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Abstract. Sabah, Khan, Kočina developed strongly star semi-compactness
of a topological space in 2016, which is a variant of star-compactness in which
semi-open covers are employed instead of open covers. The goal of this study
is to compare the structure of strongly star semi-compactness to that of other
topological characteristics with similar structures. Furthermore, the nature of
a strongly star semi-compact space’s subspace and the features of a strongly
star semi-compact subset relative to a space are examined.

1. Introduction

In 1963, Levine [18] introduced the concept of semi-open sets in topological
spaces. Since then, numerous mathematicians have stretched different concep-
tions of topological attributes in new settings of semi-open sets and examined
such aspects. A set A in a topological space (X, τ) is semi-open if and only if
there exists U ∈ τ such that U ⊆ A ⊆ Cl(U), where Cl(U) signifies the closure
of the set U . Equivalently, A is semi-open if and only if A ⊆ Cl(int(A)) (int(A)
represents the interior of the set A). The complement of semi-open set A is
called semi-closed [8]. A semi-regular subset of a space (X, τ) is one that is both
semi-open and semi-closed. A semi-open set may or may not be open, whereas
an open set is always semi-open. The intersection of two semi-open sets may not
be semi-open, but the union of any number of semi-open sets is. An open set’s
intersection with a semi-open set is always semi-open.
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Suppose that M is a subset of a set X and that U is a collection of subsets of
X. Then (n+ 1)-star of M with respect to U is denoted and defined as

Stn+1(M,U) = St(Stn(M,U),U)

where St1(M,U) = St(M,U) =
∪
{U ∈ U : U ∩M ̸= ∅} and n = 1, 2, 3, . . . .

A topological space (X, τ) is called a star-compact space (also star finite space
with respect to some other literature) if for every open cover U of X, there exists a
finite set F ⊆ X such that St(F,U) = X [12]. Recent variations of star-compact
space and investigations on these properties can be found in [1–7,14–17,21–23,25].

In 2016, Sabah, Khan, and Kočina [20] employed covers by semi-open sets
in the concept of star-compact space to discover a variation known as strongly
star semi-compactness. Our major goal is to examine the structure of strongly
star semi-compactness. While they focused on related selection principles, star
s-Menger spaces, and star s-Hurewicz spaces, they did not address the proper-
ties of strongly star semi-compactness and its relation to other similar struc-
tures. Compactness [13], semi-compactness [11], star compactness [12], and star
s-Menger spaces [20] have structures that are closer to that of strongly star semi-
compactness, according to the literature. We compare the structure of the above-
mentioned topological features in this work. This study also discusses various
other topological characteristics relating to special functions and subspaces.

2. Preliminaries

A space X denotes a topological space X with the topology τ throughout the
text. Unless otherwise indicated, no separation axioms have been imposed. We
use [13] for core concepts and nomenclatures.

Definition 2.1 ([11]). A topological space (X, τ) is called a semi-compact space
if every cover of X by semi-open sets has a finite subcover.

Definition 2.2 ([20]). A topological space (X, τ) is called a strongly star semi-
compact space if for every cover U of X by semi-open sets, we can find a finite
subset F ⊆ X such that St(F,U) = X.

Definition 2.3 ([20]). A topological space (X, τ) is called star s-Menger if for
each sequence (Un : n ∈ N) of covers by semi-open sets, there is a sequence (Vn :
n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un and

∪
n∈N{St(V,Un) :

V ∈ Vn} is a cover of X by semi-open sets.

Definition 2.4 ([9]). A function f : (X, τ) → (Y, σ) is called an irresolute if the
inverse image of each semi-open set in Y is a semi-open set in X.

Definition 2.5 ([24]). A subset A of a space (X, τ) is called an α-set if A ⊆ int(
Cl(int(A))).

It is evident to mention that every open set of a space is an α-set in that space.

Lemma 2.6 ([19]). If A is an α-set of a space X and V is a semi-open set in
X, then V ∩ A is a semi-open set in the subspace (A, τA).
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Lemma 2.7 ([10]). If Y is an open set in X and A ⊆ Y , then A is a semi-open
set in X if and only if A is semi-open in the space (Y, τY ).

Lemma 2.8 ([20]). Let (Y, τY ) is a subspace of a topological space (X, τ) and V
is a semi-open set in Y . Then there exists a semi-open set U in X such that
V = Y ∩ U .

3. On strongly star semi-compactness

Proposition 3.1. Every semi-compact topological space is a strongly star semi-
compact space.

Proof. Let U be a cover by semi-open sets of a semi-compact space (X, τ). Then
there exists a finite subset U ′ = {U1, U2, U3, . . . , Uk} ⊆ U such that

∪
U ′ =∪k

i=1 Ui = X. Now if we take xi ∈ Ui for each i = 1, 2, . . . , k and form a finite set
F = {x1, x2, x3, . . . , xk}, then X = St(F,U ′) ⊆ St(F,U) = X. Therefore, (X, τ)
is a strongly star semi-compact space. □
Example 3.2. Converse of the above proposition may not be true.

Consider the set X = N and the topology τ = {{1, 2, 3, . . . , n} : n ∈ N}∪{X, ∅}
on X. Any subset A ⊆ X other than ∅ that does not contain 1 has int(A) = ∅.
Hence Cl(int(A)) = ∅, which implies A ̸⊆ Cl(int(A)). Therefore every semi-open
subset of X contains 1. Now consider an arbitrary cover U of X by semi-open
sets. Then for the finite subset F = {1} ⊆ X, we have St(F,U) =

∪
U = X.

Hence (X, τ) is a strongly star semi-compact space.
On the other hand, consider the cover U = {Un = {1, 2, 3, . . . , n} : n ∈ N} of

(X, τ) by semi-open sets of X. Suppose that it has a finite subcover U ′. By the
construction of the space, there exists a largest set Uα ∈ U ′, where α ∈ N. So∪

U = Uα = {1, 2, 3, . . . , α}. Thus {α + 1, α + 2, α + 3, . . . } remains uncovered.
Thus U cannot have a finite subcover. Hence (X, τ) is not semi-compact.

Proposition 3.3. Every strongly star semi-compact space is a star-compact space.

Proof. Let (X, τ) be a strongly star semi-compact space and let U be a open cover
of X. Since every open set is a semi-open set, U can be considered as a cover by
semi-open sets. Indeed, (X, τ) is a strongly star semi-compact space. Therefore
there exists a finite subset F ⊆ X such that St(F,U) = X. Hence (X, τ) is a
star-compact space. □
Example 3.4. Converse of the above proposition may not be true.

Let X = R with the topology τ = {X, ∅} ∪ P(N). There does not exist any
nontrivial open cover of (X, τ). So (X, τ) is trivially compact, hence star-compact.

Now we consider the cover U = {Un : n ∈ N}, where

Un =

{
{1} ∪ (R \ N) if n = 1,

{n} otherwise.

Here {n} ∈ τ , therefore each {n} is semi-open. So Un is semi-open for each
n ∈ N \ {1}.
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On the other hand,
Cl(int(U1)) = Cl(int({1}∪(R\N))) = Cl({1}) = R\(N\{1}) = {1}∪(R\N) = U1.

Thus U is a cover by semi-open sets. Since Un ∈ U are pairwise disjoint and
U is countably infinite, for any finite subset F ⊂ X, there exists p ∈ N \ {1}
such that p ̸∈ F . So, p ̸∈ St(F,U). Therefore, St(F,U) ̸= X. Thus (X, τ) is not
strongly star semi-compact.
Proposition 3.5. Every strongly star semi-compact space is a star s-Menger
space.
Proof. Let (X, τ) be a strongly star semi-compact space and let U be an ar-
bitrary cover of X by semi-open sets. Then there exists a finite subset F =
{x1, x2, x3, . . . xn} of X such that St(F,U) = X. Since U is a cover of X, there ex-
ists a subset V = {U1, U2, U3, . . . , Un} of U such that xi ∈ Ui, for i = 1, 2, 3, . . . , n.
Therefore St(

∪
V ,U) ⊆ St(F,U) = X. Hence (X, τ) is a star s-Manger space. □

It follows that we have the following implication diagram in Figure 1:

Figure 1. Relation diagram

Problem 3.6. Does there exists a topological space that is a star s-Manger space
but not strongly star semi-compact space?

4. Subspaces of strongly star semi-compact spaces

Example 4.1. An arbitrary subspace of a strongly star semi-compact space may
not be strongly star semi-compact.

Let X = N. Then B = {{1, n} : n ∈ N} ∪ {∅} is a base for a suitable topology
on X. Suppose that τ is the topology generated by B. For a non-trivial subset
A ⊂ X, if 1 ̸∈ A, then int(A) = ∅ and Cl(int(A)) = ∅. So every semi-open
set must contain 1. Thus for every cover U of X by semi-open sets, we have a
finite subset F = {1} such that St(F,U) = X. Hence, (X, τ) is a strongly star
semi-compact space.

We consider the subset M = N \ {1} ⊂ X. Then (M, τM) is a subspace of
(X, τ), where τM = P(M). V = {{n} : n ∈ M} is a cover of M by the semi-open
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subsets of M . Indeed V is an infinite collection of pairwise disjoint subsets of M .
So for every finite subset F ⊆ M , St(F,V) ̸= M ; that is, (M, τM) is not a strongly
star semi-compact space. Hence a subspace of a strongly star semi-compact space
may not be strongly star semi-compact.
Theorem 4.2. A semi-regular subspace of a strongly star semi-compact space is
strongly star semi-compact as a subspace.
Proof. Let M be a semi-regular subspace of a strongly star semi-compact space
(X, τ) and let U = {Uβ : β ∈ Λ} be a cover of M by semi-open sets in M .
However, we know that semi-open sets in a semi-open subspace are semi-open in
the whole space. Therefore Uβ is semi-open in X for each β ∈ Λ. We also have M
as semi-closed set in X. Therefore X\M is semi-open in X. Thus V = U∪{X\M}
is a cover of X by semi-open sets in X. Nevertheless, X is strongly star semi-
compact. Therefore there exists a finite subset F ⊆ X such that St(F,V) = X.
It follows that M ∩ F is a finite subset of M and St(M ∩ F,U) = M . Hence M
is strongly star-semi compact as a subspace. □

5. Strongly star semi-compact subsets relative to a space

Definition 5.1. In a topological space (X, τ), a subset G ⊆ X is called a strongly
star semi-compact subset relative to X if for every semi-open cover V of G by
semi-open sets in X, there exists a finite subset F ⊆ G such that St(F,V) ⊇ G.
Theorem 5.2. A necessary and sufficient condition for an open set S of a space
(X, τ) to be strongly star semi-compact as subspace is that S is semi-compact
relative to X.
Proof. Let (S, τS) be a strongly star semi-compact subspace of (X, τ), where
S ∈ τ , and suppose that U = {Uβ : β ∈ Λ} is a cover of S by semi-open sets in
X. Since S ∈ τ , S is an α-set in X and by Lemma 2.6, Uβ ∩ S is semi-open in
S for each β ∈ Λ, that is, US = {Uβ ∩ S : β ∈ Λ} is a cover of S by semi-open
sets in S. However (S, τS) is strongly star semi-compact. Therefore there exist
a finite subset F ⊂ S such that S = St(F,Us). So S ⊆ St(F,U). Hence S is a
semi-compact subset relative to X.

Conversely, let S be strongly star semi-compact relative to X, where S ∈ τ ,
and suppose that U = {Uβ : β ∈ Λ} is a cover of S by semi-open sets in S.
By Lemma 2.7, Uβ is semi-open in X for all β ∈ Λ, that is, U is a cover of S
by semi-open sets in X. However, S is strongly star semi-compact relative to X.
Therefore there exists a finite subset F ⊆ S with S ⊆ St(F,U). So, St(F,U) = S.
Hence S is a strongly star semi-compact subspace. □
Theorem 5.3. Let M and N be subsets of a topological space (X, τ) such that
M ⊆ N and N is an α-set in X. Then M is strongly star semi-compact relative
to N if and only if M is strongly star semi-compact relative to X.
Proof. Let M and N be subsets of X in a topological space (X, τ), where M ⊆ N
and N is an α-set in X. Suppose that M is strongly star semi-compact relative
to the subspace (N, τN) and that U = {Uβ : β ∈ Λ} is a cover of M by semi-open
subsets in X. By Lemma 2.6, UN = {Uβ : β ∈ Λ} is a cover of M by semi-open
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sets in N . However M is strongly star semi-compact relative to N . Therefore
there exists a finite subset F ⊆ M such that M ⊆ St(F,UN) ⊆ St(F,U). Hence
X is strongly star semi-compact relative to X.

Let M and N be subsets of X in a topological space (X, τ), where M ⊆ N and
N is an α-set in X. Suppose that M is strongly star semi-compact relative to
X and that U = {Uβ : β ∈ Λ} is a cover of M by semi-open subsets in (N, τN).
Then by Lemma 2.8, for each β ∈ Λ, there exists Vβ, semi-open in X such that
Uβ = Vβ ∩ N . Now, V = {Vβ : β ∈ Λ} is a cover of M by semi-open sets in
X. However, M is strongly star semi-compact relative to (X, τ). Therefore there
exists a finite subset F ⊆ M such that M ⊆ St(F,V).

Now suppose that W is the collection of all Vβ ∈ V such that F ∩ Vβ ̸= ∅.
Therefore M ⊆ St(F,V) = ∪W , which implies M ⊆ M ∩ (∪W) =

∪
Vβ∈W(M ∩

Vβ) =
∪

Vβ∈W Uβ.

Now for all Vβ ∈ W , we have F ∩ Vβ ̸= ∅.
Since F ⊆ M , so F ∩ (Vβ ∩M) ̸= ∅ for all Vβ ∈ W . Therefore F ∩ Uβ ̸= ∅ for

all Vβ ∈ W , which implies M ⊆
∪

Vβ
Uβ ⊆ St(F,U).

Hence M is strongly star semi-compact relative to (N, τN). □
Proposition 5.4. In a topological space (X, τ), let {An : n = 1, 2, 3, . . . , n} be a
finite collection of strongly star semi-compact subsets relative to X. Then

∪n
i=1An

is also a strongly star semi-compact subset relative to X.
Proof. The proof follows directly, hence omitted. □
Theorem 5.5. If a function f : (X, τ) → (Y, σ) is an irresolute surjection and if
X is a strongly star semi-compact space, then f(X) is strongly star semi-compact
relative to Y .
Proof. Let {Vβ : β ∈ Λ} be a cover of f(X) by semi-open sets in Y . Then the
collection U = {Uβ = f−1(Vβ) : β ∈ Λ} is a cover of X by semi-open sets in X.
However, X is a strongly star semi-compact space. Therefore there exist a finite
subset F ⊆ X such that St(F,U) = X. By surjection, f(F ) is a finite subset of
f(X). Suppose f(X) ̸⊆ St(f(F ),V). Therefore there exists y ∈ f(X) such that
y ̸∈ St(f(F ),V).

Therefore, for all f(F ) ∩ Vβ ̸= ∅, y ̸∈ Vβ for all β ∈ Λ.
Hence, for all f−1(f(F ) ∩ Vβ) ̸= ∅, x ̸∈ f(Vβ) for all β ∈ Λ and f(x) = y.
Thus, for all f−1(f(F )) ∩ f−1(Vβ) ̸= ∅, x ̸∈ f(Vβ) for all β ∈ Λ and f(x) = y.
Finally, for all F ∩ Uβ ̸= ∅, x ̸∈ Uβ for all β ∈ Λ and f(x) = y.
As a result, x ̸∈ St(F,U). Therefore St(F,U) ̸= X, which is a contradiction.

Hence f(X) ⊆ St(f(F ),U). That is, f(X) is strongly star semi-compact relative
to Y . □
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