DOI: 10.22034/KJM.2022.342863.2546

Khayyam Journal of Mathematics

emis.de/journals/KJMkjm-math.org

ON STRONGLY STAR SEMI-COMPACTNESS OF TOPOLOGICAL SPACES

PRASENJIT BAL 1* AND RUPAM DE 1

Communicated by B. Mashayekhy

ABSTRACT. Sabah, Khan, Kočina developed strongly star semi-compactness of a topological space in 2016, which is a variant of star-compactness in which semi-open covers are employed instead of open covers. The goal of this study is to compare the structure of strongly star semi-compactness to that of other topological characteristics with similar structures. Furthermore, the nature of a strongly star semi-compact space's subspace and the features of a strongly star semi-compact subset relative to a space are examined.

1. Introduction

In 1963, Levine [18] introduced the concept of semi-open sets in topological spaces. Since then, numerous mathematicians have stretched different conceptions of topological attributes in new settings of semi-open sets and examined such aspects. A set A in a topological space (X,τ) is semi-open if and only if there exists $U \in \tau$ such that $U \subseteq A \subseteq Cl(U)$, where Cl(U) signifies the closure of the set U. Equivalently, A is semi-open if and only if $A \subseteq Cl(int(A))$ (int(A) represents the interior of the set A). The complement of semi-open set A is called semi-closed [8]. A semi-regular subset of a space (X,τ) is one that is both semi-open and semi-closed. A semi-open set may or may not be open, whereas an open set is always semi-open. The intersection of two semi-open sets may not be semi-open, but the union of any number of semi-open sets is. An open set's intersection with a semi-open set is always semi-open.

Date: Received: 17 May 2022; Accepted: 10 October 2022.

^{*}Corresponding Author.

²⁰²⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54C08, 54D30.

Key words and phrases. Semi-open set, Star-compactness, Semi-compactness, Star s-Menger.

Suppose that M is a subset of a set X and that \mathcal{U} is a collection of subsets of X. Then (n+1)-star of M with respect to \mathcal{U} is denoted and defined as

$$St^{n+1}(M,\mathcal{U}) = St(St^n(M,\mathcal{U}),\mathcal{U})$$

where $St^1(M,\mathcal{U}) = St(M,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap M \neq \emptyset\}$ and $n = 1, 2, 3, \dots$

A topological space (X, τ) is called a star-compact space (also star finite space with respect to some other literature) if for every open cover \mathcal{U} of X, there exists a finite set $F \subseteq X$ such that $St(F, \mathcal{U}) = X$ [12]. Recent variations of star-compact space and investigations on these properties can be found in [1–7,14–17,21–23,25].

In 2016, Sabah, Khan, and Kočina [20] employed covers by semi-open sets in the concept of star-compact space to discover a variation known as strongly star semi-compactness. Our major goal is to examine the structure of strongly star semi-compactness. While they focused on related selection principles, star s-Menger spaces, and star s-Hurewicz spaces, they did not address the properties of strongly star semi-compactness and its relation to other similar structures. Compactness [13], semi-compactness [11], star compactness [12], and star s-Menger spaces [20] have structures that are closer to that of strongly star semi-compactness, according to the literature. We compare the structure of the above-mentioned topological features in this work. This study also discusses various other topological characteristics relating to special functions and subspaces.

2. Preliminaries

A space X denotes a topological space X with the topology τ throughout the text. Unless otherwise indicated, no separation axioms have been imposed. We use [13] for core concepts and nomenclatures.

Definition 2.1 ([11]). A topological space (X, τ) is called a semi-compact space if every cover of X by semi-open sets has a finite subcover.

Definition 2.2 ([20]). A topological space (X, τ) is called a strongly star semi-compact space if for every cover \mathcal{U} of X by semi-open sets, we can find a finite subset $F \subseteq X$ such that $St(F, \mathcal{U}) = X$.

Definition 2.3 ([20]). A topological space (X, τ) is called star s-Menger if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of covers by semi-open sets, there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, \mathcal{V}_n is a finite subset of \mathcal{U}_n and $\bigcup_{n \in \mathbb{N}} \{St(V, \mathcal{U}_n) : V \in \mathcal{V}_n\}$ is a cover of X by semi-open sets.

Definition 2.4 ([9]). A function $f:(X,\tau)\to (Y,\sigma)$ is called an irresolute if the inverse image of each semi-open set in Y is a semi-open set in X.

Definition 2.5 ([24]). A subset A of a space (X, τ) is called an α -set if $A \subseteq int(Cl(int(A)))$.

It is evident to mention that every open set of a space is an α -set in that space.

Lemma 2.6 ([19]). If A is an α -set of a space X and V is a semi-open set in X, then $V \cap A$ is a semi-open set in the subspace (A, τ_A) .

Lemma 2.7 ([10]). If Y is an open set in X and $A \subseteq Y$, then A is a semi-open set in X if and only if A is semi-open in the space (Y, τ_Y) .

Lemma 2.8 ([20]). Let (Y, τ_Y) is a subspace of a topological space (X, τ) and V is a semi-open set in Y. Then there exists a semi-open set U in X such that $V = Y \cap U$.

3. On strongly star semi-compactness

Proposition 3.1. Every semi-compact topological space is a strongly star semi-compact space.

Proof. Let \mathcal{U} be a cover by semi-open sets of a semi-compact space (X, τ) . Then there exists a finite subset $\mathcal{U}' = \{U_1, U_2, U_3, \dots, U_k\} \subseteq \mathcal{U}$ such that $\bigcup \mathcal{U}' = \bigcup_{i=1}^k U_i = X$. Now if we take $x_i \in U_i$ for each $i = 1, 2, \dots, k$ and form a finite set $F = \{x_1, x_2, x_3, \dots, x_k\}$, then $X = St(F, \mathcal{U}') \subseteq St(F, \mathcal{U}) = X$. Therefore, (X, τ) is a strongly star semi-compact space.

Example 3.2. Converse of the above proposition may not be true.

Consider the set $X = \mathbb{N}$ and the topology $\tau = \{\{1, 2, 3, \dots, n\} : n \in \mathbb{N}\} \cup \{X, \emptyset\}$ on X. Any subset $A \subseteq X$ other than \emptyset that does not contain 1 has $int(A) = \emptyset$. Hence $Cl(int(A)) = \emptyset$, which implies $A \not\subseteq Cl(int(A))$. Therefore every semi-open subset of X contains 1. Now consider an arbitrary cover \mathcal{U} of X by semi-open sets. Then for the finite subset $F = \{1\} \subseteq X$, we have $St(F, \mathcal{U}) = \bigcup \mathcal{U} = X$. Hence (X, τ) is a strongly star semi-compact space.

On the other hand, consider the cover $\mathcal{U} = \{U_n = \{1, 2, 3, \dots, n\} : n \in \mathbb{N}\}$ of (X, τ) by semi-open sets of X. Suppose that it has a finite subcover \mathcal{U}' . By the construction of the space, there exists a largest set $U_{\alpha} \in \mathcal{U}'$, where $\alpha \in \mathbb{N}$. So $\bigcup \mathcal{U} = U_{\alpha} = \{1, 2, 3, \dots, \alpha\}$. Thus $\{\alpha + 1, \alpha + 2, \alpha + 3, \dots\}$ remains uncovered. Thus \mathcal{U} cannot have a finite subcover. Hence (X, τ) is not semi-compact.

Proposition 3.3. Every strongly star semi-compact space is a star-compact space.

Proof. Let (X, τ) be a strongly star semi-compact space and let \mathcal{U} be a open cover of X. Since every open set is a semi-open set, \mathcal{U} can be considered as a cover by semi-open sets. Indeed, (X, τ) is a strongly star semi-compact space. Therefore there exists a finite subset $F \subseteq X$ such that $St(F, \mathcal{U}) = X$. Hence (X, τ) is a star-compact space.

Example 3.4. Converse of the above proposition may not be true.

Let $X = \mathbb{R}$ with the topology $\tau = \{X, \emptyset\} \cup \mathcal{P}(\mathbb{N})$. There does not exist any nontrivial open cover of (X, τ) . So (X, τ) is trivially compact, hence star-compact. Now we consider the cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$, where

$$U_n = \begin{cases} \{1\} \cup (\mathbb{R} \setminus \mathbb{N}) & \text{if } n = 1, \\ \{n\} & \text{otherwise.} \end{cases}$$

Here $\{n\} \in \tau$, therefore each $\{n\}$ is semi-open. So U_n is semi-open for each $n \in \mathbb{N} \setminus \{1\}$.

On the other hand,

$$Cl(int(U_1)) = Cl(int(\{1\} \cup (\mathbb{R} \setminus \mathbb{N}))) = Cl(\{1\}) = \mathbb{R} \setminus (\mathbb{N} \setminus \{1\}) = \{1\} \cup (\mathbb{R} \setminus \mathbb{N}) = U_1.$$

Thus \mathcal{U} is a cover by semi-open sets. Since $U_n \in \mathcal{U}$ are pairwise disjoint and \mathcal{U} is countably infinite, for any finite subset $F \subset X$, there exists $p \in \mathbb{N} \setminus \{1\}$ such that $p \notin F$. So, $p \notin St(F,\mathcal{U})$. Therefore, $St(F,\mathcal{U}) \neq X$. Thus (X,τ) is not strongly star semi-compact.

Proposition 3.5. Every strongly star semi-compact space is a star s-Menger space.

Proof. Let (X, τ) be a strongly star semi-compact space and let \mathcal{U} be an arbitrary cover of X by semi-open sets. Then there exists a finite subset $F = \{x_1, x_2, x_3, \dots x_n\}$ of X such that $St(F, \mathcal{U}) = X$. Since \mathcal{U} is a cover of X, there exists a subset $\mathcal{V} = \{U_1, U_2, U_3, \dots, U_n\}$ of \mathcal{U} such that $x_i \in U_i$, for $i = 1, 2, 3, \dots, n$. Therefore $St(\bigcup \mathcal{V}, \mathcal{U}) \subset St(F, \mathcal{U}) = X$. Hence (X, τ) is a star s-Manger space. \square

It follows that we have the following implication diagram in Figure 1:

FIGURE 1. Relation diagram

Problem 3.6. Does there exists a topological space that is a star s-Manger space but not strongly star semi-compact space?

4. Subspaces of strongly star semi-compact spaces

Example 4.1. An arbitrary subspace of a strongly star semi-compact space may not be strongly star semi-compact.

Let $X = \mathbb{N}$. Then $\mathcal{B} = \{\{1, n\} : n \in \mathbb{N}\} \cup \{\emptyset\}$ is a base for a suitable topology on X. Suppose that τ is the topology generated by \mathcal{B} . For a non-trivial subset $A \subset X$, if $1 \notin A$, then $int(A) = \emptyset$ and $Cl(int(A)) = \emptyset$. So every semi-open set must contain 1. Thus for every cover \mathcal{U} of X by semi-open sets, we have a finite subset $F = \{1\}$ such that $St(F, \mathcal{U}) = X$. Hence, (X, τ) is a strongly star semi-compact space.

We consider the subset $M = \mathbb{N} \setminus \{1\} \subset X$. Then (M, τ_M) is a subspace of (X, τ) , where $\tau_M = \mathcal{P}(M)$. $\mathcal{V} = \{\{n\} : n \in M\}$ is a cover of M by the semi-open

subsets of M. Indeed \mathcal{V} is an infinite collection of pairwise disjoint subsets of M. So for every finite subset $F \subseteq M$, $St(F,\mathcal{V}) \neq M$; that is, (M,τ_M) is not a strongly star semi-compact space. Hence a subspace of a strongly star semi-compact space may not be strongly star semi-compact.

Theorem 4.2. A semi-regular subspace of a strongly star semi-compact space is strongly star semi-compact as a subspace.

Proof. Let M be a semi-regular subspace of a strongly star semi-compact space (X,τ) and let $\mathcal{U}=\{U_{\beta}:\beta\in\Lambda\}$ be a cover of M by semi-open sets in M. However, we know that semi-open sets in a semi-open subspace are semi-open in the whole space. Therefore U_{β} is semi-open in X for each $\beta\in\Lambda$. We also have M as semi-closed set in X. Therefore $X\setminus M$ is semi-open in X. Thus $\mathcal{V}=\mathcal{U}\cup\{X\setminus M\}$ is a cover of X by semi-open sets in X. Nevertheless, X is strongly star semi-compact. Therefore there exists a finite subset $F\subseteq X$ such that $St(F,\mathcal{V})=X$. It follows that $M\cap F$ is a finite subset of M and $St(M\cap F,\mathcal{U})=M$. Hence M is strongly star-semi compact as a subspace.

5. Strongly star semi-compact subsets relative to a space

Definition 5.1. In a topological space (X, τ) , a subset $G \subseteq X$ is called a strongly star semi-compact subset relative to X if for every semi-open cover \mathcal{V} of G by semi-open sets in X, there exists a finite subset $F \subseteq G$ such that $St(F, \mathcal{V}) \supseteq G$.

Theorem 5.2. A necessary and sufficient condition for an open set S of a space (X,τ) to be strongly star semi-compact as subspace is that S is semi-compact relative to X.

Proof. Let (S, τ_S) be a strongly star semi-compact subspace of (X, τ) , where $S \in \tau$, and suppose that $\mathcal{U} = \{U_\beta : \beta \in \Lambda\}$ is a cover of S by semi-open sets in X. Since $S \in \tau$, S is an α -set in X and by Lemma 2.6, $U_\beta \cap S$ is semi-open in S for each $\beta \in \Lambda$, that is, $\mathcal{U}_S = \{U_\beta \cap S : \beta \in \Lambda\}$ is a cover of S by semi-open sets in S. However (S, τ_S) is strongly star semi-compact. Therefore there exist a finite subset $F \subset S$ such that $S = St(F, \mathcal{U}_S)$. So $S \subseteq St(F, \mathcal{U})$. Hence S is a semi-compact subset relative to X.

Conversely, let S be strongly star semi-compact relative to X, where $S \in \tau$, and suppose that $\mathcal{U} = \{U_{\beta} : \beta \in \Lambda\}$ is a cover of S by semi-open sets in S. By Lemma 2.7, U_{β} is semi-open in X for all $\beta \in \Lambda$, that is, \mathcal{U} is a cover of S by semi-open sets in X. However, S is strongly star semi-compact relative to X. Therefore there exists a finite subset $F \subseteq S$ with $S \subseteq St(F,\mathcal{U})$. So, $St(F,\mathcal{U}) = S$. Hence S is a strongly star semi-compact subspace.

Theorem 5.3. Let M and N be subsets of a topological space (X, τ) such that $M \subseteq N$ and N is an α -set in X. Then M is strongly star semi-compact relative to N if and only if M is strongly star semi-compact relative to X.

Proof. Let M and N be subsets of X in a topological space (X, τ) , where $M \subseteq N$ and N is an α -set in X. Suppose that M is strongly star semi-compact relative to the subspace (N, τ_N) and that $\mathcal{U} = \{U_\beta : \beta \in \Lambda\}$ is a cover of M by semi-open subsets in X. By Lemma 2.6, $\mathcal{U}_N = \{U_\beta : \beta \in \Lambda\}$ is a cover of M by semi-open

sets in N. However M is strongly star semi-compact relative to N. Therefore there exists a finite subset $F \subseteq M$ such that $M \subseteq St(F, \mathcal{U}_N) \subseteq St(F, \mathcal{U})$. Hence X is strongly star semi-compact relative to X.

Let M and N be subsets of X in a topological space (X, τ) , where $M \subseteq N$ and N is an α -set in X. Suppose that M is strongly star semi-compact relative to X and that $\mathcal{U} = \{U_{\beta} : \beta \in \Lambda\}$ is a cover of M by semi-open subsets in (N, τ_N) . Then by Lemma 2.8, for each $\beta \in \Lambda$, there exists V_{β} , semi-open in X such that $U_{\beta} = V_{\beta} \cap N$. Now, $\mathcal{V} = \{V_{\beta} : \beta \in \Lambda\}$ is a cover of M by semi-open sets in X. However, M is strongly star semi-compact relative to (X, τ) . Therefore there exists a finite subset $F \subseteq M$ such that $M \subseteq St(F, \mathcal{V})$.

Now suppose that \mathcal{W} is the collection of all $V_{\beta} \in \mathcal{V}$ such that $F \cap V_{\beta} \neq \emptyset$. Therefore $M \subseteq St(F, \mathcal{V}) = \cup \mathcal{W}$, which implies $M \subseteq M \cap (\cup \mathcal{W}) = \bigcup_{V_{\beta} \in \mathcal{W}} (M \cap V_{\beta}) = \bigcup_{V_{\beta} \in \mathcal{W}} U_{\beta}$.

Now for all $V_{\beta} \in \mathcal{W}$, we have $F \cap V_{\beta} \neq \emptyset$.

Since $F \subseteq M$, so $F \cap (V_{\beta} \cap M) \neq \emptyset$ for all $V_{\beta} \in \mathcal{W}$. Therefore $F \cap U_{\beta} \neq \emptyset$ for all $V_{\beta} \in \mathcal{W}$, which implies $M \subseteq \bigcup_{V_{\beta}} U_{\beta} \subseteq St(F, \mathcal{U})$.

Hence M is strongly star semi-compact relative to (N, τ_N) .

Proposition 5.4. In a topological space (X, τ) , let $\{A_n : n = 1, 2, 3, ..., n\}$ be a finite collection of strongly star semi-compact subsets relative to X. Then $\bigcup_{i=1}^n A_n$ is also a strongly star semi-compact subset relative to X.

Proof. The proof follows directly, hence omitted.

Theorem 5.5. If a function $f:(X,\tau)\to (Y,\sigma)$ is an irresolute surjection and if X is a strongly star semi-compact space, then f(X) is strongly star semi-compact relative to Y.

Proof. Let $\{V_{\beta} : \beta \in \Lambda\}$ be a cover of f(X) by semi-open sets in Y. Then the collection $\mathcal{U} = \{U_{\beta} = f^{-1}(V_{\beta}) : \beta \in \Lambda\}$ is a cover of X by semi-open sets in X. However, X is a strongly star semi-compact space. Therefore there exist a finite subset $F \subseteq X$ such that $St(F,\mathcal{U}) = X$. By surjection, f(F) is a finite subset of f(X). Suppose $f(X) \not\subseteq St(f(F), \mathcal{V})$. Therefore there exists $y \in f(X)$ such that $y \notin St(f(F), \mathcal{V})$.

Therefore, for all $f(F) \cap V_{\beta} \neq \emptyset$, $y \notin V_{\beta}$ for all $\beta \in \Lambda$.

Hence, for all $f^{-1}(f(F) \cap V_{\beta}) \neq \emptyset$, $x \notin f(V_{\beta})$ for all $\beta \in \Lambda$ and f(x) = y.

Thus, for all $f^{-1}(f(F)) \cap f^{-1}(V_{\beta}) \neq \emptyset$, $x \notin f(V_{\beta})$ for all $\beta \in \Lambda$ and f(x) = y.

Finally, for all $F \cap U_{\beta} \neq \emptyset$, $x \notin U_{\beta}$ for all $\beta \in \Lambda$ and f(x) = y.

As a result, $x \notin St(F,\mathcal{U})$. Therefore $St(F,\mathcal{U}) \neq X$, which is a contradiction. Hence $f(X) \subseteq St(f(F),\mathcal{U})$. That is, f(X) is strongly star semi-compact relative to Y.

Acknowledgement. The reviewers' comments and helpful ideas have greatly enhanced the paper's quality and representation, for which the authors are extremely grateful.

References

1. L.F. Aurichi, Selectively c.c.c. spaces, Topology Appl. 160 (2013) 2243–2250.

- 2. P. Bal and S. Bhowmik, Star-selection principle: Another new direction, J. Indian Math. Soc. 84 (2017), no. 1-2, 1-6.
- P. Bal and S. Bhowmik, On R-star-Lindelöf spaces, Palest. J. Math. 6 (2017), no. 2, 480–486.
- 4. P. Bal and S. Bhowmik, Some new star-selection principles in topology, Filomat **31** (2017), no. 13, 4041–4050.
- 5. P. Bal, S. Bhowmik and D. Gauld, On selectively star-Lindelöf properties, J. Indian Math. Soc. 85 (2018), no. 3-4, 291–304.
- 6. P. Bal and Lj.D.R. Kočinac, On selectively star-ccc spaces, Topology Appl. **281** (2020) Article no. 107184, 8 pp.
- 7. M. Bonanzinga and F. Maesano, Some properties defined by relative versions of star-covering properties, Topology Appl. **306** (2022) Article no. 107923, 18 pp.
- 8. S.G. Crossley and S.K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971) 99–112.
- S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972) 233-254.
- C. Dorsett, Semi connectedness, Indian J. Mech. Math. 17 (1979), no. 1, 57–63
- C. Dorsett, Semi compactness, semi separation axioms, and product spaces, Bull. Malays. Math. Sci. Soc. 4 (1981) 21–28.
- 12. E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, *Star covering properties*, Topology Appl. **39** (1991), no. 1, 71–103.
- 13. R. Engelking, *General Topology*, Sigma Series in Pure Mathematics 6, Heldermann Verlag, 2nd Edition, Berlin, 1989.
- 14. Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999) 129-140.
- 15. Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999) 421-431.
- 16. Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (2015) 82-106.
- 17. Lj.D.R. Kočinac and S. Singh, On the set version of selectively star-ccc spaces, J. Math. **2020** (2020), Article no. 9274503, 7 pp.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963) 36–41.
- T. Noiri, On S-closed subspaces, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 64 (1978) 157–162.
- A. Sabah, M.D. Khan and Lj.D.R. Kočinac, Covering properties defined by semi-open sets,
 J. Nonlinear Sci. Appl. 9 (2016) 4388–4398.
- 21. M. Sakai, Star covering versions of the Menger property, Topology Appl. 176 (2014) 22–34.
- 22. Y.K. Song and W.F. Xuan, A note on selectively star-ccc Spaces, Topology Appl. 263 (2019) 343–349.
- 23. Y.K. Song and W.F. Xuan, *More on selectively star-ccc spaces*, Topology Appl. **268** (2019), Article no. 106905, 7 pp.
- 24. T. Thompson, *S-closed spaces*, Proc. Amer. Math. Soc. **60** (1976) 335–338.
- 25. W.F. Xuan and Y.K. Song, A study of selectively star-ccc spaces, Topology Appl. 273 (2020) 107103, 9 pp.

¹DEPARTMENT OF MATHEMATICS, ICFAI UNIVERSITY TRIPURA, TRIPURA, INDIA-799210. Email address: balprasenjit177@gmail.com; rupam.de.jpg@gmail.com