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REVIEWED TECHNIQUES IN AUTOMATIC CONTINUITY OF
LINEAR FUNCTIONALS
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Communicated by S. Hejazian

Abstract. Some techniques, which were already used to derive automatic
continuity results, are chosen and modified, and extended results, as well as
generalized results, are obtained. A technique of using the open mapping
theorem and a technique of using the Hahn Banach extension theorem are ex-
plained. Results in connection with measurable cardinals are also obtained.
Results for multiplicative linear functionals, positive linear functionals, and
uniqueness of topology are obtained. For example, sequential continuity of
real multiplicative linear functionals on sequentially complete LMC algebras is
obtained when Michael’s open problem is concerned only with the boundedness
of multiplicative linear functionals. The continuity of positive linear function-
als on F-algebras with identity elements and involution is derived when these
functionals are continuous on the set of all involution-symmetric elements. Pos-
sibilities of extending the concept of positive linear functionals are considered
to derive results for the continuity of such functionals on topological groups
and topological vector spaces with additional structures. The technique for the
Carpenter’s uniqueness theorem is modified to derive the boundedness of some
homomorphisms. The entire article is oriented toward Michael’s problem.

1. Introduction

If the continuity of a map T from a topological vector space X into a topolog-
ical vector space Y is assured by imposing some algebraic conditions on X, Y ,
or T , then the continuity is called automatic continuity. All deviations are also
accepted to bring results under the theory of automatic continuity. The classical
closed graph theorem is a perfect first result in the theory of automatic continuity.
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Every basis in a complete metrizable topological vector space is a Schauder basis.
This is another result of automatic continuity of functionals; see [31]. The first two
results given in the article [35] of Ng and Warner are automatic continuity results
for group homomorphisms and ring homomorphisms. Recent studies concentrate
more on automatic continuity in the theory of topological groups (see [9,10,39]),
although there are recent articles like [4, 14, 16, 19–23, 33, 36, 37, 44, 45, 47] for
automatic continuity in the theory of topological algebras. Many results were
derived for automatic continuity in topological algebras mainly because of John-
son’s uniqueness theorem [27] to settle an open question about the uniqueness
of complete norm topology on semisimple algebras, affirmatively, and because of
the following two questions of Michael [32], which remain open.

1. Is every complex multiplicative linear functional on a complex commuta-
tive Fréchet algebra continuous?

2. Is every complex multiplicative linear functional on a complex commuta-
tive complete LMC algebra bounded?

A recent attempt at these equivalent problems may be found in [23]. Equivalence
of these two problems was established by Dixon and Fremlin [11]. Many tech-
niques were evolved to establish results for automatic continuity just for only one
application: continuity need not be verified in lengthy ways unnecessarily when it
is required for an application. Some techniques are chosen and applied to derive
some generalized results. For readability, instead of writing all of them in this
section, they are explained at the places where they are required. The same thing
is done even for known results. There are recent articles [1, 2, 13, 34, 38, 43] that
study the properties of topological algebras applicable for automatic continuity.

All vector spaces to be considered are over the complex field C and the real
field R. All topologies to be considered will be Hausdorff. A complete metrizable
topological vector space is called an F-space. An F-space that is also a locally
convex topological vector space is called a Fréchet space. Multiplication in a
topological algebra is assumed to be jointly continuous. A complete metrizable
topological algebra is called an F-algebra. A locally convex F-algebra is called
a B0-algebra. A locally convex topological algebra (A, τ) is called a locally mul-
tiplicatively convex algebra (LMC algebra), if the topology τ is induced by a
family of seminorms (pα)α∈I satisfying the relation pα(xy) ≤ pα(x)pα(y), for all
x, y ∈ A and for all α ∈ I. Such seminorms are called submultiplicative semi-
norms. An F-algebra that is also an LMC algebra is called a Fréchet algebra.
A linear functional on an algebra is called a multiplicative linear functional, if
it also preserves multiplication. A real linear functional f on an algebra A is
called a positive linear functional, if f(x2) ≥ 0, for all x ∈ A. A complex linear
functional f on a complex algebra A with an involution ∗ is called a positive
linear functional if f(xx∗) ≥ 0, for all x ∈ A. A multiplicative identity element
in an algebra is denoted by e. Sometimes the notation e is also used for idem-
potent elements. A topological algebra is said to be functionally continuous, if
each multiplicative linear functional on it is continuous, when the same field is
fixed for both algebra and functional. The classical involution ∗ in a complex
algebra A satisfies the condition (xy)∗ = y∗x∗, for all x, y ∈ A. Another one
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satisfying (xy)∗ = x∗y∗ may also be considered, while deriving the following in-
equalities (see the proof of [42, Theorem 11.31]). If f is a real positive linear
functional on a real algebra A, then |f(xy)|2 ≤ f(x2)f(y2), for all x, y ∈ A, and
|f(x)|2 ≤ f(e)f(x2), for all x ∈ A when A contains an identity element e. For
the classical involution, if f is a complex positive linear functional f on a complex
algebra A with an involution ∗, then |f(xy∗)|2 ≤ f(xx∗)f(yy∗), for all x, y ∈ A;
and f(x∗) = f(x) and |f(x)|2 ≤ f(e)f(xx∗), for all x ∈ A, when A contains
multiplicative identity e. Let us use these inequalities without mentioning them.
Let us consider only classical involutions in complex algebras.

2. Dixon–Fremlin technique: Illustrations

Let us begin with the Dixon–Fremlin technique given in [11], and with another
known variation of this technique.

Theorem 2.1. Let (X, (pα)α∈I) be a sequentially complete locally convex topolog-
ical vector space with a family of seminorms (pα)α∈I , which induces the topology
on X, and let (Y, d) be an F-space with a metric d, which induces the topology
on Y . Let T : (X, (pα)α∈I) −→ (Y, d) be a linear map having sequentially closed
graph in X × Y . Then T is bounded.

Proof. (Outline of the Dixon–Fremlin technique)
Let E be a bounded subset of X. For each n = 1, 2, . . ., let In = {α ∈ I : pα(x) ≤
n, for all x ∈ E}, and let pn(x) = sup {pα(x) : α ∈ In}, for all x ∈ X. If
Z = {x ∈ X : pn(x) < ∞, for all n = 1, 2, 3, ..}, then (Z, (pn)

∞
n=1) is a Fréchet

space in which E is a bounded subset. Let T |Z denote the restriction of T to
Z. Then T |Z : (Z, (pn)

∞
n=1) −→ (Y, d) is continuous, by the classical closed graph

theorem. So, T (E) is bounded.
Second proof:

Let E be a bounded subset of X. Let F be the closed absolute convex hull of
E in X. Let µF be the Minkowski functional induced by F . Then Z = {x ∈ X :
µF (x) < ∞}. Thus (Z, µF ) is a Banach space in which E is a bounded subset.

Verification: [42, Theorems 1.13, 1.35, 1.36, and 1.39] may be used along with
the fact that F is bounded in the locally convex space X to verify that µF is
a norm on Z. Since E ⊆ F and since µF (x) ≤ 1, for all x ∈ F , the set E
is also a bounded subset of (Z, µF ). If a Cauchy sequence (xn)

∞
n=1 in (Z, µF ) is

considered, then it is contained in a positive scalar multiple of F , say, γF , so that
µF (xn) ≤ γ, for all n. This sequence should also be a Cauchy sequence in the
sequentially complete space (X, (pα)α∈I), because F is bounded in (X, (pα)α∈I),
and hence (xn)

∞
n=1 converges to some x in (X, (pα)α∈I). Then, this x should

be in the sequentially closed set γF , a subset of Z. It now follows from the
uniqueness of limit of the sequence (xn)

∞
n=1 in the completion of (Z, µF ) that

the sequence (xn)
∞
n=1 should converge to x in (Z, µF ), where µF (x) ≤ γ < ∞

(Another approach: µF (xn − xm) → 0 as n,m → ∞ and so µF (xn − x) → 0
as n → ∞, and µF (x) < ∞ in (X, (pα)α∈I)). Thus, (Z, µF ) becomes a Banach
space. Again, by the classical closed graph theorem, T (E) is bounded. □
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Theorem 2.2. Let A be a complex sequentially complete locally convex algebra.
Let B be a complex commutative semisimple Banach algebra. Let E be a bounded
subset of A such that E2 = {xy : x ∈ E, y ∈ E} ⊆ E. Let T : A −→ B be an
algebra homomorphism. Then T (E) is a bounded subset of B.

Proof. Let F, µF , and Z be as in the second proof of the previous Theorem 2.1
with replacement of X and Y by A and B, respectively. Since E2 ⊆ E, then
F 2 ⊆ F so that (Z, µF ) is a Banach algebra. So, T |Z : (Z, µF ) −→ B is a
continuous homomorphism (see [42, Theorem 11.10]). This proves that T (E) is
bounded. □

This technique of reducing locally convex algebras to normed algebras has been
used directly and indirectly in many articles like [25]. Note that if x ∈ Z in the
proof of the previous Theorem 2.2, then the spectrum of x in Z contains the
spectrum of x in A. Thus, for each x ∈ E, one should have finite spectral radius
for spectrum of x in A. Finiteness of spectral radius has also been used in many
articles like [15, 40].

Corollary 2.3. Let A and E be as in Theorem 2.2. Then for every multiplicative
linear functional f on A, the set f(E) is a bounded set.

Proof. Take B = C and T = f in Theorem 2.2. □

Theorem 2.4. Let A be a complex sequentially complete locally convex algebra
with a continuous involution ∗. Let E be a bounded subset of A such that E2 ⊆
E = {x∗ : x ∈ E}. Let f be a complex positive linear functional on A satisfying
|f(x)|2 ≤ Mf(xx∗) and f(x) = f(x∗), for all x ∈ A, for some M ≥ 0. Then
f(E) is bounded.

Proof. Take B = C and T = f in the proof of Theorem 2.2. Since E = {x∗ :
x ∈ E}, then F = {x∗ : x ∈ F}, and hence Z is closed under involution. That
is, (Z, µF ) is a Banach algebra with an involution, which is the restriction of
the involution on A. It should be noted that the restriction of f to (Z, µF ) is
continuous because of a comment between Definition 10 and Theorem 11, and
because of Theorem 11 in Section 37 of [7]. □

Remark 2.5. The Dixon–Fremlin method is more convenient, if a topological
vector space X is endowed with a family of quasi-semi-norms (pα)α∈I of the
following type: (i) pα(x) ≥ 0, for all x ∈ X; (ii) pα(x + y) ≤ pα(x) + pα(y),
for all x, y ∈ X; and (iii) pα(λx) ≤ |λ|ραpα(x), for all x ∈ X, for all scalars λ,

for some ρα ∈ (0, 1]. If E is a bounded subset of X, then for positive integers
m,n, we can consider

Im,n = {α ∈ I : pα(x) ≤ m, for all x ∈ E,
1

n
< ρα ≤ 1}.

This article does not consider such quasi-semi-norms. This article does not dis-
cuss the Borel graph theorem, for which the Dixon–Fremlin method can be ap-
plied. Some possible generalizations of these types are not recorded to maintain
simplicity to some extent.
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Let us next present statements with outlines for proofs for consequences of the
uniform boundedness principle, which require corresponding classical theorems
( [42, Theorems 2.6, 2.4, 2.8, and 2.17]) and the Dixon–Fremlin method.
Theorem 2.6. Let (Fα)α∈I be a family of bounded linear transformations Fα :
X −→ Y , where X is a sequentially complete locally convex space and Y is a
topological vector space. Let E be a bounded subset of X. Suppose that {Fα(x) :
α ∈ I} is bounded, for every x ∈ X. Then {Fα(x) : α ∈ I, x ∈ E} is bounded.
Proof. (An Outline): Construct the Fréchet space (Z, (pn)∞n=1) as in the first proof
of Theorem 2.1. By [42, Theorem 2.6], the restrictions of the members of the given
family restricted to this Fréchet space forms an equicontinuous family. Now, the
result follows from [42, Theorem 2.4]. □
Theorem 2.7. Let (Fi)

∞
i=1 be a sequence of bounded linear transformations Fi :

X −→ Y , where X is a sequentially complete locally convex space and Y is
a topological vector space. Suppose that limi→∞Fi(x) = F (x) exists, for every
x ∈ X, when F : X −→ Y is a linear map. Then F is bounded.
Proof. (An Outline): Let E be a bounded subset of X. Construct the Fréchet
space (Z, (pn)

∞
n=1) as in the first proof of Theorem 2.1. Then the restrictions of

each Fi to (Z, (pn)
∞
n=1) is continuous. By [42, Theorem 2.8], the restriction of F

to (Z, (pn)
∞
n=1) is continuous so that F (E) is bounded. □

Theorem 2.8. Let F :
∏n

i=1Xi −→ X be a multilinear map, where each Xi is a
sequentially complete locally convex space and X is a topological vector space. If
F is separately bounded, then F is jointly bounded.
Proof. (An Outline): The definitions for multilinear mappings and separately
boundedness can be stated naturally. Let us prove the statement for the case
n = 2, from which the general case follows by induction. Let Y = X1×X2 so that
the map F is considered on Y . Consider the given spaces X1 and X2 in the forms
(X1, (pα)α∈I1) and (X2, (qβ)β∈I2). Let J = I1 × I2 and for each γ = (α, β) ∈ J ,
and for each y = (x1, x2) ∈ Y , let rγ(y) = max{pα(x1), qβ(x2)}. Then Y may
be considered in the form (Y, (rγ)γ∈J). Let E be a bounded subset of Y . Then
E ⊆ E1 × E2, for some bounded subsets E1 and E2 of X1 and X2, respectively.
For each (m,n) ∈ N × N, let Jm,n = {γ = (α, β) ∈ J : pα(x1) ≤ m, qβ(x2) ≤
n, for all x1 ∈ E1, for all x2 ∈ E2}, and for each y = (x1, x2) ∈ Y , let rm,n(y) =
max{rγ(y) : γ ∈ Jm,n}. Let Z = {y ∈ Y : rm,n(y) < ∞, for all (m,n) ∈ N× N}.
Then (Z, (rm,n)(m,n)∈N×N) is a Fréchet space in which E is a bounded subset,
because N × N is a countable set. It now follows from [42, Theorem 2.17] that
the image of E under F is bounded. □

3. Application of the open mapping theorem

The classical open mapping theorem, the classical closed graph theorem, and
the classical Banach-Steinhaus theorem are almost equivalent. They are derived
from Baire’s category theorem, and they have many generalizations. They cannot
be excluded from the theory of automatic continuity. A method of applying the
closed graph Theorem 2.1 is to be explained in the proof of Theorem 9.2. The
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next Theorem 3.1 is also an open mapping theorem, which is a particular case
of [29, Corollary 3.3], and which is to be applied in this section.

Theorem 3.1. Let (X, d) be an F-space with respect to an addition invariant
metric d. Let X+ be a closed subset of X such that

(i) If x1, x2 ∈ X+, then x1 + x2 ∈ X+.

(ii) If x ∈ X+ and λ is a nonnegative scalar, then λx ∈ X+.

(iii) Each x ∈ X has a representation x = x1−x2 with x1 ∈ X+ and x2 ∈ X+.
Define T : X+ ×X+ −→ X by T (x1, x2) = x1 − x2, for all (x1, x2) ∈ X+ ×X+.
Then T is an open mapping, when X+×X+ is endowed with the product topology
induced from the topology on X.

Definition 3.2. For this section, let us call a subset X+ satisfying (i),(ii), and
(iii) of the previous Theorem 3.1 as a positive cone of X.

Example 3.3. Let f be a nonzero real continuous linear functional on a topolog-
ical vector space X. Let X+ = {x ∈ X : f(x) ≥ 0}. Then X+ is a closed positive
cone of X according to our Definition 3.2. Observe that X+

⋂
(−X+) 6= {0} if

dimX ≥ 2. The space X is also a closed positive cone of X.

Remark 3.4. Let X+ be a closed positive cone of a real topological vector space
X, as given in Definition 3.2. Then X+ ∩ (−X+) is a real closed vector subspace
of X.

Theorem 3.5. Let X be a sequentially complete locally convex space. Let X+

be a sequentially closed positive cone such that for a given bounded sequence
(xn)

∞
n=1 in X, there are bounded sequences (x

′
n)

∞
n=1 and (x

′′
n)

∞
n=1 in X+ satisfying

xn = x
′
n − x

′′
n, for all n. Let f : X −→ R be a linear functional on X such that

f(x) ≥ 0, for all x ∈ X+. Then f is bounded.

Proof. Suppose that f is not bounded. Then there exists a bounded sequence
(xn)

∞
n=1 in X such that f(xn) ≥ 2n, for all n = 1, 2, . . .. Then there are bounded

sequences (x
′
n)

∞
n=1 and (x

′′
n)

∞
n=1 in X+ such that xn = x

′
n − x

′′
n, for all n. Then

f(x
′
n) ≥ f(xn) ≥ 2n, for all n = 1, 2, . . . Let x =

∑∞
n=1

1
2n
x

′
n ∈ X+. Then,

f(x) =
m∑

n=1

f(x
′
n)

2n
+ f(

∞∑
n=m+1

x
′
n

2n
)

≥
m∑

n=1

2n

2n
+ 0

= m,

for all m = 1, 2, . . . , because
∑∞

n=m+1
x
′
n

2n
∈ X+. This is a contradiction. Hence

f is bounded on X. □
Let us now apply the open mapping Theorem 3.1 along with the arguments

used in the proof of the previous Theorem 3.5.
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Theorem 3.6. Let X be an F-space. Let X+ be a closed positive cone. Let
f : X −→ R be a linear functional on X such that f(x) ≥ 0, for all x ∈ X+.
Then f is continuous.
Proof. Suppose that f is not continuous. Then there exists a sequence (xn)

∞
n=1 in

X such that xn −→ 0 as n −→ ∞, and such that f(xn) ≥ 2n, for all n = 1, 2, . . ..
Then, by Theorem 3.1, by passing to a subsequence of (xn)

∞
n=1, it can be assumed

that there are sequences (x′
n)

∞
n=1 and (x

′′
n)

∞
n=1 in X+ such that d(0, x′

n) < 2−n and
xn = x

′
n − x

′′
n, for all n. Then f(x

′
n) ≥ f(xn) ≥ 2n, for all n = 1, 2, . . .. Let

x =
∑∞

n=1 x
′
n ∈ X+. Then,

f(x) =
m∑

n=1

f(x
′

n) + f(
∞∑

n=m+1

x
′

n)

≥
m∑

n=1

2n + 0

for all m = 1, 2, . . . , because
∑∞

n=m+1 x
′
n ∈ X+. This is a contradiction. Hence

f is continuous. □

4. A technique of T.-sh. Hsia

One standard technique to get a contradiction is establishing that some quan-
tities are bounded as well as unbounded. There are many ways to implement this
technique. One way is the way of the Hsia [24], which uses the positiveness of
function values at some elements as was done in the previous section. His method
is illustrated in this section. The first result is a variation of [35, Theorem 1], and
it is also a generalization. If (X, d) is an additive metrizable topological group,
then d can be chosen such that it is an one-sided translation invariant metric.
Hence if f : (X, d) → R is an addition preserving group homomorphism, then it
is not continuous if and only if there is a sequence (xn)

∞
n=1 converging to zero in

(X, d) such that f(xn) → +∞, as n → ∞. Completeness of (X, d) is also defined
only in terms of one-sided translation invariant metrics. See [5, Theorem 2.1.7]
and the proof of [42, Theorem 1.28].

Theorem 4.1. Let (X, d) be a complete metrizable topological group with an
addition operation. Let T : X −→ X be a continuous mapping such that T (0) = 0.
Let f : X −→ R be an addition preserving group homomorphism such that
f(T (x)) ≥ 0, for all x ∈ X. Assume further that there is a constant K ≥ 1
and there is a constant M > 0 such that M ≤ |f(x)| ≤ Kf(T (x)) whenever
|f(x)| ≥ M and x ∈ X. Then f is a continuous mapping.
Proof. Suppose that f is not a continuous mapping. Then there is a sequence
(xn)

∞
n=1 in X such that xn −→ 0, as n −→ ∞, and such that f(xn) ≥ nKn,

for all n. Then there is a subsequence (yn)
∞
n=1 of (xn)

∞
n=1 such that for zn,j =

yj + T (yj+1 + T (yj+2 + · · · + T (yn−1 + T (yn)) . . .)), 1 ≤ j ≤ n − 1, the rela-
tion d(zn,j, zn−1,j) < 2−n, for all n = 2, 3, . . . , is true, because of the following
reasons. First T (0) = 0, and then T is continuous at 0 so that T (ym) → 0 as
m → ∞, and also T (yn−1+T (yn)) can be adjusted such that it can be sufficiently
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close to T (yn−1). Ultimately zn,j can be adjusted such that it can be sufficiently
close to zn−1,j, by choosing yn very close to zero. Then for n > m > j,

d(zn,j, zm,j) ≤ d(zn,j, zn−1,j) + d(zn−1,j, zn−2,j) + · · ·+ d(zm+1,j, zm,j)

< 2−n + 2−n+1 + 2−n+2 + · · ·+ 2−m−1

< 2−m.

Therefore, for each j = 1, 2, . . . , (zn,j)
∞
n=j+1 is a Cauchy sequence, which converges

to some zj in X. Then f(zn) = f(yn)+ f(T (zn+1)) ≥ nKn ≥ M , for all n ≥ m,
for some m. Now

f(zm) = f(ym) + f(T (zm+1))

≥ mKm +
1

K
f(zm+1)

= mKm +
1

K
f(ym+1) +

1

K
f(T (zm+2))

≥ mKm + (m+ 1)Km +
1

K
f(T (zm+2))

≥ mKm + (m+ 1)Km +
1

K2
f(zm+2)

≥ mKm + (m+ 1)Km + (m+ 2)Km +
1

K3
f(zm+2)

≥ Km(m+ (m+ 1) + (m+ 2) + · · ·+ (m+ j)),

for any j ≥ 1. This is a contradiction. This proves that f is continuous on X. □

Hence, f(zm) in the proof of the previous Theorem 4.1 is bounded, as well
as unbounded in the sense that f(zm) is a fixed nonnegative number, and it is
greater than or equal to Km(m+(m+1)+(m+2)+ · · ·+(m+ j)), for all j ≥ 1.
The next Corollary 4.2 is [35, Theorem 1].

Corollary 4.2. Let (X, d) and T be as in the previous Theorem 4.1. Let f :
X −→ R be an additive group homomorphism such that (f(x))2 ≤ Kf(T (x)), for
all x ∈ X, for some K > 0. Then f is continuous.

Proof. Since (f(x))2 ≥ 0, then f(T (x)) ≥ 0, for all x ∈ X. Moreover, if |f(x)| ≥
1, then 1 ≤ |f(x)| ≤ (f(x))2 ≤ Kf(T (x)). □

The next Corollary 4.3 is also a theorem in [35], and which may be considered as
a generalization of [12, Theorem 3.1], where the proof is based on a Mittag-Leffler
technique.

Corollary 4.3. If A is a complete metrizable topological ring, then every ring
homomorphism f : A −→ R is continuous.

Proof. Take X = A, T (x) = x2, for all x ∈ X and K = 1 in the previous
Corollary 4.2. □
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Michael’s problem is about continuity of complex multiplicative linear func-
tionals on commutative complex Fréchet algebras. Corollary 4.3 establishes a
positive solution but for the case of real multiplicative linear functionals.

Corollary 4.4. Let A be an F-algebra with a continuous involution ∗. Let f :
A −→ C be a positive linear functional such that f(xx∗) ≥ 0, f(x∗) = f(x) and |
f(x)|2≤ Kf(xx∗), for all x ∈ A, for some K > 0. Then f is continuous on A.

Proof. Take X = {x ∈ A : x = x∗}, and take T (x) = x2, for all x ∈ X, and
consider f restricted to X. Then f is continuous on X, by Corollary 4.2. So, f
is continuous on A, because ∗ is continuous. □

Remark 4.5. If A has a multiplicative identity, then any complex positive linear
functional f satisfies the conditions of the previous Corollary 4.4. These types of
functionals are called extendable positive linear functionals. This terminology is
also used because such functionals can be extended as positive linear functionals
on the unitization of the algebra. See the proof of [7, Section 37, Theorem 11].

Let us now apply the Dixon and Fremlin method and Theorem 4.1 in the proof
of the next Theorem 4.6.

Theorem 4.6. Let (X, (pα)α∈I) be a sequentially complete locally convex topo-
logical vector space. Let S : X×X −→ X be a mapping such that for any D ⊆ X
and for any J ⊆ I satisfying

sup
x∈D

sup
α∈J

pα(x) < ∞,

and

sup
x,y∈D

sup
α∈J

pα(S(x, y)) < ∞.

Let T : X −→ X be a mapping such that T (0) = 0 and such that pα(T (x)−T (y)) ≤
Kαpα(S(x, y))pα(x− y), for some Kα ≥ 1, for all α ∈ I, for all x, y ∈ X. Let
f : X −→ R be a linear mapping such that f(T (x)) ≥ 0, for all x ∈ X. Assume
further that there is a constant K ≥ 1 and there is a constant M > 0 such that
M ≤ |f(x)| ≤ Kf(T (x)) whenever |f(x)| ≥ M . Then f is a bounded functional
on (X, (pα)α∈I).

Proof. Let E be a bounded subset of X. For each m,n ∈ N (the set of nat-
ural numbers), let Im,n = {α ∈ I : Kα ≤ m, pα(x) ≤ n, for all x ∈ E}. If
Im,n = ∅, then define qm,n(x) = 0, for all x ∈ X. If Im,n 6= ∅, then define
qm,n(x) = supα∈Im,n

pα(x), for all x ∈ X. Let Y = {x ∈ X : qm,n(x) < ∞,
for all m,n}. Then (Y, (qm,n)m,n) is a Fréchet space, in which E is a bounded

subset. Let (xr)
∞
r=1 be a sequence in Y converging to x in (Y, (qm,n)m,n). Let

D = {xr : r = 1, 2, . . .}
⋃
{x}. Since supy∈D qm,n(y) < ∞, by our assumption,

supz,y∈D qm,n(S(z, y)) < ∞. Then the inequality

qm,n(T (xr)− T (x)) ≤ m

(
sup
z,y∈D

qm,n(S(z, y)))× (qm,n(xr − x)

)
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implies that T (xr)− T (x) −→ 0 in (Y, (qm,n)m,n) as r −→ ∞. If z ∈ Y , then
qm,n(T (z)) = qm,n(T (z)− T (0))

≤ mqm,n(z − 0) inf {qm,n(S(z, 0)), qm,n(S(0, z))}
< +∞.

Thus T (Y ) ⊆ Y and T |Y : (Y, (qm,n)m,n) −→ (Y, (qm,n)m,n) is continuous. So,
by Theorem 4.1, f(E) is a bounded set. That is, f : (X, (pα)α∈I) −→ R is
bounded. □

The next two corollaries are known through [24] of Hsia and [11] of Dixon and
Fremlin but for complete LMC algebras.

Corollary 4.7. Let (A, (pα)α∈I) be a sequentially complete LMC algebra. Let f
be a real multiplicative linear functional on A. Then f is bounded.

Proof. Take X = A. Define T : X −→ X by T (x) = x2, for all x ∈ X, and
define S : X ×X −→ X by S((x, y)) = x+ y, for all (x, y) ∈ X ×X. Note that

pα(T (x)− T (y)) = pα(x
2 − y2)

= pα(
1

2
(x+ y)(x− y) +

1

2
(x− y)(x+ y))

≤ pα(x+ y)pα(x− y)

= pα(S((x, y)))pα(x− y),

for all α ∈ I, for all x, y ∈ X. Now, Corollary 4.7 follows from the previous
Theorem 4.6 with M = K = Kα = 1. □
Corollary 4.8. Let (A, (pα)α∈I) be a sequentially complete LMC algebra with
a sequentially continuous involution ∗. Let f be an extendable positive linear
functional on A (Remark 4.5). Then f is bounded.

Proof. Take X = {x ∈ A : x = x∗}. Then X is a sequentially complete locally
convex space, because ∗ is sequentially continuous and A is sequentially complete.
Define T : X −→ X by T (x) = x2, for all x ∈ X, and define S : X ×X −→ X
by S((x, y)) = x+ y, for all (x, y) ∈ X ×X. Now Theorem 4.6 implies that f |X
is bounded. Since the involution maps bounded sets onto bounded sets, f is a
bounded map on A. □

These two Corollaries 4.7 and 4.8 are to be extended further for sequential
continuity of f in Section 8.

5. A technique for noncontinuous involution

Corollaries 4.4 and 4.8 require the continuity and sequential continuity of in-
volutions. There is a standard technique for the removal of the condition on the
continuity of involutions in the case of Banach algebras, which is given in the
proof of [42, Theorem 11.3], where the theorem proves that every complex posi-
tive linear functional on a Banach algebra with identity and with an involution is
continuous. This technique is to be modified for F-algebras in the next Theorem
5.1, but for a different purpose.
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Theorem 5.1. Let A be a complex F-algebra with an involution ∗ and an identity
e. Let f be a positive linear functional on A. Let H = {x ∈ A : x = x∗}. If f |H
is continuous on H, then f is continuous on A.
Proof. Suppose that f |H is continuous on H. Note that f(H) is a subset of the real
line. Let H be the closure of H in A. Then f |H has a unique continuous extension
g : H −→ R. The natural mapping from H × H to A given by (u, v) 7→ u + iv
is continuous, surjective, and open. Let y ∈ H ∩ iH. Then there are sequences
(un)

∞
n=1 and (vn)

∞
n=1 in H such that un −→ y and ivn −→ y as n −→ ∞. Then

u2
n + v2n −→ 0 as n −→ ∞ so that f(u2

n + v2n) −→ 0 as n −→ ∞. Note that
0 ≤ | g(un)|2 =|f(un)|2 ≤ f(e)f(u2

n) ≤ f(e)f(u2
n + v2n). So, g(un) −→ 0 when

g(un) −→ g(y) as n −→ ∞. Thus g(y) = 0 whenever y ∈ H ∩ iH.
Let un + ivn −→ 0 in A as n −→ ∞, when un ∈ H, vn ∈ H, for all n. Then

there are sequences (xn)
∞
n=1 and (yn)

∞
n=1 in H such that xn + iyn = un + ivn,

for all n, and such that xn −→ 0 and yn −→ 0 as n −→ ∞ because the natural
mapping from H×H onto A is open in view of the open mapping theorem. Then
g(xn) −→ 0 and g(yn) −→ 0 as n −→ ∞ and g(un − xn) = 0 = g(vn − yn),
because un − xn = i(yn − vn) ∈ H ∩ iH, for all n. Note that

0 ≤ |f(un + ivn)| = |f(un) + if(vn)| = |g(un) + ig(vn)|
= |g(xn) + ig(yn)| ≤ |g(xn)|+ |g(yn)|,

for all n. Therefore, f(un + ivn) −→ 0 as n −→ ∞. Thus, f(un + ivn) −→ 0
whenever un + ivn −→ 0 as n −→ ∞, when un ∈ H, vn ∈ H, for all n. This
proves that f : A −→ C is continuous. □

It should be noted that it is not known whether every complex positive linear
functional on an F-algebra with identity and with a noncontinuous involution is
continuous or not, even for commutative algebras.

6. Application of the Hahn Banach extension theorem

The Hahn Banach extension theorem can be partially considered as an au-
tomatic continuity result because continuous linear extensions are possible only
for some classes of topological vector spaces. Let us use the classical Hahn Ba-
nach theorem to derive a variation of [42, Theorem 12.39] by using almost the
same arguments. Otherwise, the next Theorem 6.2 cannot be result of automatic
continuity. The next Lemma 6.1 is [42, Lemma 5.26].

Lemma 6.1. Suppose that X is a normed space of bounded real (or complex)
functions on a set, under the supremum norm. Suppose that T is a linear func-
tional on X such that ‖T‖= 1 = T (1). Then 0 ≤ Tf ≤ 1 whenever 0 ≤ f ≤ 1
and f ∈ X. Hence Tg ≥ 0, whenever g ≥ 0 and g ∈ X.

To a complex algebra A with identity, and for each z ∈ A, let σA(z)(or σ(z),
simply) denote the spectrum of z in A, and rA(z)(or r(z), simply) denote the
spectral radius of z of the spectrum of z in A.

Theorem 6.2. Let (A, ‖ · ‖) be a complex Banach algebra with identity e such that
‖x2‖=‖x‖2, for all x ∈ A. Let z ∈ A. Then there is a bounded linear functional
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f : A −→ C such that f(z) = r(z) =‖z‖, f(x) ≥ 0 whenever σA(x) ⊆ [0,∞), and
f is a multiplicative linear functional on the smallest closed subalgebra containing
e and z.
Proof. Let Az be a maximal commutative subalgebra containing z in A. Then
the spectrum of z in Az is the spectrum of z in A. Then there is a multiplicative
linear functional g on Az such that g(z) = r(z), g(e) = 1, and ‖g‖≤ 1, because
‖x2‖=‖x‖2, for all x ∈ A. Extend this functional g to a bounded linear func-
tional f on A such that ‖f‖≤ 1. To complete the proof, fix y ∈ A for which
σA(y) ⊆ [0,∞). Let Ay be a maximal commutative subalgebra containing y in
A. Let ∆y be the maximal ideal space of Ay, with the Gelfand topology. For
each x ∈ Ay, let x̂ denote the Gelfand transform of x. Let Ây = {x̂ : x ∈ Ay},
which is a normed algebra of bounded functions on ∆y, with the supremum
norm ‖ ‖∞. Define h : Ây −→ C by h(x̂) = f(x), for all x ∈ Ay, which is
well defined because ‖x2‖=‖x‖2, for all x ∈ A. Then h(1) = f(e) = 1, and
|h(x̂)| = |f(x)| ≤‖x‖= r(x) =‖x̂‖∞, for all x̂ ∈ Ây. By the previous Lemma
6.1, h(x̂) ≥ 0 whenever x̂ ≥ 0. In particular h(ŷ) ≥ 0. That is, f(y) ≥ 0,
whenever σ(y) ⊆ [0,∞). □

7. Gleason–Kahane–Źelazko theorem

The Gleason–Kahane–Źelazko theorem [17, 28] is a famous theorem that is
considered a theorem without applications. There are many versions and many
generalizations of this theorem (for example, [26]). In this section, a version of
this theorem for LMC algebras is presented. An indirect abstract application of
this version to an automatic continuity result will be given in Section 11.
Let us recall the following two known Lemmas 7.1 and 7.2 (see [42, Lemma 10.8]
and [5, Lemma 1.3.19]).

Lemma 7.1. Let f be an entire function of one complex variable, f(0) =
1, f ′(0) = 0, and 0 < | f(λ) | ≤ e|λ| (λ ∈ C). Then f(λ) = 1 for all λ ∈ C.
Lemma 7.2. Let f be a nonzero linear functional on an algebra A with identity
e. Suppose that f(e) = 1 and that f(x2) = 0 whenever f(x) = 0. Then f is a
multiplicative linear functional on A.

Let SingA denote the collection of all singular elements in an algebra A with an
identity. Let us now present a version of the Gleason–Kahane–Źelazko theorem
for LMC algebras with the help of the Dixon–Fremlin technique.

Theorem 7.3. Let (A, (pα)α∈I) be a complex sequentially complete LMC algebra
with an identity e. It is assumed that pα(e) = 1 and pα(xy) ≤ pα(x)pα(y),
for all x, y ∈ A, for all α ∈ I. Let f be a complex bounded linear functional

on A such that f(e) = 1. Suppose ker f ⊆ SingA. Then f is a multiplicative
linear functional.
Proof. Let b be a nonzero element in ker f . To every natural number n, let
In = {α ∈ I : pα(b) ≤ n}. Let qn(x) = supα∈In pα(x), for all x ∈ A. Let
B = {x ∈ A : qn(x) < ∞, for all n = 1, 2, 3, . . . .}. Then

(
B, (qn)

∞
n=1

)
is a
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Fréchet algebra, and f |B is continuous on
(
B, (qn)

∞
n=1

)
, because f on

(
A, (pα)α∈I

)
is bounded. Without loss of generality, assume that there is an integer m such
that |f(x)| ≤ qm(x), for all x ∈ B, and such that qm(b) 6= 0. Let a be a scalar
multiple of b such that qm(a) = 1. Let

g(λ) =
∞∑
n=0

f(an)

n!
λn,

for all λ ∈ C. Then |g(λ)| ≤ e|λ|, for all λ ∈ C, because
|f(an)| ≤ qm(a

n) ≤ 1,

for all n. Let

E(λ) =
∞∑
n=0

λn

n!
an ∈ B ⊆ A.

Then f(E(λ)) = g(λ), for all λ ∈ C, because f is continuous on
(
B, (qn)

∞
n=1

)
.

Since E(λ) is invertible in A, f(E(λ)) 6= 0, for all λ ∈ C. That is, g(λ) 6= 0,
for all λ ∈ C. Then by Lemma 7.1, g(λ) = 1, for all λ ∈ C. Therefore
f(a2) = 0. Thus, if f(b) = 0, thenf(b2) = 0. Now, by Lemma 7.2, f should be a
multiplicative linear functional on A. □

Observe that the Dixon–Fremlin technique was applied in the proof of Theorem
7.3.

8. Sequential continuity

Partially new techniques are used in the proof of the following two Propositions
8.1 and 8.3. Although more generalized results are to be presented, the next two
results are presented just to understand the nature of the techniques in a simple
way. Let us recall the arguments for “boundedness implied by sequential conti-
nuity” for linear functionals. Let f be a sequential continuous linear functional
on a topological vector space X. If f is not bounded, then f(B) is not bounded
for some bounded subset B of X. Without loss of generality, let us assume that
B is a countable infinite set, and let us write B in the form of a sequence (xn)

∞
n=1.

Let us assume without loss of generality that |f(xn)| > n2, for all n, by passing to
a subsequence. Let αn = n−1, for all n. Then (f(αnxn))

∞
n=1 does not converge to

zero. However, by [42, Theorem 1.30], (αnxn)
∞
n=1 converges to zero. By sequen-

tial continuity of f , the sequence (f(αnxn))
∞
n=1 should converge to zero. This is a

contradiction. So, every sequential continuous linear functional on a topological
vector space should be a bounded linear functional. This observation is necessary
to understand the strength of the following results.

Proposition 8.1. Let
(
A, (pα)α∈I

)
be an LMC algebra. Let f be a bounded

multiplicative linear functional on A. Then f is sequentially continuous.

Proof. Suppose that f is not sequential continuous on A. Then there is a sequence
(xn)

∞
n=1 converging to zero in A such that f(xn) ≥ 2, for all n. Since pα(xn) −→

0 as n −→ ∞, it is true that pα(x
n
n) −→ 0 as n −→ ∞, for all α ∈ I, because

pα(x
n
n) ≤ (pα(xn))

n, for all n, for all α. Indeed f(xn
n) ≥ 2n, for all n =
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1, 2, . . . . So, {xn
n : n = 1, 2, . . .} is bounded, when {f(xn

n) : n = 1, 2, . . .} is
unbounded. Thus f is not bounded on A. □
Corollary 8.2. Every real multiplicative linear functional on a sequentially com-
plete LMC algebra is sequentially continuous.

Proof. Use Corollary 4.7. □
Proposition 8.3. Let

(
A, (pα)α∈I

)
be a complex LMC algebra with a sequential

continuous involution ∗. Let f be a bounded extendable (Remark 4.5) positive
linear functional on A such that |f(x) |2≤ Kf(xx∗), for all x ∈ A, for some
K ≥ 1. Then f is sequentially continuous.

Proof. Suppose that f is not sequential continuous on A. Then there is a sequence
(xn)

∞
n=1 converging to zero in A such that f(xn) ≥ 2K, for all n, and such that

xn = x∗
n, for all n, because ∗ is sequentially continuous. Then pα(x

2n

n ) −→ 0 as
n −→ ∞, for all α ∈ I. However,

f(x2n

n ) ≥ 1

K
|f(x2n−1

n )|2

≥ 1

Kn
|f(xn)|2

n

≥ 1

Kn
22

n

K2n ,

for all n. Thus {f(x2n

n ) : n = 1, 2, . . .} is unbounded, when {x2n

n : n = 1, 2, . . .}
is bounded. □
Corollary 8.4. Every extendable positive linear functional on a complex sequen-
tially complete LMC algebra with a sequentially continuous involution is sequen-
tially continuous.

Proof. Use Corollary 4.8. □
With this experience let us go for abstractions of these techniques.

Definition 8.5. Let (X, τ) be a topological vector space. Let T : X −→ X be a
mapping. The space X is said to be an s-topological vector space with respect to
T , if the nth iteration T n(xn) −→ 0 as n −→ ∞ whenever xn −→ 0 as n −→ ∞.

Lemma 8.6. Let (X, τ) be a topological vector space, which is an s-topological
vector space with respect to a mapping T : X −→ X. Let f be a linear functional
on X such that M ≤ |f(x)| ≤ K|f(T (x))| whenever |f(x)| ≥ M , for some M > 0,
for some K ∈ (0, 1). Then f is sequentially continuous, whenever f is bounded.

Proof. Suppose that f is not sequentially continuous. Then there is a sequence
(xn)

∞
n=1 converging to zero such that |f(xn)| ≥ M , for all n. Then

|f(T (xn))| ≥
1

K
|f(xn)| ≥

M

K
≥ M,

|f(T 2(xn))| ≥
1

K
|f(T (xn))| ≥

M

K2
≥ M,
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and

|f(T n(xn))| ≥
M

Kn
≥ M,

for all n. Here T n(xn) −→ 0 as n −→ ∞ and {f(T n(xn)) : n = 1, 2, . . .} is
unbounded, because 0 < K < 1. Then f is not bounded. □

Example 8.7. Let
(
A, (pα)α∈I

)
be an LMC algebra. Take X = A, M = 1,

T : X −→ X as the mapping defined by T (x) = 2x2, and K = 1
2

in the previous
Lemma 8.6. Let f be a multiplicative linear functional on A. If xn −→ 0, then
T n(xn) = 22

n−1x2n

n −→ 0 as n −→ ∞, because A is an LMC algebra. Also, if
|f(x)| ≥ 1, then

K|f(T (x))| = 1

2
|f(2x2)| = |f(x2)| ≥ |f(x)| ≥ 1.

Thus, Proposition 8.1 is a consequence of Lemma 8.6.

Example 8.8. Let
(
A, (pα)α∈I

)
be a complex LMC algebra with a sequentially

continuous involution ∗. Let X = A. Let f be an extendable (Remark 4.5)
positive linear functional on X such that |f(x)|2 ≤ Lf(xx∗) for all x ∈ X, for
some L ≥ 1. Let T : X −→ X be defined by T (x) = 2Lxx∗. Take M = 1 and
K = 1

2
. If |f(x)| ≥ 1, then

K|f(T (x))| = 1

2
|f(2Lxx∗)| = Lf(xx∗) ≥ |f(x)|2 ≥ |f(x)| ≥ 1.

Thus by Lemma 8.6, f is sequential continuous, whenever f is bounded, because
∗ is sequential continuous. Thus, Proposition 8.3 is a consequence of Lemma 8.6.

Lemma 8.9. Let (X, τ) be an s-topological vector space with respect to a mapping
T : X −→ X. Let

(
Y, (qα)α∈J

)
be a locally convex space. Let S : Y −→ Y be a

mapping such that

qα(S
n(y)) ≥ (qα(S(y)))

n,

for all n, for all y ∈ Y , for all α ∈ J and such that qα(S(y)) ≥ qα(y) ≥ M
whenever qα(y) ≥ M , for some M > 0, for all α ∈ J . Let f : X −→ Y be a
linear mapping such that

qα(f(T
n(x))) ≥ qα(S

n(f(x))),

for all n, for all α, for all x ∈ X. If f is bounded, then f is sequentially
continuous.

Proof. Choose L ≥ 1 such that LM ≥ 2. Suppose that f is not sequentially
continuous. Then there is a sequence (xn)

∞
n=1 converging to zero in X such that

qα(f(xn)) ≥ LM ≥ M , for all n, for some α ∈ J . Then

qα(f(T
n(xn))) ≥ qα(S

n(f(xn))) ≥ (qα(S(f(xn))))
n ≥ (qα(f(xn)))

n ≥ (LM)n,

for all n = 1, 2, . . .. Then f is not bounded. □
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Example 8.10. Let
(
A, (pα)α∈I

)
be an LMC algebra with a sequentially contin-

uous involution. Let
(
B, (qα)α∈J

)
be a locally convex algebra with an involution

such that qα(xx
∗) = (qα(x))(qα(x

∗)), and qα(x) = qα(x∗), for all α ∈ I, for all
x ∈ B. Take X = A and Y = B. Let T : X −→ X and S : Y −→ Y be defined
by T (x) = xx∗ and S(y) = yy∗, for all x ∈ X, for all y ∈ Y . Let f : X −→ Y
be a linear mapping such that f(x∗) = (f(x))∗ and f(xx∗) = f(x)f(x∗), for all
x ∈ X. Then all conditions of Lemma 8.9 are satisfied with M = 1, because
A is an s-topological vector space with respect to T . In fact, the equalities
qα(S

n(y)) = (qα(S(y)))
n and qα(f(T

n(x))) = qα(S
n(f(x))) hold good. Thus, if f

is bounded, then f is sequentially continuous.

The following Theorem 8.11 of Arens [3] is to be extended. This result is known
as the best partial solution to the problems of Michael [32] mentioned in the first
section.

Theorem 8.11. Let f be a complex multiplicative linear functional on a complex
commutative Fréchet algebra A. Let x1, x2, . . . , xn ∈ A. Then there is a com-
plex continuous multiplicative linear functional g on A such that f(xi) = g(xi),
for all i = 1, 2, . . . , n. Hence, f is continuous on the smallest closed subalgebra

containing any finite subset of A.

This Theorem 8.11 of Arens [3] is to be used along with the Dixon–Fremlin
method and Proposition 8.1 in the proof of the next theorem.

Theorem 8.12. Let
(
A, (pα)α∈I

)
be a complex commutative sequentially complete

LMC algebra. Let A1 be the smallest subalgebra generated by a finite subset
{u1, u2, . . . , um} of A. Let f be a complex multiplicative linear functional on
A. If (wn)

∞
n=1 is a sequence in A1, which converges to some w in A, then

f(wn) −→ f(w), as n −→ ∞.

Proof. Let E be a bounded subset of A1. For each n, let In = {α ∈ I : pα(x) ≤ n,
for all x ∈ E ∪ {u1, u2, . . . , um}}, and let qn(x) = sup {pα(x) : α ∈ In}, for all
x ∈ A. Let A2 = {x ∈ A : qn(x) < ∞, for all n}. Then (A2, (qn)

∞
n=1) is a

Fréchet algebra, A1 ⊆ A2 and E is a bounded subset of (A2, (qn)
∞
n=1). Let A3 be

the closure of A1 in (A2, (qn)
∞
n=1). Then, by Theorem 8.11, f |A3 is continuous with

respect to (qn)
∞
n=1, and hence f(E) is a bounded set. That is, f is bounded on

(A1, (pα)α∈I). Let w ∈ A and let (wn)
∞
n=1 be a sequence in A1 converging to w in

(A, (pα)α∈I). Let A4 be the smallest subalgebra generated by {u1, u2, . . . , um, w}.
Then f is bounded on A4, and hence f is sequentially continuous on (A4, (pα)α∈I),
by Proposition 8.1. So, f(wn) −→ f(w), as n −→ ∞. □

9. Uniqueness of topology

Carpenter [8] proved that every complex commutative semisimple Fréchet al-
gebra has a unique Fréchet algebra topology based on a bounded-unbounded-
contradiction technique. This result is to be modified by extending the technique.
Carpenter [8] used the Shilov idempotent theorem for commutative Fréchet alge-
bras, which was observed by Rosenfeld [41]. The same arguments are applicable
to establish the following Lemma 9.1, which was used in [44].
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Let
(
A, (pα)α∈I

)
be a complex commutative LMC algebra with an identity.

For each α ∈ I, let Aα be the completion of the normed algebra A/p−1
α (0),

where the norm is induced by pα. The norm on Aα will also be denoted by pα.
Let M(A), M(Aα) denote the collection of all nonzero continuous multiplicative
linear functionals on A and Aα, respectively. Consider each M(Aα) naturally as a
topological subspace of M(A) under the Gelfand topology. In fact, if φ ∈ M(Aα),
and πα : A → (A/pα

−1(0)) ⊆ Aa is the quotient mapping, then φ ◦ πα ∈ M(A),
and M(Aα) is identified as a subset of M(A) through the mapping φ 7→ φ ◦ πα.

The arguments used in [8, 41] to prove the Shilov idempotent theorem for
complex commutative Fréchet algebras with identity element are applicable even
to establish the next Lemma 9.1.
Lemma 9.1 (Shilov idempotent theorem). Let

(
A, (pα)α∈I

)
be a complex commu-

tative complete LMC algebra with an identity element. Let E and F be nonempty
subsets of M(A) such that E∪F = M(A). Suppose that E∩M(Aα) and F∩M(Aα)
are closed in M(Aα), for all α ∈ I. Then there is an idempotent e in A such
that f(e) = 1 and g(e) = 0, for all f ∈ E and g ∈ F .
Proof. (An Outline): For each α ∈ I, and for each f ∈ M(Aα) let us use
the notation f ′ for the natural corresponding multiplicative linear functional on
Aα/(Radical of Aα). By the classical Shilov idempotent theorem for Banach al-
gebras ( [7, Section 21, Theorem 5]), for each α ∈ I, there is a unique idempotent
eα

′ in Aα/(Radical of Aα) such that f ′(eα
′
) = 1, for all f ∈ E∩M(Aα) and such

that g′(eα
′
) = 0, for all g ∈ F ∩M(Aα). By using [7, Section 8, Theorem 14], for

each α ∈ I, from eα
′ , let us construct an idempotent eα in Aα such that f(eα) = 1,

for all f ∈ E ∩ M(Aα) and such that g(eα) = 0, for all g ∈ F ∩ M(Aα). Let
e = (eα)α∈I . Then e ∈ A, a projective limit of (Aα)α∈I , and this is a required
idempotent. □
Theorem 9.2. Let

(
A, (pα)α∈I

)
be a complex commutative semisimple complete

LMC algebra with identity such that M(A) has no isolated points. Let (B, d) be a
complex F-algebra with identity. Let T : B −→ A be a surjective homomorphism.
Then T has a closed graph in B × A. Moreover, kerT is closed. Let T1 :
B/ kerT −→ (A, (pα)α∈I) be the natural map defined by T1(y + kerT ) = T (y),
for all y ∈ B, when B/ kerT is endowed with the quotient topology induced by
d. Then T1 has a closed graph, and hence T−1

1 (E) is bounded whenever E is a
bounded subset of (A, (pα)α∈I).
Proof. Let S = {f ∈ M(A) : f ◦ T is continuous on B}. Let us first assume that
the closure of S is not equal to M(A) with respect to the Gelfand topology. Let
f be in M(A), which is not in the closure of S in M(A). Since f is not isolated
in M(A), then f is not isolated in M(Aα), for some α ∈ I, by Lemma 9.1, the
Shilov idempotent theorem. For, if f were isolated in every M(Aβ) in which f is a
member, then there would be an ideompotent e such that f(e) = 1 and g(e) = 0,
for all g ∈ M(A) \ {f} so that f would be isolated in M(A) with respect to

the Gelfand topology. Then M(Aα) \ (Closure of S) is a nonempty open set in
M(Aα) containing f , which is not isolated with respect to the Hausdorff Gelfand
topology. So, there is a sequence of distinct functionals f1, f2, . . . in M(Aα) such
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that they are not in the closure of S. By [8, Lemma 2 ], there is a sequence
z1, z2, . . . in B such that fi ◦T (zk) = 0 for i < k and fi ◦T (zk) 6= 0 for i ≥ k. Use
induction to construct a sequence x1, x2, . . . in B such that

(i) max1≤j≤i d(0, zjzj+1 . . . zixi) < 2−i,

(ii) |fi ◦ T (xi)| > (|fi ◦ T (
∑i−1

j=1 z1z2 . . . zjxj)|+ i)|fi ◦ T (z1z2 . . . zi)|−1.
It is possible to construct these xi, because each fi ◦ T is not continuous at zero.
Let x =

∑∞
i=1 z1z2 . . . zixi. For each positive integer k > 1, it is true that

fk ◦ T (x) =fk ◦ T (
k−1∑
i=1

z1z2 . . . zixi) + fk ◦ T (z1z2 . . . zkxk)

+ fk ◦ T (z1z2 . . . zk+1xk+1) + fk ◦ T ((z1z2 . . . zk+1)
∞∑

i=k+2

zk+2 . . . zixi).

Therefore, when (ii), with i = k in the form |fk ◦T (z1z2 . . . zk)||fk ◦T (xk)| − |fk ◦
T (

∑k−1
j=1 z1z2 . . . zj)| > k is applied,

|fk ◦ T (x)| ≥ |fk ◦ T (z1z2 . . . zkxk)| − |fk ◦ T (
k−1∑
i=1

z1z2 . . . zixi)| > k,

for all k > 1. This is impossible, because fk ∈ M(Aα), and |fk(T (x))| ≤
pα(T (x)), for all k. So, S is dense in M(A), and hence T has closed graph,
because A is semisimple. (Verification: Consider a net (xα)α∈D converging to
zero in (B, d) for which (T (xα))α∈D converges to some y in (A, (pα)α∈I). It should
be proved that y = 0. If g ∈ S, then (g ◦ T (xα))α∈D converges to zero, as well as
to g(y), so that g(y) = 0. Let g be in M(A), the closure of S. Fix ϵ > 0. Find
h ∈ S such that |h(y) − g(y)| < ϵ, where h(y) = 0. So, |g(y)| < ϵ, for all ϵ > 0.
Thus, g(y) = 0, for all g ∈ M(A). Since A is semisimple, y = 0.)

Let (xn)
∞
n=1 be a sequence in kerT such that xn −→ x in (B, d), as n −→ ∞.

Since f ◦ T (xn) −→ f ◦ T (x), as n −→ ∞, for all f ∈ S, then f ◦ T (x) = 0,
for all f ∈ S. Hence it is true for every f in the closure of S. For, if g ∈ M(A),

then for a given ϵ > 0, there is f ∈ S such that |f ◦ T (x) − g ◦ T (x)| < ϵ,
where f ◦ T (x) = 0. That is, f ◦ T (x) = 0, for all f ∈ M(A). So, if x is in
the closure of kerT , then, by [32, Corollary 5.5], T (x) ∈

⋂
f∈M(A) f

−1(0) = {0}.
Hence x ∈ kerT . This proves that kerT is closed. The earlier part implies that
T1 has a closed graph. Then the bijective mapping T−1

1 also has a closed graph so
that Theorem 2.1 is applicable for T−1

1 . Now, Theorem 2.1 implies the remaining
part of the statement. □
Corollary 9.3. For every countable bounded subset E of A, there is a countable
bounded subset F of B such that T (F ) = E in the previous theorem. If, in
addition, B is a Banach algebra, then for every bounded subset E of A, there is
a bounded subset F of B such that T (F ) = E.

10. A Technique of Źelazko and Goldmann

It was mentioned that Theorem 8.11 is the best partial affirmative answer to the
questions raised by Michael [32], given in Section 1. One more interesting result is
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due to Źelazko [46]. He proved that every complex commutative Fréchet algebra A
with a countable maximal ideal space is functionally continuous. Goldmann [18]
observed that the technique of Źelazko has generalizations by stating and proving
the following Lemma 10.1 for Fréchet algebras when the arguments are extendable
to F-algebras.
Lemma 10.1. Let (fn)

∞
n=1 be a sequence of distinct nonzero continuous multi-

plicative linear functionals on an F-Algebra A. Then there is a point x ∈ A such
that fi(x) 6= fj(x) whenever i 6= j.

Let us now observe an abstraction of the Źelazko-Goldmann technique.
Theorem 10.2. Let (A, τ1) be a topological algebra. Let (A, τ2) be an F-algebra.
Suppose that the followings are true.

(i) Every τ1-continuous multiplicative linear functional on A is τ2-continuous.
(ii) There is a finite subset {x1, x2, . . . , xn} in A such that to every multiplica-

tive linear functional f on A, the set Ff = {g : g is a continuous multiplica-
tive linear functional on (A, τ1), g(xi) = f(xi), for all i = 1, 2, . . . , n} is
at most countable.

(iii) For each subset {xn+1, xn+2} of A, and for each multiplicative linear func-
tional f on A, the set {g : g is a continuous multiplicative linear functional
on (A, τ1), g(xi) = f(xi), for all i = 1, 2, . . . , n+ 2} is nonempty.
Then (A, τ1) is functionally continuous.

Proof. Let f be any given multiplicative linear functional on A. Then, by Lemma
10.1, there is an element xn+1 in A such that g(xn+1) 6= h(xn+1) whenever g, h ∈
Ff and g 6= h, because each g in Ff is τ2-continuous. Fix xn+2 in A arbitrarily.
Then there is a continuous multiplicative linear functional g on (A, τ1), such that
g(xi) = f(xi), for all i = 1, 2, . . . , n + 2. Since g ∈ Ff , it is unique in Ff with
the property g(xi) = f(xi), for all i = 1, 2, . . . , n + 1. For this unique g, it is
true that f(z) = g(z), for all z ∈ A, because xn+2 is arbitrary. That is, f = g
on A, and hence f is continuous on (A, τ1). □

Let us observe that the following Corollary 10.3 is derivable from the previous
Theorem 10.2. This corollary is the main result of [46].
Corollary 10.3. Every complex commutative Fréchet algebra with a countable
maximal ideal space is functionally continuous.
Proof. Let (A, τ1) be a given complex commutative Fréchet algebra with identity
and with a countable maximal ideal space M(A). Let f be a multiplicative linear
functional on A. Fix x1 ∈ A, arbitrarily. Then {g ∈ M(A) : f(x1) = g(x1)} is
countable, because M(A) is countable. By Theorem 8.11, for any x2, x3 in A,
{g ∈ M(A) : f(xi) = g(xi), i = 1, 2, 3} is nonempty. Take τ2 = τ1 in the previous
Theorem 10.2 to conclude that f is continuous on (A, τ1). □
Remark 10.4. The conditions (ii) and (iii) in Theorem 10.2 can be replaced by
the following single condition.

(ii)′ To any given multiplicative linear functional f on A, there is a finite set
{x1, x2, . . . , xn} in A such that the set Ff = {g : g is a continuous multiplicative
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linear functional on (A, τ1), f(xi) = g(xi), for all i = 1, 2, . . . , n} is at most
countable and such that for each subset {xn+1, xn+2} of A, the set {g : g is
a continuous multiplicative linear functional on (A, τ1), f(xi) = g(xi), for all
i = 1, 2, . . . , n+ 2} is nonempty.

11. Techniques for measurable cardinal numbers

A nonempty set X is said to have a measurable cardinal number, if there is
a countably additive measure µ : P(X) −→ {0, 1} on the power set P(X) of X
such that µ(X) = 1 and µ({x}) = 0, for all x ∈ X. According to this definition,
if a set X has a measurable cardinal number (or, has measurable cardinality),
then it should be an uncountable set. The following Theorem 11.1 was proved by
Larotonda and Zalduendo [30].

Theorem 11.1. Let I be a nonempty set. Then the followings are equivalent.
(a) The cardinality of I is nonmeasurable.
(b) For every family (Ai)i∈I of algebras, every multiplicative linear functional f

of the product A =
∏

i∈I Ai factors through some Ak. That is, f = fk ◦πk,
where πk : A −→ Ak is the projection and fk is a multiplicative linear
functional on Ak.

(c) Every product A =
∏

i∈I Ai of functionally continuous algebras is func-
tionally continuous.

As usual, the topologies on products are product topologies and algebraic op-
erations on products are coordinate-wise operations. Let us recall the followings,
which are already known in connection with measurable cardinals.

Consider a countably additive measure µ : P(X) → {0, 1} such that µ(X) = 1.
Let M0 = {E ⊆ X : µ(E) = 0} and let M1 = {E ⊆ X : µ(E) = 1}. If
µ({x}) = 0, for all x ∈ X, then X has a measurable cardinality, and M0 and M1

are subcollections of P(X) having the following properties.
(1) If A ⊆ X, then either A ∈ M0 or A ∈ M1, exclusively.
(2) If A ⊆ X, then either A ∈ M0 or X \ A ∈ M0, exclusively.
(3) If A ⊆ B ⊆ X, and B ∈ M0, then A ∈ M0.
(4) If x ∈ X, then {x} ∈ M0.
(5) If A1, A2, . . . are (pairwise disjoint) members M0, then ∪∞

n=1An ∈ M0.
On the other hand, if M0 and M1 are nonempty subcollections of P(X) satis-
fying the conditions (1)-(5),then let us define µ : P(X) → {0, 1} by µ(E) =
0, for all E ∈ M0 and µ(E) = 1, for all E ∈ M1 to obtain a countably additive
measure µ such that µ({x}) = 0, for all x ∈ X. Now, let us consider another
condition/property.

(5′) If (Aα)α∈I is a collection of (pairwise disjoint) members of M0, and I has
no measurable cardinality, then ∪α∈IAα ∈ M0.

First, let us assume that M0 and M1 satisfy (1)–(5). Consider a collection
(Aα)α∈I of pairwise disjoint members of M0. Let us also assume that ∪α∈IAα ∈
M1. Define M0

′ = {J ⊆ I : ∪α∈JAα ∈ M0} and M1
′ = {J ⊆ I : ∪α∈JAα ∈ M1}.

Then M0
′ and M1

′ also satisfy the (corresponding) conditions (1)–(5). This means
that I has measurable cardinality. Thus, if (1)–(5) are true, then (5′) should also
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be true. Note that N has no measurable cardinality so that (5′) implies (5). It
is further established that if I has no measurable cardinality, then P(I) has no
measurable cardinality. (Verification: Let us begin with a nonzero countably
additive measure µ on the collection of all subsets of {0, 1}I such that it takes
values in {0, 1} and such that it assumes value 0 for each singleton subset of
{0, 1}I . Consider the corresponding M0 and M1. For each α ∈ I, let Bα =
{(xβ)β∈I ∈ {0, 1}I : xα = 0}, let Cα = {(xβ)β∈I ∈ {0, 1}I : xα = 1}, and let
Dα = Bα or Cα when µ(Bα) = 1 or when µ(Cα) = 1, respectively. Then by (5′),
∩α∈IDα ∈ M1. Indeed, ∩α∈IDα is a singleton subset of {0, 1}I so that it is a
member of M0.)

In particular, R has no measurable cardinality. A generalization may be seen
in [6, p. 43]. Moreover, any finite Cartesian product of sets having nonmeasurable
cardinality should also have nonmeasurable cardinality. (Verification: Suppose
that I and J have nonmeasurable cardinality. Let K be one among these two
sets for which the cardinality is greater than or equal to the cardinality of the
other one. Then the cardinality of I × J is less than or equal to the cardinality
of {0, 1}K . This proves that I × J has no measurable cardinality.)

Let us again begin with a countably additive measure µ : P(X) → {0, 1} such
that µ(X) = 1 and such that µ({x}) = 0, for all x ∈ X, and let us consider the
corresponding M0 and M1 satisfying (1)–(5). Then (5′) is also true. This means
that if µ(Aα) = 0, for all α ∈ I, and if I has no measurable cardinality, then
µ(∪α∈IAα) = 0. When the definition of unordered sum is assumed, it is possible
to write the relation µ(∪α∈IAα) =

∑
α∈I µ(Aα), whenever I has no measurable

cardinality, and Aα ⊆ X, for all α ∈ I.
Let I be a nonempty set. Let A = RI . For each subset J of I, let eJ = (xα)α∈I ,

when xα = 0 for α 6∈ J and xα = 1 for α ∈ J . Let f be a nonzero real
multiplicative linear functional on A. Then, by Corollary 8.2, f is sequentially
continuous on RI . Define µf : P(I) −→ {0, 1} by µf (J) = 0 if f(eJ) = 0,
µf (J) = 1 if f(eJ) = 1, and µf (∅) = 0 (in accordance with the relation f(0) = 0).
Since f is sequentially continuous, µ is a nonzero countably additive measure. If
I has no measurable cardinality, then f should factor through some coordinate R,
by Theorem 11.1. In the general case, for each (xα)α∈I , there is J ⊆ I such that
µf (J) = 1 and xα = xβ whenever α, β ∈ J . On the other hand, if µ : P(I) −→
{0, 1} is a countably additive measure such that µ(I) = 1 and µ({α}) = 0, for all
α ∈ I, then for given (xα)α∈I ∈ RI , on defining fµ((xα)α∈I) = xβ, for all β ∈ J ,
when J ⊆ I such that xβ = xγ, for all β, γ ∈ J and such that µ(J) = 1,
the functional fµ becomes a multiplicative linear functional on RI . (Verification:
Since R has no measurable cardinality, for any fixed element x = (xα)α∈I ∈ RI ,
there is unique ix ∈ R such that Ex = {α ∈ I : xα = ix} has µ measure value 1.
In this case, fµ(x) = ix. Now, it can be verified with the help of the properties
(1)–(5) that fµ is a multiplicative linear functional.) All these things are known
(see [30]). Indeed, sequential continuity obtained through Corollary 8.2 simplifies
the arguments.

Let us first concentrate on positive linear functionals on RI . Let us use the
notation eJ defined in the previous paragraph.
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Lemma 11.2. Let f be a nonzero real linear functional on RI such that f((xα)α∈I)
≥ 0, whenever xα ≥ 0, for all α ∈ I, and such that f(eJ) = 0 or 1, for all
J ⊆ I. Then f should be a multiplicative linear functional on RI .

Proof. By considering the natural extension of f to CI , by Corollary 8.4, it is
concluded that f is sequentially continuous on RI . Hence µ : P(I) −→ {0, 1}
defined by µ(J) = f(eJ) is a countably additive measure. The functional fµ
defined above coincides with f . Then f is a multiplicative linear functional on
RI .
Another proof:

This lengthy proof is provided as an application of the Gleason–Kahane–
Źelazko theorem. Let us consider again f as a restriction of a positive linear
functional g on CI . Let (xα)α∈I ∈ ker g. It is claimed that xα = 0 for some α ∈ I.
Since (Re xα)α∈I ∈ ker g and (Im xα)α∈I ∈ ker g, to establish this claim, let us
assume without loss of generality that xα are real, for all α ∈ I. That is, let us
assume that (xα)α∈I ∈ ker f . Suppose that the claim is not true for this (xα)α∈I .
Let J = {α ∈ I : xα > 0}. Then I \ J = {α ∈ I : xα < 0}. Define (yα)α∈I ,
(yα

′
)α∈I , (zα)α∈I and (zα

′
)α∈I by

yα =

{√
xα if α ∈ J,

0 if α 6∈ J,

yα
′
=

{
1
yα

if α ∈ J,

0 if α 6∈ J,

zα =

{
−
√
−xα if α 6∈ J,

0 if α ∈ J,

zα
′
=

{
1
zα

if α 6∈ J,

0 if α ∈ J.

By the Cauchy–Schwarz inequality,

0 ≤ |f(eJ)|2 = |f((y′

α)α∈IeJ(yα)α∈I)|2 ≤ f((y
′

α

2
)α∈I)f(eJ(xα)α∈I)

and

0 ≤ |f(eI\J)|2 = |f((z′

α)α∈IeI\J(zα)α∈I)|2 ≤ f((z
′

α

2
)α∈I)f(−eI\J(xα)α∈I).

So, if eJ(xα)α∈I ∈ ker f then f(eJ) = 0, and, if eI\J(xα)α∈I ∈ ker f then f(eI\J) =
0. On the other hand, by the Cauchy–Schwarz inequality, if f(eJ) = 0, then
eJ(xα)α∈I ∈ ker f , and, if f(eI\J) = 0, then eI\J(xα)α∈I ∈ ker f . If eJ(xα)α∈I
∈ ker f , then eI\J(xα)α∈I ∈ ker f , because (eJ + eI\J)(xα)α∈I = (xα)α∈I ∈ ker f .
Similarly, if eI\J(xα)α∈I ∈ ker f , then eJ(xα)α∈I ∈ ker f . Therefore, f(eJ) = 0 if
and only if f(eI\J) = 0. This is a contradiction, because f(eI) = 1. So, xα = 0
for some α. Thus ker f ⊆ ker g ⊆ SingCI . By Theorem 7.3, g is a multiplicative
linear functional on CI , because it is sequentially continuous in view of Corollary
8.4. So, f should be a multiplicative linear functional on RI . □
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Theorem 11.3. Let f be a nonzero real positive linear functional on RI (That
is, f((xα)α∈I) ≥ 0, whenever xα ≥ 0, for all α ∈ I). Then there are finitely
many positive constants k1, k2, . . . , kl and there are finitely many nonzero distinct
multiplicative linear functionals f1, f2, . . . , fl such that f = k1f1+k2f2+ · · ·+klfl.

Proof. Suppose that there are infinitely many pairwise disjoint nonempty subsets
B1, B2, . . . of I such that f(eBi

) 6= 0, for every i = 1, 2, . . .. Since f is a positive
linear functional, this is impossible because

f(
∞∑
i=1

1

f(eBi
)
eBi

) ≥ f(
n∑

i=1

1

f(eBi
)
eBi

) = n,

for every n. So, there are only finitely many pairwise disjoint nonempty subsets
B1, B2, . . . , Bl of I such that f(eBi

) 6= 0, for all i = 1, 2, . . . , l, and such that if
B ⊆ Bi, for some i, then f(eB) = 0 or f(eB) = f(eBi

) so that f(eI\(B1∪B2∪···∪Bl)) =
0. Define ki = f(eBi

) and

fi((xα)α∈I) =
1

f(eBi
)
f(eBi

(xα)α∈I),

for all i = 1, 2, . . . , l, and for all (xα)α∈I ∈ RI . By the previous Lemma 11.2,
each fi is a multiplicative linear functional on RI . Since f(eI\(B1∪B2∪···∪Bl)) = 0,
it follows from the Cauchy–Schwarz inequality

|f(eI\(B1∪B2∪···∪Bl)(xα)α∈I)|2 ≤ f(eI\(B1∪B2∪···∪Bl))f((x
2
α)α∈I)

that f(eI\(B1∪B2∪···∪Bl)(xα)α∈I) = 0, for all (xα)α∈I ∈ RI . Hence, f = k1f1 +
k2f2 + · · ·+ klfl. □

Theorem 11.4. Let I be a nonempty set that has no measurable cardinality.
Let (Aα)α∈I be a collection of complex algebras with identities and involutions.
Let A =

∏
α∈I Aα denote the complex algebra with the natural identity and the

natural involution. Let f be a nonzero positive linear functional on A. Then
f = k1f1 + k2f2 + · · · + klfl, for some l ≥ 1, for some ki > 0, i = 1, 2, . . . , l,
and for some nonzero positive linear functionals fi, i = 1, 2, . . . , l, which factor
through coordinates, and which satisfy fi(eI) = 1, for all i = 1, 2, . . . , l.

Proof. Consider RI as a subalgebra of
∏

α∈I Aα in terms of identities, and consider
the restriction g of f to RI . Then g = k1g1 + k2g2 + · · ·+ klgl, for some l ≥ 1, for
some ki > 0, i = 1, 2, . . . , l, and for some distinct nonzero multiplicative linear
functionals g1, g2, . . . , gl on RI , by Theorem 11.3. Since I has no measurable
cardinality, by “(a) implies (b)” part of Theorem 11.1, there is a finite subset
{α1, α2, . . . , αl} of I having distinct elements such that gi(e{αj}) = 0 for i 6= j,
gi(e{αj}) = 1 for i = j. Note that

0 ≤ |f((xα)α∈IeI\{α1,α2,...,αl})|
2 ≤ |f(eI\{α1,α2,...,αl})||f((xαx

∗
α)α∈I)|

= 0× |f((xαxα
∗)α∈I)| = 0,

for all (xα)α∈I ∈ A. So, f((xα)α∈I) = f((yα)α∈I), where yα = 0, for all α ∈ I \
{α1, α2, . . . , αl} and yα = xα, for all α ∈ {α1, α2, . . . , αl}, for all (xα)α∈I ∈ A.
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For each i = 1, 2, . . . , l, define fi((xα)α∈I) = f((yα)α∈I) with yα = 1
ki
xα for

α = αi, and yα = 0 for α 6= αi, for all i. Then

f((xα)α∈I) = (k1f1 + k2f2 + · · ·+ klfl)((xα)α∈I), for all (xα)α∈I ∈ A.

This completes the proof. □

Definition 11.5. Let (Aα)α∈I be a collection of vector spaces over the field R
or C. Let A =

∏
α∈I Aα be the product of vector spaces. Two elements (xα)α∈I

and (yα)α∈I in A are said to be disjoint, if yβ = 0 whenever xβ 6= 0, and xγ = 0
whenever yγ 6= 0. A linear functional f on A is said to be sequentially disjointness
preserving, if for every sequence ((xiα)α∈I)

∞
i=1 of pairwise disjoint elements in A,

it is true that f(
∑∞

i=1(xiα)α∈I) =
∑∞

i=1 f((xiα)α∈I) = f((xjα)α∈I), for some j.

Theorem 11.6. Let I be a nonempty set. Let A =
∏

α∈I Aα when each Aα = B
is a topological vector space. That is, A = BI . Let Be = {(xα)α∈I ∈ A : xα = xβ,
for all α, β ∈ I}, and suppose that B has no measurable cardinality. Let D be

a directed set that has no measurable cardinality. Let f be a linear functional on
A such that (f(zδ))δ∈D converges to zero whenever (zδ)δ∈D is a net in Be, which
converges to zero. Let (xδ)δ∈D be a net in A converging to zero. Then (f(xδ))δ∈D
converges to zero, if f is sequentially disjointness preserving on A.

Proof. Suppose that f is sequentially disjointness preserving on A. For each
xδ = (xδα)α∈I , there is a nonempty subset Iδ of I such that xδα = xδβ, for all
α, β ∈ Iδ and such that f(xδ) = f(zδ), when zδ = (zδα)α∈I is defined by
zδα = xδα for α ∈ Iδ and zδα = 0 for α 6∈ Iδ, because f is sequentially dis-
jointness preserving, and B has no measurable cardinality. (Verification: If
f((xδα)α∈I) = 0, then Iδ can be any nonempty subset of I satisfying the condition
xδα = xδβ, for all α, β ∈ Iδ. Suppose f((xδα)α∈I) 6= 0. Define µδ : P(I) → {0, 1}
by µδ(J) = 0 when f((yα)α∈I) = 0, µδ(J) = 1 when f((yα)α∈I) = f((xδα)α∈I),
and when yα = xδα, for all α ∈ J , and yα = 0, for all α ∈ I \ J . Since f is
sequentially disjointness preserving, µδ is a countably additive {0, 1}-measure on
I. For each x ∈ B, let Ix = {β ∈ I : xδβ = x}. Then the set {Ix : x ∈ B} has
no measurable cardinality, because B has no measurable cardinality. Then there
is unique x ∈ B such that µδ(Ix) = 1, by (5′) given after Theorem 11.1. Let us
take Iδ as this Ix.)

Since f is sequentially disjointness preserving and D has no measurable cardi-
nality, the intersection of all Iδ for which f(xδ) 6= 0 is nonempty. (Verification:
Define µD : P(I) → {0, 1} by µ(J) = 1 if f((yα)α∈I) 6= 0, for some (yα)α∈I ∈ A for
which yα = 0, for all α ∈ I \ J ; and µ(J) = 0, otherwise. Since f is sequentially
disjointness preserving mapping, µD is a countably additive {0, 1}-measure on I.
Then Iδ is a member of the corresponding M1 whenever f(xδ) 6= 0. Then the
intersection of all such Iδ should also be a member of M1, by (5′) given after
Theorem 11.1). So, without loss of generality, let us assume that all these Iδ are
equal, when they are considered as the intersection of all Iδ for which f(xδ) 6= 0.

For each δ ∈ D, when f(xδ) 6= 0, define yδ = (yδα)α∈I in A by yδα = xδα if
α ∈ Iδ and yδα = xδβ with β ∈ Iδ if α 6∈ Iδ. When f(xδ) = 0, then let us define
yδ = 0. Then f(yδ) = f(xδ), for all δ ∈ D. Since yδ ∈ Be, for all δ ∈ D and
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(yδ)δ∈D converges to zero, then (f(xδ))δ∈D converges to zero, because (f(yδ))δ∈D
converges to zero. □

Remark 11.7. Observe that Be given in the previous Theorem 11.6 is topologically
homeomorphic and linearly isomorphic with B. This remark can be applied to
the following Corollary 11.8, along with Theorem 11.3.

Corollary 11.8. If f is a real positive linear functional on RI (In particular, if
f is a real multiplicative linear functional on RI), for some nonempty set I, then
(f(xδ))δ∈D converges to zero, whenever (xδ)δ∈D converges to zero and D has no
measurable cardinality.

Theorem 11.9. Let I be a nonempty set. Let ((Aα, (pαi)
∞
i=1))α∈I be a collection

of nonzero commutative Fréchet algebras in which each pαi is a sub-multiplicative
seminorm. Let A =

∏
α∈I Aα. Let f be a nonzero real multiplicative linear

functional on A. Let (xδ)δ∈D be a bounded net converging to zero in A, when D
has no measurable cardinality. Then (f(xδ))δ∈D converges to zero.

Proof. Since A is a complete LMC algebra, the real multiplicative linear functional
f is sequentially continuous on A, by Corollary 8.2. For each J ⊆ I, let us use
the notation

∏
α∈J Aα even for the subalgebra {(xα)α∈I ∈ A : xα = 0, for all α ∈

I \ J} of A, when J = ∅, it is the zero subalgebra. Define µf : P(I) → {0, 1} by
µf (J) = 0 when f(

∏
α∈J Aα) = {0}, and µf (J) = 1 when f(

∏
α∈J Aα) = R. The

sequential continuity of f on A implies that µf is a countably additive measure
on I such that µf (I) = 1, because f is nonzero on A. (Verification: Let us
observe that µf (I \ J) = 0 whenever µf (J) = 1, and that µf (I \ J) = 1 whenever
µf (J) = 0. Let J1, J2, . . . be a sequence of pairwise disjoint subsets of I for
which µ(Jn) = 0, for all n. Let J = ∪∞

n=1Jn. Consider a general element (yα)α∈J
that may be considered in the form

∑∞
n=1(yα)α∈Jn in terms of the symbols for

Cartesian products. Then f((yα)α∈J) =
∑∞

n=1 f((yα)α∈Jn) = 0, by the sequential
continuity of f . This proves that µf (J) = 0. This proves that µf is countably
additive.)

For each δ ∈ D, let xδ = (xδα)α∈I . For each fixed α ∈ I, and i = 1, 2, 3, . . . ,
let us define Mαi = sup{pαi(xδα) : δ ∈ D}. For every sequence (Mαi)

∞
i=1, let

Iα = {β ∈ I : (Mβi)
∞
i=1 = (Mαi)

∞
i=1}. Then the set {Iβ : β ∈ I} has no measur-

able cardinality, because the cardinality of this set is less than or equal to the
cardinality of RN, and RN has no measurable cardinality. Then there is at most
one Iα such that µf (Iα) = 1, by(5′) given after Theorem 11.1. By considering
the restriction of f to

∏
β∈Iα Aβ, let us assume without loss of generality that

(Mβi)
∞
i=1 are equal for all β ∈ I, in view of Theorem 11.1 and Corollary 4.3.

For each α ∈ I, let us consider ((pαi(xδα))δ∈D)
∞
i=1 and let us define Iα = {β ∈ I :

((pβi(xδβ))δ∈D)
∞
i=1 = ((pαi(xδα))δ∈D)

∞
i=1}. Since D has no measurable cardinality,

the set {Iβ : β ∈ I} has no measurable cardinality, because the cardinality of the
latter set is less than or equal to the cardinality of (R)(DN). Then there is at most
one Iα such that µf (Iα) = 1. By considering the restriction of f to

∏
β∈Iα Aβ,

let us assume without loss of generality that ((pβi(xδβ))δ∈D)
∞
i=1 are equal for all

β ∈ I.
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For every i = 1, 2, 3, . . ., let us define pi(x) = supα∈I pαi(xα), for all x =
(xα)α∈D ∈ A. Let us now define Z = {x ∈ A : pi(x) < ∞, for all i = 1, 2, 3, . . .}.
Then (Z, (pi)

∞
i=1) is a commutative Fréchet algebra, f restricted to this algebra

is continuous (by Corollary 4.3), and (xδ)δ∈D is a net converging to zero in this
algebra. So, (f(xδ))δ∈D converges to zero. □
Theorem 11.10. Let I be a nonempty set. Let ((Aα, (pαi)

∞
i=1))α∈I be a collection

of nonzero complex commutative Fréchet algebras with continuous involutions in
which each pαi is a sub-multiplicative seminorm. Let A =

∏
α∈I Aα with the

natural involution defined by the involutions of the algebras Aα. Let f be a
nonzero complex multiplicative linear functional on A such that f(x) = f(x∗),
for all x ∈ A. Let (xδ)δ∈D be a bounded net converging to zero in A, when D

has no measurable cardinality. Then (f(xδ))δ∈D converges to zero.
Proof. By the previous Theorem 11.9, and by considering the restriction of f to
{x ∈ A : x = x∗}, it can be concluded that (f(yδ))δ∈D converges to zero, and
(f(zδ))δ∈D converges to zero, when yδ =

xδ+x∗
δ

2
and zδ =

xδ−x∗
δ

2i
. Hence (f(xδ))δ∈D

converges to zero. □
Theorem 11.11. Let I be a nonempty set. For each α ∈ I, let ((Aα, (pαi)

∞
i=1)) be

a B0 algebra with an identity eα in which (pαi)
∞
i=1 is a family of seminorms such

that pαi(xy) ≤ pα(i+1)(x)pα(i+1)(y) and pαi(x) ≤ pα(i+1)(x), for all x, y ∈ Aα and
for all i = 1, 2, 3, . . . Let A =

∏
α∈I Aα. Let f be a nonzero real multiplicative

linear functional on A. Let (xδ)δ∈D be a bounded net converging to zero in A,
when D has no measurable cardinality. Then (f(xδ))δ∈D converges to zero.
Proof. Let us consider RI as a subalgebra of A through the identities eα. Since
this topological subalgebra is the usual complete LMC algebra, f restricted to
this subalgebra is sequentially continuous, by Corollary 8.2. Define µf : P(I) →
{0, 1} by µf (J) = 0 when f(eJ) = {0}, and µf (J) = 1 when f(eJ) = 1. The
sequential continuity of f on RI implies that µf is a countably additive measure
on I such that µf (I) = 1, because f is nonzero on A. (Verification: Let us
observe that µf (I \ J) = 0 whenever µf (J) = 1, and that µf (I \ J) = 1 whenever
µf (J) = 0. Let J1, J2, . . . be a sequence of pairwise disjoint subsets of I for which
µ(Jn) = 0, for all n. Let J = ∪∞

n=1Jn. Then f(eJ) =
∑∞

n=1 f(eJn) = 0, because
eJ =

∑∞
n=1 eJn and because of the sequential continuity of f on RI . This proves

that µf (J) = 0. This proves that µf is countably additive.)
For each δ ∈ D, let xδ = (xδα)α∈I . For each fixed α ∈ I, and i = 1, 2, 3, . . . , let

us define Mαi = sup{pαi(xδα) : δ ∈ D}. Then it is possible to assume without loss
of generality that (Mβi)

∞
i=1 are equal for all β ∈ I. It is also possible to assume

without loss of generality that ((pβi(xδβ))δ∈D)
∞
i=1 are equal for all β ∈ I.

For every i = 1, 2, 3, . . ., let us define pi(x) = supα∈I pαi(xα), for all x =
(xα)α∈D ∈ A. Let us now define Z = {x ∈ A : pi(x) < ∞, for all i =
1, 2, 3, . . .}. Then (Z, (pi)

∞
i=1) is a B0 algebra such that pi(x) ≤ pi+1(x) and

pi(xy) ≤ pi+1(x)pi+1(y), for every i = 1, 2, . . . , and for all x, y ∈ Z. Then f
restricted to (Z, (pi)

∞
i=1) is continuous(by Corollary 4.3), and (xδ)δ∈D is a net

converging to zero in this algebra. So, (f(xδ))δ∈D converges to zero. □
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Theorem 11.12. Let I be a nonempty set. For each α ∈ I, let ((Aα, (pαi)
∞
i=1))

be a B0 algebra with an identity eα, and with a continuous involution, in which
(pαi)

∞
i=1 is a family of seminorms such that pαi(xy) ≤ pα(i+1)(x)pα(i+1)(y) and

pαi(x) ≤ pα(i+1)(x), for all x, y ∈ Aα and for all i = 1, 2, 3, . . . Let A =
∏

α∈I Aα

with the natural involution defined by the involutions of the algebras Aα. Let f be
a nonzero complex multiplicative linear functional on A such that f(x) = f(x∗),
for all x ∈ A. Let (xδ)δ∈D be a bounded net converging to zero in A, when D

has no measurable cardinality. Then (f(xδ))δ∈D converges to zero.

Proof. It is similar to that of the proof of Theorem 11.10, but by using Theorem
11.11. □

Theorem 11.13. Let I be a nonempty set. Let ((Aα, || · ||α))α∈I be a collection
of nonzero complex Banach algebras with identity elements eα, α ∈ I. Let A =∏

α∈I Aα. Let f be a nonzero complex multiplicative linear functional on A. Let
(xδ)δ∈D be a bounded net converging to zero in A, when D has no measurable
cardinality. Then (f(xδ))δ∈D converges to zero.

Proof. Consider CI as a complex subalgebra of A through identity elements and
consider RI as its real subalgebra. Then let us define a countably additive {0, 1}-
measure on I, as it was done in the proof of Theorem 11.11.

For each δ ∈ D, let xδ = (xδα)α∈I . For each fixed α ∈ I, let us define Mα =
sup{||xδα||α : δ ∈ D}. Then it is possible to assume without loss of generality
that Mβ are equal for all β ∈ I. It is also possible to assume without loss of
generality that (||xδβ||β)δ∈D are equal for all β ∈ I.

For every x = (xα)α∈I ∈ A, let us define ||x|| = supα∈I ||xα||α. Let us now
define Z = {x ∈ A : ||x|| < ∞, for all i = 1, 2, 3, . . .}. Then (Z, || · ||) is a
complex Banach algebra, f restricted to this algebra is continuous, and (xδ)δ∈D
is a net converging to zero in this algebra. So, (f(xδ))δ∈D converges to zero. □

12. conclusion

One used to consider the continuity of certain linear functions in the error
analysis of numerical methods. Once continuity happens automatically, then
there would be no need to verify continuity in such cases. In this way, one
used to find practical applications for automatic continuity. Every technique is
important to solve very old problems in automatic continuity, as well as to get
applications in numerical analysis.
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