Khayyam J. Math. 8 (2022), no. 2, 234-242 DOI: 10.22034/KJM.2022.270633.2161

BIDERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

SEDIGHEH BAROOTKOOB¹, ALI AKBAR KHADEM-MABOUDI^{2*}

Communicated by A.K. Mirmostafaee

ABSTRACT. We investigate biderivations, inner biderivations, and extremal biderivations on a trivial extensions algebra. Our results are examined for some special trivial extension algebras, such as triangular algebras and certain generalized matrix algebras, renovating some older results.

1. INTRODUCTION AND PRELIMINARIES

Let A be an algebra over a unital commutative ring, and let X be an A-module. A linear map $D: A \longrightarrow X$ is called a derivation if

$$D(ab) = aD(b) + D(a)b \quad (a, b \in A).$$

A bilinear map D from $A \times A$ into X is called a biderivation, if it is a derivation with respect to both components; that is, the mappings ${}_{a}D, D_{b} : A \to X$ defined by ${}_{a}D(b) = D(a, b) = D_{b}(a)$ are derivations for every $a, b \in A$. Every biderivation of the form $D(a, b) = \lambda[a, b]$, where $\lambda \in Z(A, X) = \{\lambda \in X; a\lambda = \lambda a, \text{ for all } a \in A\}$ is called an inner biderivation. We say that $\Phi : A \times A \longrightarrow A$ is an extremal biderivation if there exists $x \in X$ such that [x, [A, A]] = 0 and $\Phi(a, b) = [a, [b, x]]$ for all $a, b \in A$

During the last decades various mappings on certain algebras have been studied by many authors; see, for example, [1, 2, 4, 5, 7, 8, 12, 15-17] and references therein. In particular, Brešar, Martindale, and Miers [7] showed that every biderivation on a noncommutative prime ring is inner. After that, Benkovič [3] showed that under some conditions every biderivation on a triangular algebra is a sum of an extremal and an inner biderivation.

Date: Received: 27 January 2021; Accepted: 27 June 2022.

^{*}Corresponding author.

²⁰²⁰ Mathematics Subject Classification. Primary 47B47; Secondary 15A78, 16W25, 17A36. Key words and phrases. Biderivation, derivation, commuting map, trivial extension algebra, triangular algebra.

Our main aim in this paper is to study biderivations on a trivial extension algebra. Let us introduce a trivial extension algebra. Let A be an algebra with X as an A-module. Then the direct product $A \times X$ equipped with the pointwise module operations and the multiplication

$$(a, x)(b, y) = (ab, ay + xb)$$
 $(a, b \in A, x, y \in X)$ (1.1)

forms an algebra, which is called a trivial extension algebra and will be denoted by $A \rtimes X$.

The most famous example of a trivial extension algebra is a triangular algebra $\mathfrak{T} = \begin{bmatrix} A & M \\ 0 & B \end{bmatrix}$, as it can be identified with the trivial extension algebra $(A \oplus$ $B) \rtimes X$ in a natural way; see [12]. Certain maps on a triangular algebra have been characterized by some authors; see, for example, [3, 8, 13-15, 17]. Some of their results have been extended to trivial extension algebras; see [1, 4, 10, 12, 16].

In this paper, we investigate biderivations, inner biderivations, and extremal biderivations on a trivial extensions algebra. In Section 2, we study the structures of biderivations and extremal biderivations on a trivial extension algebra, and we focus on those conditions under which a trivial extension algebra enjoys a nonzero extremal biderivation. Section 3 is devoted to the study of those conditions on a unital algebra with a nontrivial idempotent, under which biderivations can be presented as the sum of extremal biderivation with certain type of biderivations. Finally, inner biderivations on a trivial extension algebras are investigated.

2. Biderivations and extremal biderivations on $A \rtimes X$

We begin with the following straightforward result characterizing the structure of a derivation on $A \rtimes X$ (see [12, Theorem 3.1]).

Lemma 2.1. Every derivation $D: A \rtimes X \to A \rtimes X$, enjoys the presentation

$$D(a,x) = (D_A(a) + T_A(x), D_X(a) + T_X(x)) \quad (a \in A, x \in X),$$
(2.1)

where $D_A : A \to A$ and $D_X : A \to X$ are derivations and $T_A : X \to A$ and $T_X: X \to X$ are linear maps satisfying the following conditions for all $a \in A$ and $x, y \in X$:

- T_A is an A-module morphism.
 T_X(ax) = aT_X(x) + D_A(a)x and T_X(xa) = T_X(x)a + xD_A(a).
- $T_A(x)y + xT_A(y) = 0.$

Moreover, D is an inner derivation, that is, $D = d_{(a_0,x_0)}$ for some $a_0 \in A$ and $x_0 \in X$, if and only if $D_A = d_{a_0}$ and $D_X = d_{x_0}$ are inner derivations, and also $T_A = 0$ and $T_X = \Delta_{a_0}$, where $\Delta_{a_0}(x) = xa_0 - a_0x$.

In the following, we get the structure of a biderivation on module extension algebras.

Theorem 2.2. Every biderivation $D: (A \rtimes X) \times (A \rtimes X) \to (A \rtimes X)$ has the form

$$D((a,x),(b,y)) = (D_A((a,b)) + T_A((x,y)) + \mu_1((a,y)) + \mu_2((x,b)), \quad (2.2)$$

$$D_X((a,b)) + T_X((x,y)) + \nu_1((a,y)) + \nu_2((x,b)) \Big),$$

whose component maps satisfy the following conditions for all $a, b \in A, x, y, z \in X$:

- $D_A: A \times A \to A$ and $D_X: A \times A \to X$ are biderivations.
- $T_A: X \times X \to A$ is an A-module bimorphism, and $T_X: X \times X \to X$ is bilinear.
- $\mu_1, \mu_2^t : A \times X \to A$ and $\nu_1, \nu_2^t : A \times X \to X$ are bilinear maps that are derivations on their first components. Furthermore, μ_1 and μ_2^t are A-module morphisms on their second components.
- $T_X(ax, y) = aT_X(x, y) + \mu_1(a, y)x$ and $T_X(xa, y) = T_X(x, y)a + x\mu_1(a, y).$

•
$$T_X(x, by) = bT_X(x, y) + \mu_2(x, b)y$$
 and $T_X(x, yb) = T_X(x, y)b + y\mu_2(x, b)$

- $xT_A(y,z) = yT_A(x,z) = -T_A(x,y)z.$
- $\nu_1(a, by) = b\nu_1(a, y) + D_A(a, b)y$ and $\nu_1(a, yb) = \nu_1(a, y)b + yD_A(a, b)$.
- $\nu_2(ax,b) = a\nu_2(x,b) + D_A(a,b)x$ and $\nu_2(xa,b) = \nu_2(x,b)a + xD_A(a,b).$
- $\mu_1(a, y)z + y\mu_1(a, z) = 0$ and $\mu_2(x, b)z + x\mu_2(z, b) = 0$.

Moreover, D is an inner biderivation if and only if there are $f \in Z(A, A) \cap Z(X, A)$ and $g \in Z(A, X)$ such that $D_A(a, b) = f[a, b], \nu_1(a, x) = \nu_2^t(a, x) = f[a, x], D_X(a, b) = g[a, b]$ and μ_1, μ_2, T_A , and T_X are zero maps.

Proof. The map D is a biderivation if and only if $_{(a,x)}D$ and $D_{(b,y)}$ are derivations for every $(a, x), (b, y) \in A \rtimes X$. Then by Lemma 2.1, we can write

$${}_{(a,x)}D((b,y)) = \left({}^{(a,x)}D_A(b) + {}^{(a,x)}T_A(y), {}^{(a,x)}D_X(b) + {}^{(a,x)}T_X(y) \right),$$

and

$$D_{(b,y)}((a,x)) = \left(D_A^{(b,y)}(a) + T_A^{(b,y)}(x), D_X^{(b,y)}(a) + T_X^{(b,y)}(x) \right),$$

where ${}^{(a,x)}D_A, D_A^{(b,y)} : A \to A$ and ${}^{(a,x)}D_X, D_X^{(b,y)} : A \to X$ are derivations, and ${}^{(a,x)}T_A, T_A^{(b,y)} : X \to A$ and ${}^{(a,x)}T_X, T_X^{(b,y)} : X \to X$ are linear maps such that for all $a \in A, x, z \in X$,

(1) $T_A^{(b,y)}$ is an A-module map,

(2)
$$T_X^{(b,y)}(ax) = D_A^{(b,y)}(a)x + aT_X^{(b,y)}(x)$$
 and $T_X^{(b,y)}(xa) = xD_A^{(b,y)}(a) + T_X^{(b,y)}(x)a$,
(3) $T_A^{(b,y)}(x)z + xT_A^{(b,y)}(z) = 0$.

Also, there are similar properties such as (4)-(6) for the maps with the symbol (a, x).

Now it is sufficient to define $D_A(a,b) = D_A^{(b,0)}(a), T_A(x,y) = T_A^{(0,y)}(x), \mu_1(a,x) =^{(a,0)} T_A(x), \mu_2(x,a) = T_A^{(a,0)}(x), \nu_1(a,x) =^{(a,0)} T_X(x), \nu_2(x,a) = T_X^{(a,0)}(x), D_X(a,b) = D_X^{(b,0)}(a), \text{ and } T_X(x,y) = T_X^{(0,y)}(x).$ Then the results follows from properties (1)–(6) and the equations $_{(a,x)}D = D_{(b,y)}$ and

$$\begin{split} D\left((a,x),(b,y)\right) = & D\left((a,0),(b,0)\right) + D\left((a,0),(0,y)\right) \\ & + D\left((0,x),(b,0)\right) + D\left((0,x),(0,y)\right). \end{split}$$

Moreover, D((a, x)(b, y)) = (f, g)[(a, x), (b, y)] for some

$$(f,g) \in Z(A \rtimes X, (A \rtimes X)) = (Z(A,A) \cap Z(X,A)) \rtimes Z(A,X),$$

if and only if $D_A((a,b)) = f[a,b], \nu_1(a,x) = \nu_2^t(a,x) = f[a,x]$, and $D_X(a,b) = g[a,b]$, and μ_1, μ_2, T_A , and T_X are zero maps.

We recall that a bilinear map $D: A \times A \to X$ is called an extremal biderivation if D(a, b) = [a, [b, x]], for some $x \in X$ with [x, [A, A]] = 0, where [x, a] = xa - ax, for each $a \in A, x \in X$. It is obvious that D = 0 is an extremal biderivation, which is implemented with x = 0.

Proposition 2.3. If Span[A, A] = A, then the only extremal biderivation $D : A \times A \rightarrow X$ is zero.

Proof. Let for some $x \in X$ we have [x, [A, A]] = 0. Then the assumption implies that $x \in Z(A, X)$. Therefore [A, [A, x]] = [A, 0] = 0.

Example 2.4. Let H be an infinite-dimensional Hilbert space and let B(H) be the algebra of all bounded linear operators on H. It is known from [17, Lemma 5.7] that Span[B(H), B(H)] = B(H) and so by Proposition 2.3, there is no nonzero extremal biderivation from $B(H) \times B(H)$ to any B(H)-module X.

With the notations as in Theorem 2.2, we have the following characterization for an extremal biderivation.

Theorem 2.5. A bilinear map $D : (A \rtimes X) \times (A \rtimes X) \rightarrow (A \rtimes X)$ is an extremal biderivation implemented with $(a_0, x_0) \in (A \rtimes X)$ if and only if

- D_A and D_X are extremal biderivations implemented with a_0 and x_0 , respectively,
- T_A, T_X, μ_1, μ_2 are zero maps and $[a_0, [A, X]] = 0$, and
- $\nu_1(a, x) = [a, [x, a_0]], \nu_2(x, a) = [x, [a, a_0]], \text{ for every } a \in A, x \in X.$

Proof. It is easy to check that D is extremal implemented with $(a_0, x_0) \in (A \rtimes X)$ if and only if for every $(a, x), (b, y) \in (A \rtimes X)$,

$$D((a, x), (b, y)) = [(a, x), [(b, y), (a_0, x_0)]]$$

= ([a, [b, a_0]], [a, [b, x_0] + [y, a_0]] + [x, [b, a_0]])

with $[(a_0, x_0), [A \rtimes X, A \rtimes X]] = 0$. Then by the notations as in (2.2), we get $D_A(a, b) = [a, [b, a_0]]$ and $D_X(a, b) = [a, [b, x_0]]$ with $[a_0, [A, A]] = 0$ and $[x_0, [A, A]] = 0$. We further get that μ_1, μ_2, T_A and T_X are zero, and also, $[a_0, [A, X]] = 0, \nu_1(a, x) = [a, [x, a_0]]$, and $\nu_2(x, a) = [x, [a, a_0]]$.

From this, we arrive at the following result concerning the existence of nonzero extremal biderivations.

Corollary 2.6. There is a nonzero extremal biderivation form $(A \rtimes X) \times (A \rtimes X)$ to $(A \rtimes X)$ if and only if either there exists an element $a_0 \in A$ such that $a_0 \notin Z(A) \cap Z(X,A)$, $[a_0, [A, A]] = 0$, $[a_0, [A, X]] = 0$, or there exists an element $x_0 \notin Z(A, X)$ with $[x_0, [A, A]] = 0$.

Proof. If $a_o \in A$ such that $a_0 \notin Z(A) \cap Z(X, A)$, $[a_0, [A, A]] = 0$ and $[a_0, [A, X]] = 0$, then by Theorem 2.5, the bilinear map $D : (A \rtimes X) \times (A \rtimes X) \to (A \rtimes X)$ defined by $D((a, x), (b, y)) = [[(a, x), (b, y)], (a_0, 0)] = ([a, [b, a_0]], [x, [b, a_0]] + [a, [y, a_0]])$ is a nonzero extremal biderivation. Similarly, if $x_0 \in X$ such that $x_0 \notin Z(A, X)$ and $[x_0, [A, A]] = 0$, then $D((a, x), (b, y)) = [[(a, x), (b, y)], (0, x_0)] = (0, [a, [b, x_0]])$ is the desired biderivation. The converse can also be derived from Theorem 2.5.

We examine the latter result for two special cases. First for $A \rtimes A$, equipped with the product of A as the module operations and then for $A \rtimes X_0$ with zero as the module operations of X.

Corollary 2.7. Let X_0 denote X as an A-module equipped with zero module operations. Then the following assertions are equivalent:

- (i) The algebra $(A \rtimes A)$ enjoys a nonzero extremal biderivation.
- (ii) A enjoys a nonzero extremal biderivation.
- (iii) The algebra $(A \rtimes X_0)$ enjoys a nonzero extremal biderivation, for some X as A-module equipped with zero module operations.

Proof. Follows immediately from Corollary 2.6.

3. The unital case with a nontrivial idempotent

Let A be a unital algebra and let B be a subalgebra of A. We recall that a unital A-module X is called left (resp., right) B-essential if bX = 0 (resp., Xb = 0), for some $b \in B$, implies that b = 0.

We begin with the following result.

Proposition 3.1. Let A be a unital algebra with a nontrivial idempotent p and q = 1 - p. Let X be a unital A-module with an A-submodule M that is left pAp-essential, right qAq-essential, with pm = mq for every $m \in M$. Then for every biderivation $D: A \times A \to X$ and each $a, b \in A$ with [a, b] = 0, we have

$$D(a,b) = pD(a,b)q + qD(a,b)p.$$

Proof. For each $m \in M$, from [6, Corollary 2.4], we have

$$[p, pmq]D(a, b) = D(p, pmq)[a, b] = 0 = [a, b]D(p, pmq) = D(a, b)[p, pmq].$$

Now since qp = 0, we get

$$mqD(a,b) = pmqD(a,b) = 0 = D(a,b)pmq = D(a,b)pm,$$

and so mqD(a,b)q = 0 = pD(a,b)pm. This, together with the fact that M is essential, implies that qD(a,b)q = 0 = pD(a,b)p. Therefore

$$D(a,b) = pD(a,b)p + pD(a,b)q + qD(a,b)p + qD(a,b)q$$

= $pD(a,b)q + qD(a,b)p$.

The following result gives a presentation of a biderivation on certain unital algebra enjoying a nontrivial idempotent.

Theorem 3.2. Let A be a unital algebra with a nontrivial idempotent p, let q = 1 - p, and let X be a unital A-module. If $D : A \times A \to X$ is a biderivation such that $D(p, p) \neq 0$, $(pD(p, p)q + qD(p, p)p) \cap Z(A, X) \subseteq \{0\}$ and pD(p, p)p + qD(q, q)q = 0, then $D = \Phi + d$, where $\Phi(a, b) = [a, [b, D(p, p)]$ is an extremal biderivation and d is a biderivation such that $\theta(p, p) = 0$.

Proof. The identity

$$D(p,p)[a,b] = [p,p]D(a,b) = 0 = D(a,b)[p,p] = [a,b]D(p,p)$$

implies that [D(p, p), [a, b]] = 0. On the other hand, by a similar argument as Proposition 3.1, the identity pD(p, p)p + qD(q, q)q = 0 implies that D(p, p) = pD(p, p)q + qD(p, p)p. Now from $D(p, p) \neq 0$, we conclude $D(p, p) \notin Z(A, X)$. So if we define Φ by $\Phi(a, b) = [a, [b, D(p, p)]]$, for every $a, b \in A$, then it is an extremal biderivation. We also have

$$\Phi(p,p) = [p, [p, D(p, p)]] = [p, [p, pD(p, p)q + qD(p, p)p]]$$

= pD(p, p)q + qD(p, p)p
= D(p, p),

from which we get $d(p, p) = D(p, p) - \Phi(p, p) = 0$, as required.

Applying Proposition 3.1 and Theorem 3.2 for a trivial extension algebra we arrive at the following result.

Corollary 3.3. Let A be a unital algebra with a nontrivial idempotent p, let P = (p, 0), and let Q = (1, 0) - P. Let X be a unital A-module such that X has a left $P(A \rtimes X)P$ -essential and right $Q(A \rtimes X)Q$ -essential submodule M with Pm = mQ for each $m \in M$. If $D : (A \rtimes X) \times (A \rtimes X) \longrightarrow (A \rtimes X)$ is a biderivation with $D(P, P) \neq 0$ and $[PD(P, P)Q + QD(P, P)P] \cap Z(A \rtimes X) \subseteq \{0\}$, then $D = \Phi + d$, where $\Phi((a, x), (b, y)) = [(a, x), [(b, y), D(P, P)]]$, for all $(a, x), (b, y) \in A \rtimes X$, is an extremal biderivation and d is a biderivation with d(P, P) = 0.

We also use Proposition 3.1 and Theorem 3.2 for a generalized matrix algebra and a triangular algebra to obtain the following results of Du and Wang [9] and Benkovič [3].

Corollary 3.4 (see [9, Proposition 4.2]). Let $\mathfrak{G} = \begin{bmatrix} A & M \\ N & B \end{bmatrix}$ be a generalized matrix algebra, whose corner algebras A, B are unital. Let M be a left A-essential and a right B-essentiall module and N a (B, A)-bimodule. Let $D : \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$ be a biderivation. If $D(p, p) \neq 0$, where $p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then $D = \Phi + d$, where $\Phi(x, y) = [x, [y, D(p, p)]]$ is an extremal biderivation and d is a biderivation that satisfies d(p, p) = 0.

Corollary 3.5 (see [3, Proposition 4.10]). Let $\mathfrak{T} = \begin{bmatrix} A & M \\ 0 & B \end{bmatrix}$ be a triangular algebra, whose corner algebras A, B are unital and let M be a left A-essential and a right B-essential module. Let $D : \mathfrak{T} \times \mathfrak{T} \to \mathfrak{T}$ be a biderivation. If $D(p,p) \neq 0$, where $p = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then $D = \Phi + d$, where $\Phi(x, y) = [x, [y, D(p, p)]]$ is an extremal biderivation and d is a biderivation that satisfies d(p, p) = 0.

We conclude this section with a result concerning the innerness of biderivations on a trivial extension algebra $A \rtimes X$. For this purpose, we need some prerequisites. We first define the subset $K_0(A \rtimes X)$ of A by $K_0(A \rtimes X) = \{a \in A \mid a' \in A \text{ exists such that } ax = xa', xa = a'x \text{ for all } x \in X\}.$ It is clear that, in the case where X is an essential A-module, $K_0(A \rtimes X) \subseteq Z(A).$

Theorem 3.6. Let A be a unital algebra with a nontrivial idempotent p, let q = 1 - p, and let X be a unital A-module satisfying the identity px = xq for all $x \in X$. Let the following conditions hold:

- (i) $K_0(A \rtimes X) = Z(A) \neq A;$
- (ii) If $\alpha(a, x) = 0$, for some $\alpha \in Z(A \rtimes X)$ and $(a, x) \neq 0$, then $\alpha = 0$;
- (iii) Every derivation from $A \rtimes X$ to $A \rtimes X$ is inner.

Then every biderivation $D : (A \rtimes X) \times (A \rtimes X) \longrightarrow (A \rtimes X)$ that satisfies D((p,0), (p,0)) = 0, is inner.

Proof. By Theorem 2.2, for every $a, b \in A$, $x, y \in X$, the biderivation D has the form

$$D((a,x),(b,y)) = (D_A((a,b))) + T_A((x,y)) + \mu_1((a,y)) + \mu_2((x,b)),$$
$$D_X((a,b)) + T_X((x,y)) + \nu_1((a,y)) + \nu_2((x,b))).$$

Also, condition (i) implies that $p \in Z(A)$. Therefore, for all $a \in A$, we have

$$D_A((p,a)) = pD_A((p,a)) + D_A((p,a)) p = 2pD_A((p,a))$$

and so

$$pD_A((p,a)) = p(2pD_A((p,a))) = 2pD_A((p,a)).$$

Thus $pD_A((p,a)) = 0$, and hence $D_A((p,a)) = 0$.

Since $D_{(p,0)} : A \rtimes X \longrightarrow A \rtimes X$ is a derivation and according to *(iii)*, there exists (a_1, x_1) such that $D_{(p,0)}(a, x) = [(a, x), (a_1, x_1)]$. Therefore $a_1 \in Z(A)$, $\mu_2(x, p) = 0$, $D_X(a, p) = [a, x_1]$, and $\nu_2(x, p) = [x, a_1] = xa_1 - a_1x = a_1x - a_1x = (a_1 - a_1)x = \alpha x$, where $\alpha \in Z(A)$. Similarly, we can show that $\nu_1(p, x) = \beta x$ for some $\beta \in Z(A)$.

Fix $x_0 \in X$. Then the map $D_{(0,x_0)} : A \rtimes X \longrightarrow A \rtimes X$ is a derivation, and it must be inner. It follows that, $T_A = 0$, $\mu_1 = 0$, and there exists $a_3 \in Z(A)$ such that $T_X(x, x_0) = [x, a_3]$. Now condition (i) implies that $T_X(x, x_0) = \alpha(x_0)x$. Since $Z(A) \neq A$, we can choose $b_1, b_2 \in A$ such that $[b_1, b_2] \neq 0$. Hence

$$0 = D((b_1, 0), (b_2, 0))[(0, x), (0, x_0)] = [(b_1, 0), (b_2, 0)]D((0, x), (0, x_0))$$

= $(0, [b_1, b_2]T_X(x, x_0)) = (0, [b_1, b_2]\alpha(x_0)x).$

Therefore,

$$(0, (\alpha + \beta)[b_1, b_2]x) = (0, [b_1, b_2](\nu_1((p, x)) + \nu_2((x, p))))$$

= $[(b_1, 0), (b_2, 0)]D((p, x), (p, x))$
= $D((b_1, 0), (b_2, 0))[(p, x), (p, x)] = 0.$

Now, the essentiality of X implies that $[b_1, b_2]\alpha(x_0) = 0 = (\alpha + \beta)[b_1, b_2]$. From the assumption (ii) it follows that $\alpha(x_0) = 0$ and so $T_X = 0$. Moreover, $\alpha + \beta = 0$ or equivalently $\nu_1(p, x) = \beta x = -\nu_2(x, p)$.

Since
$$p \in Z(A)$$
 and $qx = xp$, we get $\nu_1((a, x)) = \alpha_0[a, x]$. Indeed,
 $\nu_1((a, x)) = \nu_1((pap, x)) + \nu_1((qaq, x))$
 $= pa\nu_1((p, x)) + p\nu_1((a, x))p + \nu_1((p, x))ap$
 $+ qa\nu_1((q, x)) + q\nu_1((a, x))q + \nu_1((q, x))aq$
 $= pa\beta x + \beta xap - qa\beta x - \beta xaq$
 $= \beta(p-q)[a, x] = \alpha_0[a, x],$

where $\alpha_0 = \beta(p-q)$. Now, similar to μ_1 , we can show that $\mu_2 = 0$ and so, if we show that $D_A((a,b)) = \alpha_0[a,b]$ and $D_X = 0$, then the proof is complete. For this end, since $\nu_1((a,bx)) = b\nu_1((a,x)) + D_A((a,b))x$, we have $\alpha_0[a,bx] = b\alpha_0[a,x] + D_A((a,b))x$. Then $D_A((a,b)) = \alpha_0[a,b]$. Also, from $D_X((p,p)) = 0$ we have

$$D_X((p,b)) = D_X((p,bp)) + D_X((p,bq)) = D_X((p,bp)) + D_X((p,qb))$$

= $D_X((p,b)) p + qD_X((p,b))$
= $2D_X((p,b))p$.

Multiplying p of the right side, we conclude $D_X((p,b)) p = 0$, and so $D_X((p,b)) = 0$. Hence

$$D_X ((a,b)) = D_X ((pa + aq, bp + qb))$$

= $pD_X ((a, bp + qb)) + D_X ((a, bp + qb)) q$
= $pD_X ((a,b)) p + qD_X ((a,b)) q = 0,$

and this completes the proof.

Following [8], a linear map L on an algebra A is called a commuting map if [L(a), a] = 0 for all $a \in A$. It is easy to check that for every λ in the center Z(A) of A, and every linear map μ from A to Z(A), the map

$$L(a) = \lambda a + \mu(a) \quad (a \in A), \tag{3.1}$$

is a commuting map. The commuting maps of this type are called proper.

There is a close relation between commuting maps and biderivations. Indeed, for every commuting map $L : A \longrightarrow A$, the map $D_L : A \times A \longrightarrow A$, which is defined by $D_L(x, y) = [x, L(y)]$ for all $x, y \in A$, is a biderivation, and the innerness of D_L is equivalent to the properness of L. This provides a way for characterizing proper commuting maps on a trivial extension algebra by employing Theorem **3.6**, which studies innerness of biderivation under certain conditions.

References

- M.A. Bahmani, D. Bennis, H.R. Ebrahimi Vishki, A. Erfanian Attar and B. Fahid, Jordan generalized derivations on trivial extension algebras, Commun. Korean Math. Soc. 33 (2018) 721–739.
- M.A. Bahmani, D. Bennis, H.R. Ebrahimi Vishki and B. Fahid, *f-biderivations and Jordan biderivations of unital algebras with idempotents*, J. Algebra Appl. **20** (2021), no. 5, Paper No. 2150082, 13 pp.
- D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009) 1587– 1602.

- D. Bennis, H.R. Ebrahimi Vishki, B. Fahid, A.A. Khadem-Maboudi and A.H. Mokhtari, Lie generalized derivations on trivial extension algebras, Boll. Unione Mat. Ital. 12 (2019), no. 3, 441–452.
- M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993) 525–546.
- 6. M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995) 764–786.
- M. Brešar, W.S. III Martindale and C.R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993) 342–357.
- W.-S. Cheung, Commuting maps on triangular algebras, J. Lond. Math. Soc. (2) 63 (2001) 117–127.
- Y. Du and Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl. 438 (2013) 4483–4499.
- H.R. Ebrahimi Vishki, M. Mirzavaziri and F. Moafian, Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc. 31 (2016), no. 2, 247–259.
- A. Erfanian Attar, S. Barootkoob and H.R. Ebrahimi Vishki, On extension of bi-derivations to the bidual of Banach algebras, Filomat 30 (2016), no. 8, 2261–2267.
- A. Erfanian Attar, H.R. Ebrahim Vishki, Jordan derivations on trivial extension algebras, J. Adv. Res. Pure Math. 6 (2014), no. 4, 24–32.
- N.M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl. 438 (2013) 250–260.
- H. Lakzian, H.R. Ebrahimi Vishki and S. Barootkoob, The first cohomology group and weak amenability of a Morita context Banach algebra, Boll. Unione Mat. Ital. (2022) 20 pp. Doi: 10.1007/s40574-022-00320-0.
- F. Moafian and H.R. Ebrahimi Vishki, Lie higher derivations on triangular algebras revisited, Filomat 30 (2016), no. 12, 3187–3194.
- A.A. Mokhtari, F. Moafian and H.R. Ebrahimi Vishki, *Lie derivations on trivial extension algebras*, Ann. Math. Sil. **31** (2017), no. 1, 141–153
- Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131–4151.

¹DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF BO-JNORD, P. O. BOX 1339, BOJNORD, IRAN.

Email address: s.barutkub@ub.ac.ir

²DEPARTMENT OF BIOSTATISTICS, SCHOOL OF ALLIED MEDICAL SCIENCES, SHAHID BE-HESHTI UNIVERSITY OF MEDICAL SCIENCES, TEHRAN, IRAN.

Email address: amaboudi@sbmu.ac.ir