i f (deg(f) ≤ 0) {
3 return f ;
4 }
5 return h(f)X

deg(f)
2 +sourcesymm (f − h(f)(X−1 +X)

deg(f)
2 ) ;

6 }

A direct constructive proof of Proposition 2.2. By virtue of Lemma 3.2,
just take h(X) = t(g)−1h(g)−1g(X−1).

From the above proof, the following algorithm follows immediately.

Algorithm 3.4. (Computing a multiple of a doubly unitary Laurent polynomial
which is a monic polynomial at X−1 +X)
Input: A doubly unitary Laurent polynomial g ∈ R[X,X−1] of degree n.
Output: [h, f ] where h ∈ R[X,X−1] and f ∈ R[X] monic of degree n such that
gh = f(X−1 +X).

1 symmdoub ( doub ly u n i t a r y Laurent po l ynom i a l g ) {
2 return [t(g)−1h(g)−1g(X−1), sourcesymm(t(g)−1h(g)−1g(X)g(X−1))] ;
3 }
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Going back to the example g = X−2 + 2X−1 + 3 − X computed with the
algorithm given in Section 2, we find the following result from Algorithm 3.4:

(X−1 − 3− 2X −X2) · g = q(X−1 +X) with q(t) = t3 − t2 − 8t− 13

of degree 3 instead of degree 6 found by the algorithm given in Section 2.
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