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SHARP BOUNDS OF THIRD HANKEL DETERMINANT
FOR A CLASS OF STARLIKE FUNCTIONS

AND A SUBCLASS OF q-STARLIKE FUNCTIONS

SHAGUN BANGA1 AND SHANMUGAM SIVAPRASAD KUMAR1*

Communicated by H.R. Ebrahimi Vishki

Abstract. Following the trend of coefficient bound problems in geometric
function theory, in the present paper, we obtain the sharp bound of the third
Hankel determinant for the classes of starlike functions (S∗) and q-starlike
functions related with lemniscate of Bernoulli (SL∗

q). Bound on the functions
in the initial class, apart from being sharp, is also an improvement over the
known existing bound, and the bound on the latter class generalizes the prior
known outcome. Furthermore, the extremal functions of classes S∗ and SL∗

q

are deduced to prove the sharpness of these results.

1. Introduction and preliminaries

Denote the class of analytic functions f(z) = z+
∑∞

n=2 anz
n, defined on the open

unit disk D by A. Let S be the subclass of A consisting of the univalent functions.
For two analytic functions f and g, we say f is subordinate to g if there exists a
Schwarz function ω(z) with ω(0) = 0 and |ω(z)| < 1 such that f(z) = g(ω(z)).
The normalized function f in S satisfying the inequality

Re
zf ′(z)

f(z)
> 0, z ∈ D,

which belongs to the class of starlike functions, denoted by S∗. Furthermore,
various subclasses of S∗ have been introduced and studied by many authors in
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the past (see [9, 19, 24, 25]). Likewise, Sokół and Stankiewicz [27] introduced the
class SL∗, defined as

SL∗ :=

{
f ∈ A :

zf ′(z)

f(z)
≺

√
1 + z, z ∈ D

}
.

Since then, enormous work is done for the class SL∗; for ready reference, see [1,
2, 13, 22, 26].

Let q̃, n ∈ N. For a function f ∈ A, the q̃th Hankel determinant, is defined by

Hq̃(n) :=

∣∣∣∣∣∣∣∣
an an+1 . . . an+q̃−1

an+1 an+2 . . . an+q̃
... ... . . . ...

an+q̃−1 an+q . . . an+2q̃−2

∣∣∣∣∣∣∣∣ ,
introduced in [21], and has been studied by several authors. It also plays an
important role in the study of singularities (see [6]). Noor [20] studied the rate of
growth of Hq̃(n) as n → ∞ for functions in S with bounded boundary. Different
choices of q̃ and n yield various types of Hankel determinants, such as for q̃ = 2
and n = 1, the famous Fekete–Szegö functional is given by H2(1) := a3 − a22.
Furthermore, the generalized Fekete–Szegö functional is given by a3−µa22, where
µ is either real or complex. For q̃ = n = 2, we have a second order Hankel
determinant H2(2) := a2a4 − a23. Also, another type of second order Hankel
determinant is obtained by taking q̃ = 2 and n = 3, mathematically, written
as H2(3) := a3a5 − a24. The estimations of the sharp bounds for these Hq̃(n) are
obtained by many authors for various subclasses of A (see [5,23,29]). Third order
Hankel determinant, given by

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22), (1.1)
is obtained when q̃ = 3 and n = 1. A sharp bound of |H3(1)| was not obtained
for any class of analytic functions before 2018. It was achieved by Kowalczyk et
al. [12], for functions in A satisfying Re(f(z)/z) > α, α ∈ [0, 1) and in [11] for
convex functions. Following which, Banga and Kumar [4] recently derived a sharp
bound of third Hankel determinant as |H3(1)| ≤ 1/36 for functions in SL∗, which
earlier was calculated to be 43/576 in [23]. Lecko, Sim, and Śmiarowska [16]
calculated the sharp bound of the third Hankel determinant to be 1/9 for starlike
functions of order 1/2. The credit of initiation of sharp bound of |H3(1)| goes
to Kwon, Lecko, and Sim [14] who deduced p4 in terms of p1, where pi’s are the
coefficients of the functions in the Carathéodory class P , defined by

p(z) = 1 + p1z + p2z
2 + p3z

3 + p4z
4 + · · · (z ∈ D).

Let us recall the q-derivative of a complex valued function defined on a subset
of C, defined as below:

(Dqf)(z) =


f(z)− f(qz)

(1− q)z
, z ̸= 0,

f ′(0), z = 0,
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where q ∈ (0, 1). Whenever f is differentiable on a given subset of C, the above
definition of q-derivative implies

lim
q→1−

(Dqf)(z) = lim
q→1−

f(z)− f(qz)

(1− q)z
= f ′(z).

Furthermore, the Taylor series expansion of f yields that

(Dqf)(z) = 1 +
∞∑
n=2

[n]qanz
n−1,

where

[n]q =
n−1∑
k=0

qk = 1 + q + q2 + · · ·+ qn−1, n ∈ N.

The initiation of the above defined q-calculus was done by Jackson [8]. In geo-
metric function theory, subclasses of normalized analytic functions have been
studied from different viewpoints. Ismail, Merkes, and Styer [7] generalized the
class S∗ of starlike functions by introducing a new class with the usage of q-
calculus. This marked the beginning of the introduction of q-version of various
classes in geometric function theory. For instance, Srivastava and Bansal [28]
studied a certain family of q-Mittag-Leffler functions, and Mahmood et al. [18]
dealt with q-starlike functions associated with conic domains. Recently, Khan et
al. [10] used q-derivative operator to define a new subclass of starlike functions
related with the lemniscate of Bernoulli, given as

SL∗
q :=

{
f ∈ A :

z(Dqf)(z)

f(z)
≺

√
2(1 + z)

2 + (1− q)z
, z ∈ D

}
,

or equivalently, a function f ∈ A is in SL∗
q if it satisfies∣∣∣∣∣

(
z(Dqf)(z)

f(z)

)2

− 1

1− q

∣∣∣∣∣ < 1

1− q
.

This implies that on choosing ω = z(Dqf)(z)/f(z), the analytic characterization
of the class SL∗

q can be expressed as |ω2 − 1/(1 − q)| < 1/(1 − q), which is the
interior of the right loop of the lemniscate of Bernoulli. The specialty of this class
lies in the fact that it reduces to a well-known class SL∗, when q → 1−. The
authors in [10] obtained the sharp bounds of Fekete–Szegö functional, |H2(2)|,
initial coefficients a2, a3, a4 ,and a5, and upper bound of third Hankel determinant
for functions in SL∗

q.
Our study focuses on the estimation of sharp bound of |H3(1)| for functions

in SL∗
q and S∗. It was found in [3] that |H3(1)| ≤ 16 for functions in S∗, which

is improved by Zaprawa [30], wherein he proved |H3(1)| ≤ 1. Later in [15], it
was further improved to 8/9. Again, in 2021, Zaprawa, Milutin, and Tuneski [31]
calculated the same to be 5/9, to which we eventually improve in the present
paper to a sharp estimate of 4/9. In addition, we obtain |H3(1)| ≤ (1+q)2

16q2(1+q+q2)2

for functions in SL∗
q. This bound apart from being sharp is an improvement over

the bound obtained in [10]. Moreover, for q → 1−, this bound reduces to earlier
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known sharp bound for SL∗ [4]. We also give extremal functions to justify our
claims.

We state below a lemma for the formulas of p2, p3 [17], and p4 [14] in order to
prove our results.

Lemma 1.1. Let p ∈ P and of the form 1 +
∞∑
n=1

pnz
n. Then

2p2 = p21 + λ(4− p21),

4p3 = p31 + 2p1(4− p21)λ− p1(4− p21)λ
2 + 2(4− p21)(1− |λ|2)µ,

and
8p4 =p41 + (4− p21)λ(p

2
1(λ

2 − 3λ+ 3) + 4λ)

− 4(4− p21)(1− |λ|2)(p1(λ− 1)µ+ λµ2 − (1− |µ|2)δ),
for some δ, λ, and µ such that |δ| ≤ 1, |λ| ≤ 1, and |µ| ≤ 1.

2. Main results

This section begins with the following result.
Theorem 2.1. Let q ∈ (0, 1) and let f ∈ SL∗

q of the form f(z) = z+
∑∞

n=2 anz
n.

Then

|H3(1)| ≤
(1 + q)2

16q2(1 + q + q2)2
.

Proof. For f ∈ SL∗
q, we refer the reader to [10] for the expressions of a2, a3, and

a4. On the similar lines, we compute

a5 =
1

32768q4(1 + q2)(1 + q + q2)

(
512p1p3q

2(2− 10q − 8q2 − 9q3 + 3q4) + p41(8

− 140q + 802q2 − 1435q3 − 340q4 − 1193q5 + 1015q6 − 320q7 + 35q8)

+ 32p21p2q(6− 68q + 175q2 + 89q3 + 148q4 − 93q5 + 15q6) + 256q2(1 + q

+ q2)(16p4q + p22(2− 13q + 3q2))

)
.

Now substituting the values of above ai’s in (1.1) with p := p1 ∈ [0, 2], we obtain

H3(1) :=
1

4194304 q2(1 + q2)(1 + q + q2)2

(
− 8192pp2p3(−14− 28q − 13q2

− 28q3 − 12q4 + q5)− 512p31p3(−14− 10q − 217q2 + 23q3 − 8q4 + 5q5

+ q6) + 16p41p2(−31 + 1111q − 10148q2 + 3026q3 − 594q4 − 84q5 − 19q6

+ 3q7) + p61(239− 4972q + 35429q2 − 13002q3 + 3964q4 + 370q5 + 63q6

− 44q7 + q8) + 4096(−16p23(1 + q)2(1 + q2) + 16p2p4(1 + q + q2)2

+ p32(−13 + q)(1 + q + q2)2) + 256p21(16p4(−15 + q)(1 + q + q2)2

+ p22(−27− 102q + 670q2 − 188q3 + 6q4 + 14q5 + 3q6))

)
.
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Applying Lemma 1.1 in the above equation for the values of p2, p3, and p4 and
furthermore reducing it to the simpler form, we arrive at

H3(1) =
τ1(p, λ) + τ2(p, λ)µ+ τ3(p, λ)µ

2 + ζ(p, λ, µ)δ

4194304 q2(1 + q2)(1 + q + q2)2
, (2.1)

whenever δ, µ, λ ∈ D and

τ1(p, λ) := Ap6 + p2(4− p2)λ

(
8(−15 + 183q − 804q2 + 434q3 − 242q4 − 20q5

− 3q6 + 3q7)p2 + 64(45 + 66q + 262q2 + 28q3 + 62q4 + 6q5 + 3q6)

(4− p2)λ− 512(7 + 15q − 3q2 + 17q3 + 5q4 − q5)(4− p2)λ2

− 2048(7− q)(1 + q + q2)2λ+ 4096q2(4− p2)λ3 − 512(7− q)(1

+ q + q2)2p2λ2 + 128(22 + 50q + 35q2 + 59q3 + 20q4 + q5 + q6)p2λ

)
− 2048(5− q)(1 + q + q2)2(4− p2)2λ3,

τ2(p, λ) := (4− p2)(1− |λ|2)
(
256(6 + 2q + 41q2 − 15q3 − 5q5 − q6)p3 + 2048(7

− q)(1 + q + q2)2p3λ+ p(4− p2)λ(2048(6 + 12q + 5q2 + 12q3 + 4q4

− q5)− 16384q2λ)

)
,

τ3(p, λ) := (4− p2)(1− |λ|2)(2048(7− q)(1 + q + q2)2p2λ− (4− p2)(16384q2|λ|2

+ 16384(1 + q2)(1 + q)2)),

ζ(p, λ, µ) := (4− p2)(1− |λ|2)(1− |µ|2)(1 + q + q2)2(−(14336− 2048q)p2

+ 16384(4− p2)λ),

where A := 55− 308q+1349q2− 698q3+620q4− 46q5− 25q6− 20q7+ q8. Taking
modulus over equation (2.1) and applying triangle inequality, we get

|H3(1)| ≤
|τ1(p, λ)|+ |τ2(p, λ)|y + |τ3(p, λ)|y2 + |ζ(p, λ, µ)|

4194304 q2(1 + q2)(1 + q + q2)2
≤ T̃ (p, x, y),

where x := |λ|, y := |µ|, and the fact |δ| ≤ 1, and we have

T̃ (p, x, y) :=
t1(p, x) + t2(p, x)y + t3(p, x)y

2 + t4(p, x)(1− y2)

4194304 q2(1 + q2)(1 + q + q2)2

=:
T (p, x, y)

4194304 q2(1 + q2)(1 + q + q2)2

with

t1(p, x) :=Ap6 + p2(4− p2)x

(
8(15− 183q + 804q2 − 434q3 + 242q4 + 20q5

+ 3q6 − 3q7)p2 + 64(45 + 66q + 262q2 + 28q3 + 62q4 + 6q5 + 3q6)(4

− p2)x+ 512(7 + 15q − 3q2 + 17q3 + 5q4 − q5)(4− p2)x2 + 2048(7
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− q)(1 + q + q2)2x+ 4096(4− p2)x3 + 512(7− q)(1 + q + q2)2p2x2

+ 128(22 + 50q + 35q2 + 59q3 + 20q4 + q5 + q6)p2x

)
+ 2048(5− q)(1 + q + q2)2(4− p2)2x3,

t2(p, x) := (4− p2)(1− x2)

(
256(6 + 2q + 41q2 − 15q3 − 5q5 − q6)p3 + 2048(7

− q)(1 + q + q2)2p3x+ p(4− p2)x(2048(6 + 12q + 5q2 + 12q3

+ 4q4 − q5) + 16384q2x)

)
,

t3(p, x) := (4− p2)(1− x2)(2048(7− q)(1 + q + q2)2p2x+ (4− p2)(16384q2x2

+ 16384(1 + q2)(1 + q)2)),

t4(p, x) := (4− p2)(1− x2)(1 + q + q2)2((14336− 2048q)p2 + 16384(4− p2)x).

In order to achieve the desired bound, we need to maximize T (p, x, y) in the closed
cuboid C : [0, 2]×[0, 1]×[0, 1]. We accomplish this by estimating maximum values
in the interior of C, interior of the six faces, and finally on the twelve edges.

I. We begin with interior points of C, which means taking (p, x, y) ∈ (0, 2) ×
(0, 1)× (0, 1).
For this, we calculate
∂T

∂y
= (4− p2)(1− x2)(2y(16384(4− p2)((1 + q2)(1 + q)2 + q2x2) + 2048p2x(7

− q)(1 + q + q2)2 − ((14336− 2048q)p2 + 16384(4− p2)x)(1 + q + q2)2)

+ 256(6 + 2q + 41q2 − 15q3 − 5q5 − q6)p3 + 2048(7− q)(1 + q + q2)2p3x

+ 2048px(4− p2)(6 + 12q + 5q2 + 12q3 + 4q4 − q5) + 16384pq2(4− p2)x2).

On solving ∂T/∂y = 0, we obtain y = y0, given as

y0 :=
Ã

2048(1− x)
(
(7− q)(1 + q + q2)2p2 − 8(4− p2)

(
1+2q+2q2+2q3+q4

q2
− x

)) ,
where Ã := p3(128(6+2q+41q2− 15q3− 5q5− q6)+ 1024(7− q)(1+ q+ q2)2x)+
1024px(4− p2)(6 + 12q + 5q2 + 12q3 + 4q4 − q5 + 8q2x). For y0 ∈ (0, 1), we must
have

(7− q)(1 + q + q2)2p2 > 8(4− p2)

(
1 + 2q + 2q2 + 2q3 + q4

q2
− x

)
and

Ã+ 16384(4− p2)(1− x)

(
1 + 2q + 2q2 + 2q3 + q4

q2
− x

)
< 2048(1− x)(7− q)(1 + q + q2)2p2. (2.2)

Let us assume p → 2. Then there exists x ∈ (0, 101
216

) for every q ∈ (0, 1) such that
(2.2) holds. Moreover when we consider x ∈ [101

216
, 1), then there exists no p ∈ (0, 2)
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for all q ∈ (0, 1) such that (2.2) holds. Assuming x → 0, we compute (2.2) that
holds for p ≥ 1.48855 for every q ∈ (0, 1). In fact whenever p ∈ (0, 1.48855),
there exists no x ∈ (0, 1) for all q ∈ (0, 1) such that (2.2) holds. Thus we
conclude a possible solution existing in [1.48855, 1)× (0, 101

216
) for inequality (2.2).

A computation shows
∂T

∂p

∣∣∣∣
y=y0

̸= 0,

in this interval. Therefore, there exists no critical point in the interior of C.
II. Now we compute the maximum value of T in the interior of all the six faces

of C.
On the face p = 0, T (p, x, y) reduces to

T (0, x, y) = 262144(1− x2)((1 + q2)(1 + q)2 + q2x2 − (1 + q + q2)2x)y2

+ 32768x(1 + q + q2)2(x2(5− q) + 8(1− x2)), (2.3)
which in turn differentiating with respect to y becomes
∂T

∂y
= 524288y(1− x2)(x− 1)

(
x− 1 + 2q + 2q2 + 2q3 + q4

q2

)
̸= 0 x, y ∈ (0, 1).

This clearly shows there exists no critical point for T (0, x, y) in (0, 1)× (0, 1).
On the face p = 2,

T̃ (p, x, y) = T̃ (2, x, y) =
A

65536q2(1 + q2)(1 + q + q2)2
≤ (1 + q)2

16q2(1 + q + q2)2
,

x, y ∈ (0, 1), as we have −4041−8500q−6843q2−8890q3−3476q4−46q5−25q6−
20q7 + q8 ≤ 0 for q ∈ (0, 1).

On the face x = 0, T (p, x, y) becomes
T (p, 0, y) = p6(55− 308q + 1349q2 − 698q3 + 620q4 − 46q5 − 25q6 − 20q7 + q8)

+ 256(4− p2)
(
− p3(−6− 2q − 41q2 + 15q3 + 5q5 + q6)y

+ 64(4− p2)(1 + q)2(1 + q2)y2 + 8p2(−7 + q)(1 + q + q2)2(−1 + y2)
)

:=h1(p, y). (2.4)
On solving ∂h1

∂y
= 0, we get

y =: y1 =
p3(−6− 2q − 41q2 + 15q3 + 5q5 + q6)

16(32(1 + q)2(1 + q2) + p2(−15− 29q − 35q2 − 27q3 − 13q4 + q5))
.

(2.5)
For 0 < p ≤ 1.46, we have y1 ≤ 0 for every q ∈ (0, 1). There exists some
q ∈ (0, 1) whenever p ∈ (1.46, 2) such that y1 > 0. On substituting (2.5) in ∂h1

∂p

and simplifying further, we get ∂h1

∂p
̸= 0, where p ∈ (1.46, 2), q ∈ (0, 1). Thus

h1(p, y) has no critical point in (0, 2)× (0, 1).
On the face x = 1, T (p, x, y) reduces to

T (p, 1, y) = −32768(−5 + q)(1 + q + q2)2 + p6(1 + q)3(−1 + 7q + 19q2 + 9q3

+ q4 + q5) + 1024p2(77 + 146q + 246q2 + 140q3 + 94q4 + 6q5 + 3q6)

− 32p4(929 + 1783q + 2636q2 + 1666q3 + 878q4 − 4q5 + 29q6 + 3q7)
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=: h2(p). (2.6)
On differentiating h2 with respect to p, we obtain
∂h2

∂p
= 6p5(1 + q)3(−1 + 7q + 19q2 + 9q3 + q4 + q5) + 2048p(77 + 146q + 246q2

+ 140q3 + 94q4 + 6q5 + 3q6)− 128p3(929 + 1783q + 2636q2 + 1666q3

+ 878q4 − 4q5 + 29q6 + 3q7),

further which becomes 0 at p = 0 and p = p0, given by

p0 :=

√
32(929 + 1783q + 2636q2 + 1666q3 + 878q4 − 4q5 + 29q6 + 3q7)

3(1 + q)3(−1 + 7q + 19q2 + 9q3 + q4 + q5)
− Ã,

where

Ã =
64
√
2A0

3(−1 + 4q + 37q2 + 86q3 + 92q4 + 50q5 + 15q6 + 4q7 + q8)
,

and
A0 = (107909 + 414041q + 1008402q2 + 1557100q3 + 1804144q4 + 1471838q5

+ 913014q6 + 363176q7 + 107408q8 + 9900q9 + 6570q10 + 346q11

+ 41q12 + 15q13)(1/2).

A calculation yields that p = 0 is a point of minima, that p0 is a point of maxima,
and that the maximum value is given by a huge mathematical expression in q,
which is computed to be less than 262144(1 + q)2(1 + q2).

On the face y = 0, we have T (p, x, 0) =: h3(p, x), given by
h3(p, x) :=p6(55− 308q + 1349q2 − 698q3 + 620q4 − 46q5 − 25q6 − 20q7 + q8)

+ 2048(4− p2)(1 + q + q2)2(−1 + x2)(−32x+ p2(−7 + q + 8x))

+ 8(4− p2)x
(
− 1024(−5 + q)(1 + q + q2)2x2 + 32p2x(101− 2q5

+ 3q6 + 16x+ 2q4(51 + 8x) + 4q3(29 + 20x) + 2q(85 + 24x)

+ 2q2(207− 64x+ 32x2))− p4
(
− 15 + 3q7 + 8x+ 22q4(−11

+ 8x) + 4q5(−5 + 8x) + q6(−3 + 8x) + q(183− 272x+ 128x2)

+ q3(434− 720x+ 384x2) + 4q2(−201 + 384x− 352x2 + 128x3)
))

.

A calculation yields that there is no common solution to the system of equations
∂h3

∂x
= 0 and ∂h3

∂p
= 0 in (0, 2)× (0, 1). Similarly we can show that there exists no

critical point for T (p, x, 1).
III. Finally, we estimate the maximum value on the edges of the cuboid C.

Start with T (p, 0, 0) =: h4(p), given by
h4(p) =(1 + q + q2)2(4p2(14336− 2048q)− p4(14336− 2048q)) + (55

− 308q + 1349q2 − 698q3 + 620q4 − 46q5 − 25q6 − 20q7 + q8)p6,
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obtained from (2.4). On solving ∂h4

∂p
= 0, we get either p = 0 or p =: p0, given by

p0 :=
1√
3A

(
2048(7− q)(1 + q + q2)2 − 64

√
2

(
23933 + 97507q + 203268q2

+ 309564q3 + 313752q4 + 250248q5 + 114774q6 + 34938q7 − 6156q8

− 644q9 + 1352q10 + 192q11 − 75q12 + 3q13
)1/2)1/2

.

We compute that the function h4(0) = 0 is a minimum value of h4(p) and that
h4(p0) is a huge mathematical expression in q, which is also a maximum value of
h4(p). Furthermore, we have T̃ (p0, 0, 0) ≤ (1+q)2/16q2(1+q+q2)2. Substituting
y = 1 in (2.4), we obtain

T (p, 0, 1) = h5(p) =(4− p2)
(
− 256(−6− 2q − 41q2 + 15q3 + 5q5 + q6)p3

+ (4− p2)
(
16384(1 + q2)(1 + q)2

))
+ Ap6.

The function h5(p) is a decreasing function of p for all q. Thus

max
p∈[0,2]

T̃ (p, 0, 1) = T̃ (0, 0, 1) =
(1 + q)2

16q2(1 + q + q2)2
.

Form (2.6), which is independent of y, we get T̃ (p, 1, 0) = T̃ (p, 1, 1) = T̃ (p, 1, y).
Thus T̃ (p, 1, 0) = T̃ (p, 1, 1) ≤ (1+q)2

16q2(1+q+q2)2
. Substituting x = 0 in (2.3), we obtain

T̃ (0, 0, y) = y2(1 + q)2/16q2(1 + q + q2)2, which is clearly an increasing function
of y for all q, and we have

T̃ (0, 0, y) ≤ T̃ (0, 0, 1) =
(1 + q)2

16q2(1 + q + q2)2
.

Evaluating (2.6) at p = 0, we get

T̃ (0, 1, y) =
5− q

128q2(1 + q2)
.

The value of T̃ (p, x, y) on the edges p = 2, x = 1; p = 2, x = 0; p = 2, y = 0;
and p = 2, y = 1 is, respectively, equal to T̃ (2, 1, y) = T̃ (2, 0, y) = T̃ (2, x, 0) =
T̃ (2, x, 1) = T̃ (2, x, y) as T̃ (2, x, y) is independent of both x and y, which further
equals to

A

65536q2(1 + q2)(1 + q + q2)2
≤ (1 + q)2

16q2(1 + q + q2)2
.

Evaluating (2.3) at y = 0, we deduce
T (0, x, 0) = h6(x) = 32768(1 + q + q2)2x(8− (3 + q)x2).

On solving h′
6(x) = 0, we get

x = x0 :=
512(1 + q + q2)√

294912 + 688128q + 1081344q2 + 884736q3 + 491520q4 + 98304q5
.
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A computation shows that x0 is a point of maxima and that the maximum value
is given by

max
x∈[0,1]

h6(x) = h6(x0) =

√
2(1 + q + q2)

12
√

3(3 + q)
(0 < q < 1).

Also, we have
max
0≤x≤1

T̃ (0, x, 0) ≤ (1 + q)2

16q2(1 + q + q2)2
.

Now evaluating (2.3) at y = 1, we obtain
T (0, x, 1) = 262144(1− x2)((1+ q2)(1+ q)2 + q2x2)+ 32768x3(5− q)(1+ q+ q2)2,

which is clearly a decreasing function of x and attains the maximum value at
x = 0, given by (1+q)2

16q2(1+q+q2)2
.

Altogether I–III yield |H3(1)| ≤ (1+q)2

16q2(1+q+q2)2
. The result is sharp as equality

occurs for the function f̃ : D → C, satisfying the following equation:

z(Dqf̃)(z)

f̃(z)
=

√
2(1 + z3)

2 + (1− q)z3
.

□
Let q → 1− in the above theorem. Then it reduces to the following result

obtained by Banga and Kumar [4].
Corollary 2.2. Let f ∈ SL∗. Then |H3(1)| ≤ 1/36.

Moreover, extremal functions also coincide in the case of q → 1−.
Theorem 2.3. Let f ∈ S∗ of the form f(z) = z +

∑∞
n=2 anz

n. Then the sharp
bound for the third order Hankel determinant for such functions is given by

|H3(1)| ≤ 4/9. (2.7)

Proof. For f ∈ S∗, we have
zf ′(z)

f(z)
=

1 + ω(z)

1− ω(z)
, (2.8)

for some Schwarz function ω(z). Define a function p(z) = 1+ω(z)
1−ω(z)

. Then evidently
p ∈ P . Equation (2.8) now reduces to

zf ′(z)

f(z)
= p(z) = 1 + p1z + p2z

2 + p3z
3 + · · · .

The Taylor series of which yield

a2 = p1, a3 =
p2 + p21

2
, a4 =

p31 + 3p1p2 + 2p3
6

,

and

a5 =
p41 + 6p21p2 + 3p22 + 8p1p3 + 6p4

24
.
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Here, we assume that p1 =: p lies in the interval [0, 2] due to the invariant property
of class P under rotation. Equation (1.1), together with the above expressions of
ai’s, yields

H3(1) =
−p6 + 3p4p2 + 8p3p3 + 24pp2p3 − 9p2p22 − 18p2p4 − 9p32 − 16p23 + 18p2p4

144
.

Applying Lemma 1.1 in the above equation for the values of p2, p3, and p4 and
further reducing it to the simpler form, we arrive at

H3(1) =
1

1152

(
τ1(p, λ) + τ2(p, λ)µ+ τ3(p, λ)µ

2 + ς(p, λ, µ)δ

)
,

where δ, µ, λ ∈ D, and
τ1(p, λ) := −2p2λ2(4− p2)2 − 10p2λ3(4− p2)2 + p2λ4(4− p2)2

+ 3p4λ(4− p2) + 3p4λ2(4− p2)− 36p2λ2(4− p2)− 9p4λ3(4− p2),

τ2(p, λ) := (4− p2)(1− |λ|2)
(
12p3 + 36p3λ+ pλ(4− p2)(20− 4λ)

)
,

τ3(p, λ) := (4− p2)(1− |λ|2)
(
36p2λ− 4(4− p2)(|λ|2 + 8)

)
,

ς(p, λ, µ) := (4− p2)(1− |λ|2)(1− |µ|2)
(
−36p2 + 36λ(4− p2)

)
.

Assuming x := |λ| and y := |µ| and using the fact |δ| ≤ 1, we have

|H3(1)| ≤
|τ1(p, λ)|+ |τ2(p, λ)|y + |τ3(p, λ)|y2 + |ς(p, λ, µ)|

1152
≤ S(p, x, y),

where

S(p, x, y) :=
1

1152

(
s1(p, x) + s2(p, x)y + s3(p, x)y

2 + s4(p, x)(1− y2)

)
(2.9)

with
s1(p, x) := 2p2x2(4− p2)2 + 10p2x3(4− p2)2 + p2x4(4− p2)2 + 3p4x(4− p2)

+ 3p4x2(4− p2) + 36p2x2(4− p2) + 9p4x3(4− p2),

s2(p, x) := (4− p2)(1− x2)(12p3 + px(4− p2)(20 + 4x) + 36p3x),

s3(p, x) := (4− p2)(1− x2)(32(4− p2) + 4x2(4− p2) + 36p2x),

s4(p, x) := (4− p2)(1− x2)(36p2 + 36x(4− p2)).

Our aim is to maximize S(p, x, y) in the closed cuboid C : [0, 2] × [0, 1] × [0, 1].
We accomplish this by obtaining the maximum values in the interior of C, in the
interior of the six faces and on the twelve edges.

I. First we consider the interior points of C. Let (p, x, y) ∈ (0, 2) × (0, 1) ×
(0, 1). In order to achieve the maximum value in the interior of C, we partially
differentiate (2.9) with respect to y and further reduce it to a simpler expression
as

∂S

∂y
=

1

1152
(4− p2)(1− x2)

(
8y(x− 1)((4− p2)(x− 8) + 9p2)

+ 4p
(
x(4− p2)(5 + x) + p2(3 + 9x)

))
.
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Now ∂S
∂y

= 0 yields

y =: y0 =
2p(x(4− p2)(5 + x) + p2(3 + 9x))

(1− x)((4− p2)(x− 8) + 9p2)
.

In order to find the critical points, we first ensure 0 < y0 < 1, which holds only if
p3(6 + 18x) + 2px(4− p2)(5 + x) + (1− x)(8− x)(4− p2) < 9p2(1− x) (2.10)

and
9p2 > (4− p2)(8− x). (2.11)

We determine the common solutions for the above inequalities. A computation
shows that inequality (2.11) holds for all x ∈ (0, 1) whenever p > 1.37199, but
inequality (2.10) does not hold in (0, 2)× (0, 1). Therefore the function S has no
critical point in the given domain of values.

II. Below we calculate the maximum value on the six faces of the cuboid C.
On the face p = 0, S(p, x, y) becomes

h1(x, y) := S(0, x, y) =
(1− x2)(y2(x− 1)(x− 8) + 9x)

18
, (2.12)

where x, y ∈ (0, 1). We calculate
∂h1

∂y
=

(1− x2)y

9
((x− 1)(x− 8)) ̸= 0, x, y ∈ (0, 1).

Clearly, we can infer from above that h1 has no critical point in (0, 1)× (0, 1).
On the face p = 2, S(p, x, y) becomes

S(2, x, y) = 0, x, y ∈ (0, 1). (2.13)
On the face x = 0, S(p, x, y) becomes

S(p, 0, y) =: h2(p, y) =
(4− p2)

288

(
3p3y + y2(8(4− p2)− 9p2) + 9p2

)
, (2.14)

for y ∈ (0, 1) and p ∈ (0, 2). Now, we differentiate h2(p, y) partially with respect
to y and obtain

∂h2

∂y
=

(4− p2)

288

(
3p3 + 2y(8(4− p2)− 9p2)

)
, p ∈ (0, 2) and y ∈ (0, 1).

On solving ∂h2/∂y = 0, we get

y =
3p3

2(17p2 − 32)
, (2.15)

which belongs to (0, 1) only when p > p0 ≈ 1.47073. Upon substituting the value
of y from (2.15) in ∂h2/∂p = 0, we arrive at

p(16384− 25600p2 + 12944p4 − 2048p6 − 51p8

64(32− 17p2)2
= 0,

for p = 1.20671 in (0, 2). Thus there exists no critical point of h2 in (0, 2)× (0, 1).



50 S. BANGA, S.S. KUMAR

On the face x = 1, S(p, x, y) becomes

S(p, 1, y) =: h3(p) =
p2

576

(
176− 40p2 − p4

)
. (2.16)

To find the maximum value of h3, we solve ∂h3/∂p = 0, which implies p =: p0 ≈
1.42948 in (0, 2). A further calculation reveals h′′

3(p0) < 0, indicating that p0 is
the point of maxima and that

S(p, 1, y) ≤ S(p0, 1, y) ≈ 0.319595, p ∈ (0, 2) and y ∈ (0, 1).

On the face y = 0, S(p, x, y) becomes
S(p, x, 0) =: h4(p, x) =(4− p2)

(
144x(1− x2) + p4x(3 + x− x2 − x3)

+ 4p2(9− 9x+ 2x2 + 19x3 + x4)
)
.

A computation yields
∂h4

∂p
= 2p

(
3p4x(−3− x+ x2 + x3) + 16(9− 18x+ 2x2 + 28x3 + x4)

− 8p2(9− 12x+ x2 + 20x3 + 2x4)
)

and
∂h4

∂x
= (4−p2)(144(1−3x2)+p4(3+2x−3x2−4x3)+4p2(−9+4x+57x2+4x3)).

We observe that there is no common solution for the equations ∂h4

∂p
= 0 and

∂h4

∂x
= 0, which indicates there exists no critical point of h4(p, x) in (0, 2)× (0, 1).

On the face y = 1, S(p, x, y) becomes S(p, x, 1), given as

h5(p, x) :=
1

1152

(
(1− x2)(512 + 64x2 + 16px(20 + 4x) + p2(176x2 + 160x3 + 16x4

− 256 + 144x− 32x2) + p4(12x− 40x2 − 44x3 − 8x4 + 32− 36x+ 4x2)

+ p3(48 + 144x− 8x(20 + 4x)) + p5(−12− 36x+ x(20 + 4x))

+ p6(−3x− x2 + x3 + x4))

)
.

On solving ∂h5(p,x)
∂x

= 0 and ∂h5(p,x)
∂p

= 0, we observe that there is no common
solution to these equations. Hence there exists no critical point of h5 in (0, 2)×
(0, 1).

III. Finally, we find the maximum values attained by S(p, x, y) on the edges of
the cuboid C. Equations (2.12), (2.13), (2.14), and (2.16) are appropriately used
to evaluate S(p, x, y) below for particular values of p, x, and y.

(i) S(p, 0, 0) = p2(4 − p2)/32 =: l1(p). Now, l′1(p) = 0 for p = 0 and p =:
γ0 =

√
2. Simply by the second derivative test, we obtain that p = 0 is

the point of minima and that the maximum value 1/8 is attained at γ0.
So, we have

S(p, 0, 0) ≤ 1

8
, p ∈ [0, 2].
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(ii) S(p, 0, 1) = (4−p2)(32−8p2+3p3)/288, which is a decreasing function of
p in the given range of p. Thus maximum value is obtained at p = 0 and

S(p, 0, 1) ≤ S(0, 0, 1) =
4

9
, p ∈ [0, 2].

(iii) Since S(p, 1, y) is independent of y, we obtain S(p, 1, 0) = S(p, 1, 1) =
p2(176− 40p2 − p4)/576 = h3(p), given in (2.16). Thus

S(p, 1, 0) = S(p, 1, 1) ≤ 0.319595, p ∈ [0, 2].

(iv) S(0, 0, y) = 4y2/9, clearly which attains the maximum value 4/9 at y = 1.
So

S(0, 0, y) ≤ 4

9
, y ∈ [0, 1].

(v) S(0, 1, y) = S(2, 0, y) = S(2, 1, y) = 0, y ∈ [0, 1].
(vi) S(0, x, 0) = x(1 − x2)/2 =: l3(x). Now l′3(x) = (1 − 3x2)/2 = 0 gives

x = γ1 := 1/
√
3 in the interval [0, 1]. Furthermore, the second derivative

of l3(x) is negative at γ1. Thus γ1 is the point of maxima and

S(0, x, 0) ≤ 1

3
√
3
= 0.19245, x ∈ [0, 1].

(vii) S(0, x, 1) = (1 − x2)(x2 + 8)/18, which is a decreasing function of x in
[0, 1]. So clearly the maximum value is attained at x = 0, and we have

S(0, x, 1) ≤ 4

9
, x ∈ [0, 1].

(viii) S(2, x, 0) = S(2, x, 1) = 0, x ∈ [0, 1].
Considering I–III cases altogether, the inequality (2.7) is proved. Define the
function f̃ : D → C as follows:

f̃(z) = z exp

∫ z

0

(
1+t3

1−t3

)
− 1

t
dt

 = z +
2z4

3
+ · · · ,

which clearly belongs to S∗ and for which, we have a2 = a3 = a5 = 0 and a4 = 2/3.
This shows that the bound |H3(1)| is sharp as (1.1) yields |H3(1)| = 4/9 for this
function. □

Acknowledgement. The first author is supported by a Research Fellowship
from the Department of Science and Technology, New Delhi (Ref No. IF170272).

References
1. R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, Differential subordination for func-

tions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012) 1017–1026.
2. R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemnis-

cate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012) 6557–6565.
3. K.O. Babalola, On H3(1) Hankel determinants for some classes of univalent functions,

Inequal. Theory Appl. 6 (2010) 7 pp.
4. S. Banga and S.S. Kumar, The sharp bounds of the second and third Hankel determinants

for the class SL∗, Math. Slovaca 70 (2020) 849–862.



52 S. BANGA, S.S. KUMAR

5. N.E. Cho, S. Kumar and V. Kumar, Hermitian–Toeplitz and Hankel determinants for
certain starlike functions, Asian-Eur. J. Math. 15 (2022), no. 3, Article no. 2250042, 16 pp.

6. P. Dienes, The Taylor Series: An Introduction to the Theory of Functions of a Complex
Variable, Dover Publications, New York, 1957.

7. M.E.H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex
Variables Theory Appl. 14 (1990) 77–84.

8. F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910) 193–203.
9. W. Janowski, Extremal problems for a family of functions with positive real part and for

some related families, Ann. Polon. Math. 23 (1970/1971) 159–177.
10. N. Khan, M. Shafiq, M. Darus, B. Khan and Q. Ahmad, Upper bound of the third Hankel

determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli,
J. Math. Inequal. 14 (2020) 53–65.

11. B. Kowalczyk, A. Lecko, M. Lecko and Y.J. Sim, The sharp bound of the third Hankel
determinant for some classes of analytic functions, Bull. Korean Math. Soc. 55 (2018)
1859–1868.

12. B. Kowalczyk, A. Lecko, M. Lecko and Y.J. Sim, The sharp bound for the Hankel determi-
nant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018) 435–445.

13. S.S. Kumar, V. Kumar, V. Ravichandran and N.E. Cho, Sufficient conditions for starlike
functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), Article
no. 176, 13 pp.

14. O.S. Kwon, A. Lecko and Y.J. Sim, On the fourth coefficient of functions in the Carathéodory
class, Comput. Methods Funct. Theory 18 (2018) 307–314.

15. O.S. Kwon, A. Lecko and Y.J. Sim, The bound of the Hankel determinant of the third kind
for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019) 767–780.

16. A. Lecko, Y.J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of
the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13 (2019)
2231–2238.

17. R.J. Libera and E.J. Złotkiwicz, Early coefficients of the inverse of a regular convex function,
Proc. Amer. Math. Soc. 85 (1982) 225–230.

18. S. Mahmood, M. Jabeen, S.N. Malik, H.M. Srivastava, R. Manzoor and S.M. Riaz, Some
coefficient inequalities of q-starlike functions associated with conic domain defined by q-
derivative, J. Funct. Spaces 2018 (2018), Article no. 8492072, 13 pp.

19. R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions
associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015) 365–386.

20. K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary
rotation, Rev. Roumaine Math. Pures Appl. 28 (1983) 731–739.

21. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J.
Lond. Math. Soc. 1 (1966) 111–122.

22. V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions,
C. R. Math. Acad. Sci. Paris 353 (2015) 505–510.

23. M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic
functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), Article no.
412, 8 pp.

24. M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (1985) 135–140.
25. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions,

Proc. Amer. Math. Soc. 118 (1993) 189–196.
26. J. Sokół, Radius problems in the class S L ∗, Appl. Math. Comput. 214 (2009) 569–573.
27. J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike

functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996) 101–105.
28. H.M. Srivastava and B. Deepak, Close-to-convexity of a certain family of q-Mittag-Leffler

functions, J. Nonlinear Var. Anal. 1 (2017) 61–69.
29. P. Zaprawa, Second Hankel determinants for the class of typically real functions, Abstr.

Appl. Anal. 2016 (2016) 7 pp.



SHARP BOUNDS OF THIRD HANKEL DETERMINANT 53

30. P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J.
Math. 14 (2017) 10 pp.

31. P. Zaprawa, O. Milutin and N. Tuneski, Third Hankel determinant for univalent starlike
functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no.
2, Article no. 49, 6 pp.

1Department of Applied Mathematics, Delhi Technological University, India.
Email address: shagun05banga@gmail.com; spkumar@dce.ac.ir


	1. Introduction and preliminaries
	2. Main results
	References

