
Khayyam J. Math. 9 (2023), no. 1, 61-80
DOI: 10.22034/KJM.2022.350492.2590

ON ϕ-δ-S-PRIMARY IDEALS OF COMMUTATIVE RINGS
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Abstract. Let R be a commutative ring with unity (1 ̸= 0) and let J(R) be
the set of all ideals of R. Let ϕ : J(R) → J(R) ∪ {∅} be a reduction function
of ideals of R and let δ : J(R) → J(R) be an expansion function of ideals of
R. We recall that a proper ideal I of R is called a ϕ-δ-primary ideal of R if
whenever a, b ∈ R and ab ∈ I − ϕ(I), then a ∈ I or b ∈ δ(I). In this paper,
we introduce a new class of ideals that is a generalization of the class of ϕ-δ-
primary ideals. Let S be a multiplicative subset of R such that 1 ∈ S and let I
be a proper ideal of R with S∩I = ∅; Then I is called a ϕ-δ-S-primary ideal of
R associated with s ∈ S if whenever a, b ∈ R and ab ∈ I −ϕ(I), then sa ∈ I or
sb ∈ δ(I). In this paper, we present a range of different examples, properties,
and characterizations of this new class of ideals.

1. Introduction

Throughout this paper, all rings are commutative with (1 ̸= 0). Let J(R) be the
set of all ideals of R. Hamed and Malek [5] introduced the concept of S-prime
ideals, which is the generalization of prime ideals, where S is a multiplicative
subset of R such that 1 ∈ S. Recall from [5] that a proper ideal I of R with
I ∩S = ∅ is said to be S-prime if there exists s ∈ S such that for all a, b ∈ R with
ab ∈ I implies that sa ∈ I or sb ∈ I. In a recent study, Almahdi, Bouba, and
Tamekkante [1] introduced the concept of weakly S-prime ideals, which is also a
generalization of S-prime ideals, prime ideals, and weakly prime ideals, where S
is a multiplicative subset of R such that 1 ∈ S. Recall from [1] that a proper ideal
I of R with I ∩S = ∅ is said to be weakly S-prime if there exists s ∈ S such that
for all a, b ∈ R, 0 ̸= ab ∈ I implies that sa ∈ I or sb ∈ I. Zhao [11] introduced the
concept of expansion function of ideals of R. Let δ be an expansion function of
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ideals of R. Recall from [11] that a proper ideal I of R is said to be a δ-primary
ideal of R, if a, b ∈ R with ab ∈ I, then a ∈ I or b ∈ δ(I). This concept of
δ-primary ideals is a generalization of the concepts of prime ideals and primary
ideals. Let δ be an expansion function of ideals of R and let ϕ be a reduction
function of ideals of R. In [6], the author introduced the concept of ϕ-δ-primary
ideals, and this concept is a generalization of the concept of δ-primary ideals
in [11]. So from this point of view, ϕ-δ-primary ideals generalize the concepts
of prime ideals, weakly prime ideals, almost prime ideals, primary ideals, weakly
primary ideals, and almost primary ideals. For more generalizations of prime
ideals, we refer to [7–9]. Our main purpose in this paper is to extend the concept
of ϕ-δ-primary ideals of R to the concept of ϕ-δ-S-primary ideals of R, where S
is a multiplicative subset of R such that 1 ∈ S. This means that the concept of
ϕ-δ-S-primary ideals is a generalization of the concepts of prime ideals, weakly
prime ideals, almost prime ideals, primary ideals, weakly primary ideals, almost
primary ideals, S-prime ideals, weakly S-prime ideals, almost S-prime ideals, S-
primary ideals, weakly S-primary ideals, and almost S-primary ideals. However,
the converse is not true in general (see Examples 2.6, 2.9, and 2.10). Let ϕ and
δ be a reduction function and an expansion function of ideals of R, respectively,
and let S be a multiplicative subset of R such that 1 ∈ S. In this paper, we call
a proper ideal I of R, with I ∩S = ∅, a ϕ-δ-S-primary ideal of R associated with
some s ∈ S if whenever a, b ∈ R such that ab ∈ I−ϕ(I), then sa ∈ I or sb ∈ δ(I).
Among many results in this paper, it is shown (Proposition 2.17) that if I is a ϕ-
δ-S-primary ideal of R associated with some s ∈ S, which is not S-primary, then
I2 ⊆ ϕ(I). Theorem 2.20 proves that a proper ideal I of R is a ϕ-δ-S-primary
ideal of R associated with some s ∈ S if and only if for each a ̸∈ (δ(I) : s), we
have either (I : a) ⊆ (I : s) or (I : a) = (ϕ(I) : a). Similarly, in Theorem 2.21,
we prove that a proper ideal I of R is a ϕ-δ-S-primary ideal of R associated with
some s ∈ S if and only if for each a ̸∈ (I : s) we have either (I : a) ⊆ (δ(I) : s) or
(I : a) = (ϕ(I) : a). In the case when S satisfies the conditions ϕ(I) = (ϕ(I) : s)
for some s ∈ S and (ϕ(I) : t) ⊆ (ϕ(I) : s) for all t ∈ S, it is proved (Theorem
2.33) that I is a ϕ-δ-S-primary ideal of R associated with some s ∈ S if and only
if (I : s) is a ϕ-δ-primary ideal of R if and only if S−1I is a ϕS-δS-primary ideal
of S−1R and S−1I ∩R = (I : s).
In the next section, let f : X → Y be a nonzero (δ, ϕ)-(γ, ψ)-epimorphism. In
Theorem 3.3, we prove that f induces one-to-one correspondence between ϕ-δ-
S-primary ideals of X associated with some s ∈ S consisting ker(f) and ψ-γ-
f(S)-primary ideal of Y associated with f(s) ∈ f(S). Also, in Lemma 3.7, we
prove that if a, b ∈ X, then (a, b) is a ϕ-δ-S-twin zero of I, where I is a ϕ-δ-S-
primary ideals of X associated with some s ∈ S consisting ker(f), if and only if
(f(a), f(b)) is a ψ-γ-f(S)-twin zero of f(I).

In the last section, we determine all ϕ-δ-S-primary ideals in direct product of
rings, and we prove some results concerning ϕ-δ-S-primary ideals in the direct
product of rings (see Theorems 4.1–4.4).
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2. Properties of ϕ-δ-S-primary ideals

Definition 2.1. Let R be a commutative ring with unity (1 ̸= 0), and let J(R)
be the set of all ideals of R.

(1) Recall from [11] that a function δ : J(R) → J(R) is called an expansion
function of ideals of R if whenever I, J,K are ideals of R with J ⊆ I, then
δ(J) ⊆ δ(I) and K ⊆ δ(K).

(2) Recall from [6] that a function ϕ : J(R) → J(R) is called a reduction
function of ideals of R if ϕ(I) ⊆ I for all ideals I of R and if whenever
P ⊆ Q, where P and Q are ideals of R, then ϕ(P ) ⊆ ϕ(Q).

Definition 2.2. Let R be a commutative ring with unity (1 ̸= 0), and let S be
a multiplicative subset of R. Suppose that δ and ϕ are expansion and reduction
functions of ideals of R, respectively.

(1) A proper ideal I of R satisfying I∩S = ∅ is said to be a δ-S-primary ideal
of R associated with s ∈ S, if whenever ab ∈ I, then sa ∈ I or sb ∈ δ(I)
for all a, b ∈ R.

(2) A proper ideal I of R satisfying I ∩ S = ∅ is said to be a ϕ-δ-S-primary
ideal of R associated with s ∈ S, if whenever ab ∈ I − ϕ(I), then sa ∈ I
or sb ∈ δ(I) for all a, b ∈ R.

Throughout this section, R denotes a commutative ring with unity (1 ̸= 0), S
denotes a multiplicative subset of R such that 1 ∈ S, δ, γ : J(R) → J(R) denote
expansion functions, and ϕ, ψ : J(R) → J(R) denote reduction functions.

In the following example, we recall from [3] some examples of expansion func-
tions of ideals of a given ring R.

Example 2.3. (1) The identity function δ0, where δ0(I) = I for any I ∈
J(R), is an expansion function of ideals in R.

(2) For each ideal I of R, define δ1(I) =
√
I. Then δ1 is an expansion function

of ideals in R.
(3) Let J be a proper ideal of R. If δ(I) = I + J for every ideal I in J(R),

then δ is an expansion function of ideals in R.
(4) Let J be a proper ideal of R. If δ(I) = (I : J) for every ideal I in J(R),

then δ is an expansion function of ideals in R.
(5) Assume that δ1 and δ2 are expansion functions of ideals of R. Let δ :

J(R) → J(R) such that δ(I) = δ1(I) + δ2(I). Then δ is an expansion
function of ideals of R.

(6) Assume that δ1 and δ2 are expansion functions of ideals of R. Let δ :
J(R) → J(R) such that δ(I) = δ1(I) ∩ δ2(I). Then δ is an expansion
function of ideals of R.

(7) Assume that δ1,. . .,δn are expansion functions of ideals of R. Let δ :
J(R) → J(R) such that δ(I) = ∩n

i=1δi(I). Then δ is also an expansion
function of ideals of R.

(8) Assume that δ1 and δ2 are expansion functions of ideals of R. Let δ :
J(R) → J(R) such that δ(I) = δ1(δ2(I)). Then δ is an expansion function
of ideals of R.
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Recall that if ψ1, ψ2 : J(R) → J(R) ∪ {∅} are expansion (reduction) functions
of ideals of R, then we define ψ1 ≤ ψ2 if ψ1(I) ⊆ ψ2(I) for each I ∈ J(R).

In the following example, we recall from [2] some examples of reduction func-
tions of ideals of a given ring R.

Example 2.4. (1) The function ϕ∅ by ϕ∅(I) = ∅ for any I ∈ J(R) is an ideal
reduction.

(2) The function ϕ0 by ϕ0(I) = {0} for any I ∈ J(R) is an ideal reduction.
(3) The function ϕ2 by ϕ2(I) = I2 for any I ∈ J(R) is an ideal reduction.
(4) The function ϕn by ϕn(I) = In for any I ∈ J(R) is an ideal reduction.
(5) The function ϕω by ϕω(I) = ∩∞

n=1I
n for any I ∈ J(R) is an ideal reduction.

(6) The function ϕ1 by ϕ1(I) = I for any I ∈ J(R) is an ideal reduction.
Observe that ϕ∅ ≤ ϕ0 ≤ ϕω ≤ · · · ≤ ϕn+1 ≤ ϕn ≤ · · · ≤ ϕ2 ≤ ϕ1.

Remark 2.5. (1) If δ ≤ γ, then every ϕ-δ-S-primary ideal of R is a ϕ-γ-S-
primary ideal. In particular, every ϕ-S-prime ideal of R is a ϕ-δ-S-primary
ideal. However, the converse is not true in general.

(2) If ϕ ≤ ψ, then every ϕ-δ-S-primary ideal of R is a ψ-δ-S-primary ideal. In
particular, every δ-S-primary ideal of R is a ϕ-δ-S-primary ideal. How-
ever, the converse is not true in general.

Example 2.6. (1) Set R = Z12 and I = 4Z12. Then δ1(I) =
√
I = 2Z12.

Take S = {1} and ϕ = ϕ∅. Then it is easy to check that I is a δ1-S-primary
ideal of R. Moreover, I is not an S-prime ideal, since (2)(2) = 4 ∈ I but
2 ̸∈ I.

(2) Set R = Z12 and S = {1, 5}. Then S is a multiplicative subset of R. Let
I = {0}. Then δ1(I) = 6Z12 and ϕ2(I) = I2 = (0). So, I is an almost-
δ1-S-primary ideal of R associated with s = 5. Moreover, (3)(4) = 0 ∈ I
but neither (3)(5) = 3 ∈ δ1(I) nor (4)(5) = 8 ∈ δ1(I). Thus, I is not a
δ1-S-primary ideal of R associated with s = 5.

Proposition 2.7. Let {Ji : i ∈△} be a directed set of ϕ-δ-S-primary ideals of
R associated with s ∈ S. Then the ideal J = ∪i∈△Ji is a ϕ-δ-S-primary ideal of
R associated with s ∈ S.

Proof. Let ab ∈ J − ϕ(J), where a, b ∈ R. Suppose sa ̸∈ J . We want to show
that sb ∈ δ(J). Since ab ̸∈ ϕ(J), we have ab ̸∈ ϕ(Ji) for all i ∈△. Let t ∈△ such
that ab ∈ Jt − ϕ(Jt). Then sa ∈ Jt or sb ∈ δ(Jt), since Jt is a ϕ-δ-S-primary
ideal of R associated with s ∈ S. Since sa ̸∈ J , we have sa ̸∈ Jt, which implies
that sb ∈ δ(Jt) ⊆ δ(J). Hence J is a ϕ-δ-S-primary ideal of R associated with
s ∈ S. □
Proposition 2.8. Let {Qi : i ∈△} be a directed set of ϕ-δ-S-primary ideals of
R associated with s ∈ S. Suppose ϕ(Qi) = ϕ(Qj) and δ(Qi) = δ(Qj) for every
i, j ∈△. If ϕ and δ have the intersection property, then the ideal J = ∩i∈△Qi is a
ϕ-δ-S-primary ideal of R associated with s ∈ S.

Proof. Let t ∈△. Since ϕ(Qi) = ϕ(Qt) and δ(Qi) = δ(Qt) for every i ∈△, and since
ϕ and δ have the intersection property, then ϕ(J) = ϕ(Qt) and δ(J) = δ(Qt). Let
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ab ∈ J − ϕ(J), where a, b ∈ R such that sb ̸∈ δ(J). Then ab ∈ Qt − ϕ(Qt). Since
Qt is a ϕ-δ-S-primary ideal of R associated with s ∈ S, we conclude that sa ∈ Qt

or sb ∈ δ(Qt). Since sb ̸∈ δ(J), sb ̸∈ δ(Qt) = δ(J). Hence we conclude that
sa ∈ Qt for each t ∈△, which implies that sa ∈ J . Thus, J is a ϕ-δ-S-primary
ideal of R associated with s ∈ S. □

Obviously, every ϕ-δ-primary ideal R is a ϕ-δ-S-primary ideal. In particu-
lar, every weakly-δ-primary (δ-primary) ideal of R is a weakly-δ-S-primary (δ-S-
primary). However, the next two examples show that the converses are not true
in general.

Example 2.9. Let R = Z80, let I = 20Z80, and let S = {1, 5, 25, 45, 65}. Then
S is a multiplicative subset of R such that I ∩ S = ∅. Let δ = δ1 and ϕ = ϕ0.
Then δ1(I) =

√
I = 10Z80 and ϕ0(I) = (0). Let a, b ∈ R such that 0 ̸= ab ∈ I.

Then 2|ab, which implies that 2|a or 2|b. Thus, 5a ∈ δ1(I) or 5b ∈ δ1(I). Hence
we conclude that I is a weakly-δ1-S-primary ideal of R associated with s = 5.
Moreover, 0 ̸= (4)(5) = 20 ∈ I but neither 4 ∈ I nor 5 ∈ δ1(I). Thus, I is not a
weakly-δ1-primary.

Example 2.10. Let R = Z[x] and let I =< 4x >= 4xZ[x]. Let ϕ2(I) = I2 =

< 16x2 > and let δ1(I) =
√
I =< 2x > . Let S = {2k : k ≥ 0}. Then S is

a multiplicative subset of R such that I ∩ S = ∅. Moreover, I is an almost-δ1-
S-primary ideal of R associated with s = 2 ∈ S, since if f(x), g(x) ∈ R with
f(x)g(x) ∈ I − I2, then x|f(x) or x|g(x), which implies that 2f(x) ∈ δ1(I) or
2g(x) ∈ δ1(I). Since 4x ∈ I − I2 and neither 4 ∈ I nor x ∈ δ1(I), then we get
that I is not an almost-δ1-primary ideal of R.

Proposition 2.11. Let I be a proper ideal of R such that I is a ϕ-δ-S-primary
ideal of R associated with s ∈ S such that

√
δ(I) ⊆ δ(

√
I) and

√
ϕ(I) ⊆ ϕ(

√
I).

Then
√
I is a ϕ-δ-S-primary ideal of R associated with s.

Proof. Let a, b ∈ R such that ab ∈
√
I − ϕ(

√
I). Then ab ∈

√
I, which implies

that anbn ∈ I for some n ≥ 1. If anbn ∈ ϕ(I), then ab ∈
√
ϕ(I) ⊆ ϕ(

√
I), a

contradiction. Thus, anbn ∈ I − ϕ(I), which implies that san ∈ I or sbn ∈ δ(I).

Thus, sa ∈
√
I or sb ∈

√
δ(I) ⊆ δ(

√
I). Hence,

√
I is a ϕ-δ-S-primary ideal of R

associated with s. □

Corollary 2.12. Let I be a proper ideal of R such that I is a ϕ-S-primary ideal of
R associated with s ∈ S. Suppose that

√
ϕ(I) ⊆ ϕ(

√
I). Then

√
I is a ϕ-S-prime

ideal of R associated with s.

Proof. Let δ(J) =
√
J for every ideal J in R. Then, by the above proposition, if

I is a ϕ-S-primary ideal of R associated with s, then
√
I is a ϕ-S-prime ideal of

R associated with s. □

Proposition 2.13. Let I be a proper ideal of R such that I is a ϕ-S-primary
ideal of R associated with s ∈ S. Suppose that

√
ϕ(I) ⊆ ϕ(

√
I) and that (ϕ(

√
I) :

x) ⊆ (ϕ(
√
I) : s) for each x ∈ S. If a ∈ R− (

√
I : s), then S ∩ (

√
I : a) = ∅.
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Proof. It is easy to see that
√
I ∩ S = ∅, since I ∩ S = ∅. Also, by the above

corollary,
√
I is a ϕ-S-prime ideal of R associated with s. We show that S∩ (

√
I :

a) = ∅. Let t ∈ S such that ta ∈
√
I. If ta ∈ ϕ(

√
I), then a ∈ (ϕ(

√
I) : t) ⊆

(ϕ(
√
I) : s), which implies that sa ∈ ϕ(

√
I) ⊆

√
I, a contradiction. Thus,

ta ∈
√
I − ϕ(

√
I) implies that sa ∈

√
I or st ∈

√
I, which is a contradiction

again, since a ̸∈ (
√
I : s) and S ∩

√
I = ∅. Thus, S ∩ (

√
I : a) = ∅. □

Corollary 2.14. Let I be a proper ideal of R such that I is a ϕ-δ-S-primary ideal
of R associated with s ∈ S with δ(I) ⊆

√
I. Suppose (ϕ(

√
I) : x) ⊆ (ϕ(

√
I) : s)

for each x ∈ S and (δ(I) : s) = (
√
I : s). Then (δ(I) : s) = (δ(I) : s2) and if

whenever a ∈ R− (δ(I) : s), then S ∩ (δ(I) : a) = ∅.

Proof. Since I is a ϕ-δ-S-primary ideal of R associated with s and δ(I) ⊆
√
I,

it is easy to see that I is a ϕ-S-primary ideal of R associated with s and (
√
I :

s) = (
√
I : s2). Since δ(I) ⊆

√
I and (δ(I) : s) = (

√
I : s), we have (δ(I) : s) =

(δ(I) : s2). Moreover, if a ∈ R − (δ(I) : s), then sa ̸∈
√
I. Thus, by the above

proposition, S ∩ (
√
I : a) = ∅. Hence S ∩ (δ(I) : a) ⊆ S ∩ (

√
I : a) = ∅, since

δ(I) ⊆
√
I. □

Recall that if I, J,K are ideals of R such that K = I ∪ J , then K = I or
K = J .

Theorem 2.15. Let I be a proper ideal of R such that I is a ϕ-δ-S-primary ideal
of R associated with s ∈ S. If a ∈ R − (δ(I) : s2), then (I : sa) = (I : s) or
(I : sa) = (ϕ(I) : sa).

Proof. It is enough to show that (I : sa) = (I : s) ∪ (ϕ(I) : sa). It is easy
to see that (I : s) and (ϕ(I) : sa) are subsets of (I : sa). Let r ∈ (I : sa);
then rsa ∈ I. If rsa ∈ ϕ(I) then r ∈ (ϕ(I) : sa). So we may assume that
rsa ̸∈ ϕ(I). Thus, rsa ∈ I − ϕ(I) implies that sr ∈ I since s2a ̸∈ δ(I). So,
r ∈ (I : s). Thus, (I : sa) = (I : s) ∪ (ϕ(I) : sa). Hence (I : sa) = (I : s) or
(I : sa) = (ϕ(I) : sa). □
Corollary 2.16. Let I be a proper ideal of R such that I is a ϕ-S-primary ideal
of R associated with s ∈ S. If a ∈ R − (

√
I : s), then (I : sa) = (I : s) or

(I : sa) = (ϕ(I) : sa).

Proof. Let I be a proper ideal of R such that I is a ϕ-S-primary ideal of R
associated with s ∈ S. Then it is easy to see that (

√
I : s) = (

√
I : s2). Thus, if

a ∈ R − (
√
I : s), then a ∈ R − (

√
I : s2). Hence, by Theorem 2.15, (I : sa) =

(I : s) or (I : sa) = (ϕ(I) : sa). □
Proposition 2.17. Let I be a proper ideal of R such that I is a ϕ-δ-S-primary
ideal of R associated with s ∈ S. If I is not a δ-S-primary, then I2 ⊆ ϕ(I).

Proof. Suppose that I2 ̸⊆ ϕ(I). We claim that I is a δ-S-primary ideal of R
associated with s. Let a, b ∈ R such that ab ∈ I. If ab ∈ I − ϕ(I), then sa ∈ I
or sb ∈ δ(I). Therefore we may assume that ab ∈ ϕ(I). Suppose that aI ̸⊆ ϕ(I).
Then there exists p ∈ I such that ap ̸∈ ϕ(I). So, a(p+ b) ∈ I − ϕ(I) implies that
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sa ∈ I or s(p + b) ∈ δ(I), and since sp ∈ I ⊆ δ(I), we have sb ∈ δ(I). Similarly,
if bI ̸⊆ ϕ(I), then we obtain that sa ∈ I. Thus we may assume that aI ⊆ ϕ(I)
and bI ⊆ ϕ(I). Since I2 ̸⊆ ϕ(I), there exist p, q ∈ I such that pq ̸∈ ϕ(I). Thus,
(a + p)(b + q) ∈ I − ϕ(I), since ab + aq + pb ∈ ϕ(I). Hence s(a + p) ∈ I or
s(b + q) ∈ δ(I). Consequently, we conclude that I is a δ-S-primary ideal of R
associated with s. □

Let R be a commutative ring with unity and let I be a proper ideal of R. Then,
by Proposition 2.17 and by taking S = {1}, the following results hold.
Remark 2.18. (1) If I is a weakly prime ideal of R such that I is not a prime

ideal, then I2 = 0 (it suffices to take δ = δ0 and ϕ = ϕ0).
(2) If I is a weakly primary ideal of R such that I is not a primary ideal, then

I2 = 0 (it suffices to take δ = δ1 and ϕ = ϕ0).
(3) If I is an n-almost primary ideal of R such that I is not a primary ideal,

then I2 = In (it suffices to take δ = δ1 and ϕ = ϕn).
Referring to [5, Proposition 2(4)] and [1, Corollary 2.6], it is clear that if P is

an S-prime ideal (a weakly S-prime ideal) of R for some multiplicative subset S
of R, then there exists s ∈ S such that s

√
0 ⊆ P (P ⊆

√
0 or s

√
0 ⊆ P ). Hence,

by using Proposition 2.17, we can deduce easily the following corollary, which is
a generalization of [5, Proposition 2(4)] and [1, Corollary 2.6].
Corollary 2.19. Let I be a ϕ-δ-S-primary ideal of R associated with s ∈ S. Then
I ⊆

√
ϕ(I) or s

√
ϕ(I) ⊆ δ(I).

Proof. Suppose that I ̸⊆
√
ϕ(I). Then I2 ̸⊆ ϕ(I), and hence by Proposition 2.17,

I is a δ-S-primary ideal of R associated with s ∈ S. We show that s
√
ϕ(I) ⊆ δ(I).

Suppose on the contrary that s
√
ϕ(I) ̸⊆ δ(I). Then there exists y ∈

√
ϕ(I) such

that sy ̸∈ δ(I). Let k be the minimal positive integer such that yk ∈ ϕ(I) ⊆ I.
Since I is a δ-S-primary ideal of R associated with s, we have sy ∈ δ(I) or
syk−1 ∈ I, which implies that syk−1 ∈ I, since sy ̸∈ δ(I). Again sy ̸∈ δ(I)
implies that s2yk−2 ∈ I. Continuing in this process, we get that sk−1y ∈ I. Since
sy ̸∈ δ(I), we get sk ∈ I, a contradiction. Hence s

√
ϕ(I) ⊆ δ(I). □

Theorem 2.20. Let I be a proper ideal of R. Then the following statements are
equivalent:

(1) I is a ϕ-δ-S-primary ideal of R associated with s ∈ S.
(2) For each a ∈ R such that a ̸∈ (δ(I) : s), we have either (I : a) ⊆ (I : s)

or (I : a) = (ϕ(I) : a).
(3) For all A and B ideals of R, if AB ⊆ I and AB ̸⊆ ϕ(I), then sA ⊆ I or

sB ⊆ δ(I).

Proof. (1) → (2): Let a ∈ R such that a ̸∈ (δ(I) : s); then sa ̸∈ δ(I). Suppose
that (I : a) ̸= (ϕ(I) : a). We show that (I : a) ⊆ (I : s). Let r ∈ (I : a). If
r ̸∈ (ϕ(I) : a), then ra ∈ I − ϕ(I) implies that sr ∈ I, since sa ̸∈ δ(I). Suppose
r ∈ (ϕ(I) : a). Since (I : a) ̸= (ϕ(I) : a), let r′ ∈ (I : a) such that r′ ̸∈ (ϕ(I) : a).
So, ar′ ∈ I−ϕ(I) implies that sr′ ∈ I, since sa ̸∈ δ(I). Thus, a(r+ r′) ∈ I−ϕ(I)
implies that s(r + r′) ∈ I, since sa ̸∈ δ(I). Because s(r + r′) ∈ I and sr′ ∈ I, we
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get sr ∈ I. Consequently, we conclude that (I : a) ⊆ (I : s).
(2) → (1): Let a, b ∈ R such that ab ∈ I − ϕ(I). Suppose that sa ̸∈ δ(I), we
show that sb ∈ I. Since b ∈ (I : a) and b ̸∈ (ϕ(I) : a), we get immediately,
(I : a) ⊆ (I : s). Thus, b ∈ (I : s) and sb ∈ I. Accordingly, I is a ϕ-δ-S-primary
ideal of R associated with s.
(2) → (3): Let A and B be ideals of R such that AB ⊆ I. Suppose that sA ̸⊆ I
and that sB ̸⊆ δ(I). We claim that AB ⊆ ϕ(I). Let b ∈ B − (δ(I) : s). Then
(I : b) ⊆ (I : s) or (I : b) = (ϕ(I) : b). Since A ⊆ (I : b) and A ̸⊆ (I : s) we
get immediately, (I : b) = (ϕ(I) : b). So, Ab ⊆ ϕ(I). For any c ∈ B ∩ (δ(I) : s),
then b + c ∈ B − (δ(I) : s) implies that A ⊆ (I : b + c) = (ϕ(I) : b + c). Thus,
A(b + c) ⊆ ϕ(I) implies that Ac ⊆ ϕ(I), since Ab ⊆ ϕ(I). Consequently, we
conclude that AB ⊆ ϕ(I).
(3) → (1): Let a, b ∈ R such that ab ∈ I − ϕ(I). Then < a >< b >⊆ I and
< a >< b > ̸⊆ ϕ(I) imply that s < a >⊆ I or s < b >⊆ δ(I). Thus, sa ∈ I or
sb ∈ δ(I). Accordingly, I is a ϕ-δ-S-primary ideal of R associated with s. □

The following result can be proved similar to the previous theorem. Hence, we
omit the proof.

Theorem 2.21. Let I be a proper ideal of R. Then the following statements are
equivalent:

(1) I is a ϕ-δ-S-primary ideal of R associated with s ∈ S.
(2) For each a ∈ R such that a ̸∈ (I : s), we have either (I : a) ⊆ (δ(I) : s)

or (I : a) = (ϕ(I) : a).
(3) For all A and B ideals of R, if AB ⊆ I and AB ̸⊆ ϕ(I), then sA ⊆ I or

sB ⊆ δ(I).

Theorem 2.22. Let P be a ϕ-δ-S-primary ideal of R associated with s ∈ S. If
(ϕ(P ) : a) ⊆ ϕ(P : a) for each a ∈ R − P , then (P : a) is also ϕ-δ-S-primary
ideal of R associated with s.

Proof. Let x, y ∈ R such that xy ∈ (P : a)−ϕ(P : a). So, xya ∈ P −ϕ(P ) implies
that sxa ∈ P or sy ∈ δ(P ). Hence, sx ∈ (P : a) or sy ∈ δ(P ) ⊆ (δ(P ) : a). Thus,
(P : a) is a ϕ-δ-S-primary ideal of R associated with s. □

Corollary 2.23. Let P be a ϕ-δ-S-primary ideal of R associated with s ∈ S
and let J be an ideal in R such that J ̸⊆ P. If (ϕ(P ) : J) ⊆ ϕ(P : J) and
(δ(P ) : J) ⊆ δ(P : J), then (P : J) is a ϕ-δ-S-primary ideal of R associated with
s.

Proof. Let a, b ∈ R such that ab ∈ (P : J) − ϕ(P : J). Then abJ ⊆ P and
abJ ̸⊆ ϕ(P ), since (ϕ(P ) : J) ⊆ ϕ(P : J). Thus, < a >< b > J ⊆ P and
< a >< b > J ̸⊆ ϕ(P ) imply, by Theorem 2.20, that s < a >⊆ P ⊆ (P : J) or
s < b > J ⊆ δ(P ). So, sa ∈ P or sb ∈ (δ(P ) : J) ⊆ δ(P : J). Hence (P : J) is a
ϕ-δ-S-primary ideal of R associated with s. □

Suppose that I is a ϕ-δ-S-primary ideal of R associated with s ∈ S such that
ϕ ̸= ϕ∅. If (I : s) = (δ(I) : s), then the following result holds.
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Proposition 2.24. Let I be a ϕ-δ-S-primary ideal of R associated with s ∈ S such
that (I : s) = (δ(I) : s). If I is not a δ-S-primary ideal, then sI

√
ϕ(I) ⊆ ϕ(I).

Proof. Since I is a ϕ-δ-S-primary ideal of R associated with s ∈ S such that I
is not a δ-S-primary ideal, by Proposition 2.17, I2 ⊆ ϕ(I). Let a ∈

√
ϕ(I). If

a ∈ (I : s), then sa ∈ I, and by Proposition 2.17, we get that saI ⊆ I2 ⊆ ϕ(I).
Therefore we may assume that a ̸∈ (I : s) = (δ(I) : s). Then by Theorem 2.20,
(I : a) ⊆ (I : s) = (δ(I) : s) or (I : a) = (ϕ(I) : a). Now, if (I : a) =
(ϕ(I) : a), then aI ⊆ ϕ(I) implies that saI ⊆ ϕ(I). So we may assume that
(I : a) ⊆ (I : s). Let n ≥ 1 be the minimal integer such that an ∈ ϕ(I). Then
an−1 ∈ (I : a) ⊆ (I : s) implies that san−1 ∈ I. Clearly, n − 1 ≥ 2, since sa ̸∈ I.
If san−1 ̸∈ ϕ(I), then san−1 = (sa)(an−2) ∈ I − ϕ(I) implies that s2a ∈ I or
san−2 ∈ δ(I). Indeed, if s2a ∈ I, then s2 ∈ (I : a) ⊆ (I : s) implies that s3 ∈ I,
a contradiction. So, san−2 ∈ δ(I), and hence an−2 ∈ (δ(I) : s) = (I : s) implies
that san−2 ∈ I − ϕ(I), since san−1 ̸∈ ϕ(I). Continuing in this process, we get
that sa ∈ I, which is a contradiction. Therefore, san−1 ∈ ϕ(I). Let j be the
minimal integer such that saj ∈ ϕ(I). Then j > 1, since sa ̸∈ ϕ(I). Suppose
there exists x ∈ I such that sax ̸∈ ϕ(I). Then sa(aj−1 + x) ∈ I − ϕ(I) implies
that s2a ∈ I or s(aj−1 + x) ∈ δ(I). Since s2a ̸∈ I, s(aj−1 + x) ∈ δ(I), which
implies that aj−1 + x ∈ (δ(I) : s) = (I : s). Thus, saj−1 + sx ∈ I implies that
saj−1 ∈ I, since sx ∈ I. Since j > 1 is the minimal integer such that saj ∈ ϕ(I),
we get saj−1 ∈ I − ϕ(I). Again continuing in this process, we get sa ∈ I, which
is a contradiction. Hence, sax ∈ ϕ(I) for each x ∈ I and for each a ∈

√
ϕ(I).

Consequently, we conclude that sI
√
ϕ(I) ⊆ ϕ(I). □

Corollary 2.25. Let I and J be ϕ-δ-S-primary ideals of R associated with s ∈ S
such that (I : s) = (δ(I) : s) and (J : s) = (δ(J) : s). If I and J are not
δ-S-primary and ϕ(J) ⊆ ϕ(I), then sIJ ⊆ ϕ(I).

Proof. Since I and J are ϕ-δ-S-primary ideals of R not δ-S-primary, by Propo-
sition 2.17, I ⊆

√
ϕ(I) and J ⊆

√
ϕ(J) ⊆

√
ϕ(I). Thus, by Proposition 2.24,

sIJ ⊆ sI
√
ϕ(I) ⊆ ϕ(I). □

Proposition 2.26. Let I be a ϕ-δ-S-primary ideal of R associated with s ∈ S
such that ϕ(J) = ϕ(I) for each ideal J ⊆ I. Suppose that P is an ideal in R with
δ(I ∩ P ) = δ(I) ∩ δ(P ) and δ(IP ) = δ(I ∩ P ). If P ∩ S ̸= ∅, then I ∩ P and IP
are ϕ-δ-S-primary ideals of R.
Proof. It is clear that (P ∩ I) ∩ S = PI ∩ S = ∅. Pick t ∈ P ∩ S. We show that
I ∩ P is a ϕ-δ-S-primary ideal of R associated with ts. Let a, b ∈ R such that
ab ∈ I ∩ P − ϕ(I ∩ P ). Then ab ∈ I ∩ P − ϕ(I) ⊆ I − ϕ(I). Thus, sa ∈ I or
sb ∈ δ(I) implies that tsa ∈ I ∩ P or tsb ∈ δ(I) ∩ P ⊆ δ(I) ∩ δ(P ) = δ(I ∩ P ).
Consequently, I ∩ P is a ϕ-δ-S-primary ideal of R associated with ts. We have a
similar proof for IP. □

Let ϕ ̸= ϕ∅ be a reduction function of ideals of R such that ϕ(P ) = ϕ2(P ) for
each ideal P of R. Then the following result holds.

Proposition 2.27. The following statements are equivalent.
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(1) Every ϕ-δ-S-primary ideal of R is a δ-primary.
(2) If I ∈ J(R), then ϕ(I) is a δ-primary ideal of R and every δ-S-primary

ideal of R is a δ-primary.
Proof. (1) → (2): Let I ∈ J(R). From the definition of ϕ-δ-S-primary ideals
of R and ϕ(I) = ϕ2(I), we have ϕ(I) is a ϕ-δ-S-primary ideal of R and every
ϕ-δ-S-primary ideal of R is a δ-primary. Hence, ϕ(I) is a δ-primary ideal of R.
(2) → (1): Let I be a ϕ-δ-S-primary ideal of R associated with s ∈ S. It is
enough to show that I is a δ-S-primary ideal of R associated with s. Let a, b ∈ R
such that ab ∈ I. If ab ̸∈ ϕ(I), then ab ∈ I−ϕ(I) implies that sa ∈ I or sb ∈ δ(I).
Indeed, if ab ∈ ϕ(I), then a ∈ ϕ(I) implies sa ∈ ϕ(I) ⊆ I or b ∈ δ(ϕ(I)) ⊆ δ(I)
implies sb ∈ δ(I), since ϕ(I) is a δ-primary ideal of R. Thus, I is a δ-S-primary
ideal of R associated with s hence, by (2), I is a δ-primary. □
Corollary 2.28. The following assertions are equivalent:

(1) Every weakly S-prime ideal of R is a prime ideal.
(2) R is a domain and every S-prime ideal of R is a prime ideal.

Proof. It suffices to take ϕ = ϕ0 and δ = δ0 in Proposition 2.27. □
Corollary 2.29. The following assertions are equivalent:

(1) Every weakly S-primary ideal of R is a primary ideal.
(2) R is a domain and every S-primary ideal of R is a primary ideal.

Proof. It suffices to take ϕ = ϕ0 and δ = δ1 in Proposition 2.27. □
Remark 2.30. Let S1 ⊆ S2 be multiplicative subsets of R and let I be an ideal
of R disjoint with S2. Clearly, if I is a ϕ-δ-S1-primary ideal of R associated with
s ∈ S1, then I is a ϕ-δ-S2-primary ideal of R associated with s ∈ S2. However,
the converse is not true in general (take ϕ = ϕ0 and δ = δ0 in [1, Example 2.3]).

Proposition 2.31. Let S1 ⊆ S2 be multiplicative subsets of R such that for any
s ∈ S2, there exists t ∈ S2 with st ∈ S1. If I is a ϕ-δ-S2-primary ideal of R
associated with s ∈ S2, then I is a ϕ-δ-S1-primary ideal of R.
Proof. Let t ∈ S2 such that st ∈ S1. We show that I is a ϕ-δ-S1-primary ideal of
R associated with st ∈ S1. Let a, b ∈ R such that ab ∈ I − ϕ(I). Then sa ∈ I
implies that sta ∈ I or sb ∈ δ(I) implies that stb ∈ δ(I). Consequently, I is a
ϕ-δ-S1-primary ideal of R associated with st ∈ S1. □

Recall that if S is a multiplicative subset of R with 1 ∈ S, then S∗ = {r ∈ R :
r
1
∈ U(S−1R)} is said to be the saturation of S. One can easily see that S∗ is

a multiplicative subset of R containing S. If S = S∗, then S is called saturated.
Moreover, it is clear that S∗∗ = S∗ (see [4]).

Proposition 2.32. I is a ϕ-δ-S-primary ideal of R if and only if I is a ϕ-δ-S∗-
primary ideal of R.
Proof. First, we show that S∗ ∩ I = ∅. Let r ∈ S∗ ∩ I. Then r

1
is a unit in

S−1R, so there exist a ∈ R and s ∈ S such that ( r
1
)(a

s
) = 1. Hence, there exists

t ∈ S such that tra = ts, which implies that tra ∈ I ∩ S, a contradiction.
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Therefore, S∗ ∩ I = ∅. Since S ⊆ S∗, I is a ϕ-δ-S-primary ideal of R associated
with s ∈ S, which implies that I is a ϕ-δ-S∗-primary ideal of R associated with s.
Conversely, suppose that I is a ϕ-δ-S∗-primary ideal of R associated with s ∈ S∗.
Let r ∈ S∗. Then r

1
∈ U(S−1R) implies that ( r

1
)(a

x
) = 1, where a ∈ R, x ∈ S.

Hence, there exists t ∈ S such that tra = tx ∈ S. Take r′ = ta. Then r′ ∈ S∗

with r′r = tx ∈ S. Let S1 = S and let S2 = S∗. Then, by Proposition 2.31, I is a
ϕ-δ-S-primary ideal of R. □

Assume that δS(S−1J) = S−1δ(J) and ϕS(S
−1J) = S−1ϕ(J) for each J ∈ J(R).

Let I be a proper ideal ofR such that ϕ(I : a) = (ϕ(I) : a) and δ(I : a) = (δ(I) : a)
for each a ∈ R. Moreover, assume that δ(S−1I ∩ R) = S−1δ(I) ∩ R. Then under
the two conditions ϕ(I) = (ϕ(I) : s) for some s ∈ S and (ϕ(I) : t) ⊆ (ϕ(I) : s) for
each t ∈ S, the following result holds.
Theorem 2.33. Let I be a proper ideal of R such that I ∩ S = ∅. Suppose that
δS(S

−1I) ̸= S−1R, if S−1I ̸= S−1R. Then the following statements are equivalent:
(1) I is a ϕ-δ-S-primary ideal of R associated with s ∈ S.
(2) (I : s) is a ϕ-δ-primary ideal of R.
(3) S−1I is a ϕS-δS-primary ideal of S−1R and (I : t) ⊆ (I : s) for each t ∈ S.
(4) S−1I is a ϕS-δS-primary ideal of S−1R and S−1I ∩R = (I : s).

Proof. Let I be a proper ideal of R such that I ∩ S = ∅. Then S−1I ̸= S−1R
implies that δS(S−1I) ̸= S−1R. Moreover, it is easy to check that δ(I) ∩ S = ∅.
(1) → (2): Since I ∩ S = ∅, (I : s) ̸= R. Let a, b ∈ R such that ab ∈ (I :
s) − (ϕ(I) : s). Then sab ∈ I − ϕ(I), which implies that s2a ∈ I − ϕ(I) or
sb ∈ δ(I). Thus, sa ∈ I, since s3 ̸∈ δ(I), or sb ∈ δ(I). Hence, a ∈ (I : s) or
b ∈ (δ(I) : s). Consequently, we conclude that (I : s) is a ϕ-δ-primary ideal of R.
(2) → (3): S−1I ̸= S−1R since I ∩ S = ∅. Let a

s1
, b
s2

∈ S−1R such that a
s1

b
s2

∈
S−1I − ϕS(S

−1I). Then ab
s1s2

= u
s3

∈ S−1I − ϕS(S
−1I) for some u ∈ I. So there

exists t ∈ S such that tabs3 = ts1s2u ∈ I. If ts1s2u ∈ ϕ(I), then u
s3

∈ ϕS(S
−1I), a

contradiction. Hence, tabs3 ∈ I−ϕ(I), which implies that tabs3 ∈ (I : s)−(ϕ(I) :
s), since ϕ(I) = (ϕ(I) : s). Thus, a ∈ (I : s) or tbs3 ∈ (δ(I) : s). Therefore, sa ∈ I
implies that a

s1
∈ S−1I or stbs3 ∈ δ(I) implies that b

s2
∈ S−1δ(I). So, we conclude

that S−1I is a ϕS-δS-primary ideal of S−1R. Let t ∈ S and let a ∈ (I : t).
If a ∈ (ϕ(I) : t), then a ∈ (ϕ(I) : s) ⊆ (I : s). Therefore, we may assume
that a ̸∈ (ϕ(I) : t). So, ta ∈ I ⊆ (I : s) and ta ̸∈ ϕ(I) = (ϕ(I) : s). Thus,
ta ∈ (I : s) − (ϕ(I) : s), which implies that a ∈ (I : s), since t ̸∈ (δ(I) : s).
Consequently, we conclude that (I : t) ⊆ (I : s).
(3) → (4): By using part(3), we have S−1I is a ϕS-δS-primary ideal of S−1R. Let
s ∈ S such that (I : t) ⊆ (I : s) for each t ∈ S. Then it is easy to check that
(I : s) ⊆ S−1I ∩ R. Let a ∈ S−1I ∩ R. Then there exists t ∈ S such that ta ∈ I.
Thus, a ∈ (I : t) ⊆ (I : s) implies that S−1I ∩ R ⊆ (I : s). Hence we conclude
that S−1I ∩R = (I : s).
(4) → (1): Suppose that S−1I is a ϕS-δS-primary ideal of S−1R and let S−1I∩R =
(I : s) for some s ∈ S. We show that I is a ϕ-δ-S-primary ideal of R associated
with s. Let a, b ∈ R such that ab ∈ I − ϕ(I). Then a

1
b
1
∈ S−1I − ϕS(S

−1I). Thus,
a
1
∈ S−1I or b

1
∈ δS(S

−1I) = S−1δ(I), since S−1I is a ϕS-δS-primary ideal of
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S−1R. If a
1
∈ S−1I, then there exists t ∈ S such that ta ∈ I, which implies that

a = ta
t
∈ S−1I ∩ R = (I : s). So, sa ∈ I. Similarly, if b

1
∈ S−1δ(I), then there

exists t′ ∈ S such that t′b ∈ δ(I), which implies that b = t′b
t′

∈ S−1δ(I) ∩ R =
δ(S−1I ∩ R) = δ(I : s) = (δ(I) : s). So, sb ∈ δ(I). Hence we conclude that I is a
ϕ-δ-S-primary ideal of R associated with s. □

Let R be a ring and let S ⊆ R be a multiplicative subset of R. Next, we give an
example of a proper ideal P of R with P ∩ S = ∅ such that if (ϕ(P ) : s) ̸= ϕ(P )
for some s ∈ S, then P is a ϕ-δ-S-primary ideal of R associated with s, but
(P : s) is not a ϕ-δ-primary ideal of R.
Example 2.34. Let R = Z[x] and let P =< 4x >= 4xZ[x]. Let ϕ(P ) = P 2 =<

16x2 > and let δ1(P ) =
√
P =< 2x > . Let S = {2k : k ≥ 0}. Then it is easy to

check that P ∩S = ∅ and P is an almost-δ1-S-primary ideal of R associated with
s = 2 ∈ S. Also, it is easy to check that (P 2 : s) = (< 16x2 >: 2) =< 8x2 ≯= P 2.
Moreover, (P : s) = (< 4x >: 2) =< 2x > is not an almost-δ1-primary ideal of
R, since 2x ∈< 2x > − < 4x2 >, but neither 2 ∈< 2x >=

√
< 2x > nor

x ∈< 2x >=
√
< 2x >.

3. (ϕ, δ)-(ψ, γ)-ring homomorphisms

Following [10], let X and Y be commutative rings with unities and let f : X →
Y be a ring homomorphism. Suppose that δ and ϕ are expansion and reduction
functions of ideals of X and that γ and ψ are expansion and reduction functions
of ideals of Y, respectively. Then f is said to be (δ, ϕ)-(γ, ψ)-homomorphism if
δ(f−1(J)) = f−1(γ(J)) and ϕ(f−1(J)) = f−1(ψ(J)) for all J ∈ J(Y ).

Remark 3.1. (1) If f : X → Y is a nonzero epimorphism and 1 is the unity
of X, then f(1) is the unity of Y .

(2) Suppose that f : X → Y is a nonzero (δ, ϕ)-(γ, ψ)-epimorphism, and let
I be a proper ideal of X containing ker(f). Then it is easy to see that
γ(f(I)) = f(δ(I)) and ψ(f(I)) = f(ϕ(I)) (see [10, Remark 2.11]).

(3) If S is a multiplicative subset of X containing 1, then f(S) is a multi-
plicative subset of Y containing f(1).

Theorem 3.2. Let f : X → Y be a nonzero (δ, ϕ)-(γ, ψ)-epimorphism. Then the
following statements are satisfied:

(1) If J is a ψ-γ-f(S)-primary ideal of Y associated with f(s) ∈ f(S), then
f−1(J) is a ϕ-δ-S-primary ideal of X associated with s ∈ S.

(2) If I is a ϕ-δ-S-primary ideal of X associated with s ∈ S containing ker(f)
and f is surjective, then f(I) is a ψ-γ-f(S)-primary ideal of Y associated
with f(s) ∈ f(S).

Proof. (1) If S is a multiplicative subset of X with 1 ∈ S, then f(S) is a multi-
plicative subset of Y with 1 = f(1) ∈ f(S), since f is a nonzero epimorphism.
Let J be a ψ-γ-f(S)-primary ideal of Y associated with f(s) ∈ f(S). Choose
a, b ∈ X such that ab ∈ f−1(J)−ϕ(f−1(J)). Then we have f(a)f(b) ∈ J −ψ(J).
Since J is a ψ-γ-f(S)-primary ideal of Y associated with f(s) ∈ f(S), we con-
clude that f(s)f(a) ∈ J or f(s)f(b) ∈ γ(J), which implies that sa ∈ f−1(J) or
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sb ∈ f−1(γ(J)) = δ(f−1(J)). Hence f−1(J) is a ϕ-δ-S-primary ideal of X associ-
ated with s.
(2) Let I be a ϕ-δ-S-primary ideal of X associated with s containing ker(f), then
the unity in Y is f(1) ∈ f(S), since f is a nonzero (δ, ϕ)-(γ, ψ)-epimorphism.
Choose x, y ∈ Y such that xy ∈ f(I) − ψ(f(I)). Since f is onto, we can
choose a, b ∈ I such that f(a) = x and f(b) = y. This implies that f(a)f(b) =
f(ab) ∈ f(I). Since ker(f) ⊆ I, we conclude that ab ∈ I. If ab ∈ ϕ(I), then
xy = f(ab) ∈ f(ϕ(I)) = ψ(f(I)), which is a contradiction. So, ab ∈ I − ϕ(I). As
I is a ϕ-δ-S-primary ideal of X associated with s, we have sa ∈ I or sb ∈ δ(I).
Thus, we conclude that f(s)x ∈ f(I) or f(s)y ∈ f(δ(I)) = γ(f(I)). Therefore,
f(I) is a ψ-γ-f(S)-primary ideal of Y associated with f(s). □

From the above theorem we obtain the following result.
Theorem 3.3. [Correspondence theorem] Let f : X → Y be a nonzero (δ, ϕ)-
(γ, ψ)-epimorphism. Then f induces to one-to-one correspondence between the
ϕ-δ-S-primary ideals of X associated with s ∈ S containing ker(f) and the ψ-γ-
f(S)-primary ideals of Y associated with f(s) ∈ f(S) in such a way that if I is
a ϕ-δ-S-primary ideal of X associated with s ∈ S containing ker(f), then f(I) is
the corresponding ψ-γ-f(S)-primary ideal of Y associated with f(s) ∈ f(S), and
if J is a ψ-γ-f(S)-primary ideal of Y associated with f(s) ∈ f(S), then f−1(J)
is the corresponding ϕ-δ-S-primary ideal of X associated with s ∈ S containing
ker(f).

Assume that δ and ϕ are expansion and reduction functions of ideals of R,
respectively. Let J be a proper ideal of R such that J = ϕ(J). Then γ :
J(R/J) → J(R/J) defined by γ(I/J) = δ(I)/J and ψ : J(R/J) → J(R/J)
defined by ψ(I/J) = ϕ(I)/J are expansion and reduction functions of ideals of
R/J , respectively. Moreover, if S is a multiplicative subset of R, then S̄ = S/J
is a multiplicative subset of R/J, where S/J = {s̄ = s+ J ∈ R/J : s ∈ S}.

Let Q be a proper ideal of R, and let S be a multiplicative subset of R. Recall
that Q is said to be a weakly δ-S-primary ideal of R associated with s ∈ S, if
whenever 0 ̸= ab ∈ Q for some a, b ∈ R, then sa ∈ Q or sb ∈ δ(Q).

Theorem 3.4. Let δ and ϕ be expansion and reduction functions of ideals of
R and let J be a proper ideal of R such that J = ϕ(J). For every L ∈ J(R),
let γ : J(R/J) → J(R/J) be an expansion function of ideals of R/J defined by
γ(L+J/J) = δ(L+J)/J and let ψ : J(R/J) → J(R/J) be a reduction function of
ideals of R/J defined by ψ(L+J/J) = ϕ(L+J)/J . Then the following statements
hold:

(1) A map f : R → R/J defined by f(r) = r + J for every r ∈ R is a
(δ, ϕ)-(γ, ψ)-epimorphism.

(2) Let I be a proper ideal of R such that J ⊆ I and let S be a multiplicative
subset of R. Then I is a ϕ-δ-S-primary ideal of R associated with s ∈ S
if and only if I/J is a γ-ψ-S̄-primary ideal of R/J associated with s̄ ∈ S̄.

(3) Let I be a nonzero proper ideal of R such that ϕ2(I) = ϕ(I). Then I is a
ϕ-δ-S-primary ideal of R associated with s ∈ S if and only if I/ϕ(I) is a
weakly γ-S̄-primary ideal of R/ϕ(I) associated with s̄ ∈ S̄.
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Proof. (1) It is easy to see that f is a ring-epimorphism with ker(f) = J . Let K
be an ideal in R/J , then K = L+ J/J for some ideal L ∈ J(R). Therefore,

f−1(γ(K)) = f−1(δ(L+ J/J)) = δ(L+ J) = δ(f−1(K)),

f−1(ψ(K)) = f−1(ϕ(L+ J/J)) = ϕ(L+ J) = ϕ(f−1(K)),

since f is onto. Thus, f is a (δ, ϕ)-(γ, ψ)-epimorphism.
(2) Let I be a proper ideal of R such that J ⊆ I and let S be a multiplicative
subset of R. Since the map f defined in (1) is a (δ, ϕ)-(γ, ψ)-epimorphism with
ker(f) = J and f(I) = I/J . Then, by the correspondence theorem (Theorem
3.3), I is a ϕ-δ-S-primary ideal of R associated with s ∈ S if and only if I/J is a
γ-ψ-S̄-primary ideal of R/J associated with s̄ ∈ S̄.
(3) Let J = ϕ(I); then J = ϕ(J). Moreover, f(I) = I/ϕ(I) and ψ(I/ϕ(I)) =
ϕ(I)/ϕ(I) = 0 ∈ R/ϕ(I). Hence, by the correspondence theorem (Theorem 3.3),
I is a ϕ-δ-S-primary ideal of R associated with s ∈ S if and only if I/ϕ(I) is a
weakly γ-S̄-primary ideal of R/ϕ(I) associated with s̄ ∈ S̄. □

Definition 3.5. Let I be a ϕ-δ-S-primary ideal of R not δ-S-primary. Then
there exist a, b ∈ R such that ab ∈ ϕ(I) with sa ̸∈ I and sb ̸∈ δ(I). In this case,
(a, b) is called a ϕ-δ-S-twin zero of I.

Theorem 3.6. Suppose that I is a ϕ-δ-S-primary ideal of R associated with
s ∈ S. If there exist a, b ∈ R such that (a, b) is a ϕ-δ-S-twin zero of I. Then√
I =

√
ϕ(I).

Proof. Let a, b ∈ R such that (a, b) is a ϕ-δ-S-twin zero of I. Then I is not a
δ-S-primary ideal of R. Hence, by Proposition 2.17, I2 ⊆ ϕ(I) ⊆ I implies that√
I =

√
ϕ(I). □

Lemma 3.7. Let f : X → Y be a nonzero (δ, ϕ)-(γ, ψ)-epimorphism and let
I a ϕ-δ-S-primary ideal of X associated with s ∈ S such that ker(f) ⊆ I. Let
a, b ∈ X. Then (a, b) is a ϕ-δ-S-twin zero of I if and only if (f(a), f(b)) is a
ψ-γ-f(S)-twin zero of f(I).

Proof. By Theorem 3.2, f(I) is a ψ-γ-f(S)-primary ideal of Y associated with
f(s) ∈ f(S). Let a, b ∈ R such that (a, b) is a ϕ-δ-S-twin zero of I. Then ab ∈ ϕ(I)
with sa ̸∈ I and sb ̸∈ δ(I). So, f(a)f(b) = f(ab) ∈ ψ(f(I)) with f(s)f(a) ̸∈ f(I),
since ker(f) ⊆ I and sa ̸∈ I. Similarly, f(s)f(b) ̸∈ γ(f(I)). Thus, (f(a), f(b))
is a ψ-γ-f(S)-twin zero of f(I). Conversely, let a, b ∈ R such that (f(a), f(b))
is a ψ-γ-f(S)-twin zero of f(I). Then f(a)f(b) = f(ab) ∈ ψ(f(I)) = f(ϕ(I))
with f(s)f(a) = f(sa) ̸∈ f(I) and f(s)f(b) ̸∈ γ(f(I)) = f(δ(I)). Thus, ab ∈
f−1(ψ(f(I))) = ϕ(f−1(f(I))) = ϕ(I), since ker(f) ⊆ I. Moreover, sa ̸∈ f−1(f(I))
= I and sb ̸∈ f−1(γ(f(I))) = δ(I). Consequently, we conclude that (a, b) is a ϕ-
δ-S-twin zero of I. □

Corollary 3.8. Let δ and ϕ be expansion and reduction functions of ideals of
R and let J be a proper ideal of R such that J = ϕ(J). For every L ∈ J(R),
let γ : J(R/J) → J(R/J) be an expansion function of ideals of R/J defined by
γ(L+ J/J) = δ(L+ J)/J and let ψ : J(R/J) → J(R/J) be a reduction function
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of ideals of R/J defined by ψ(L + J/J) = ϕ(L + J)/J . Let a, b ∈ R. Then the
following statements hold:

(1) (a, b) is a ϕ-δ-S-twin zero of I if and only if (a+J, b+J) is a ψ-γ-S̄-twin
zero of I/J.

(2) (a, b) is a ϕ-δ-S-twin zero of I if and only if (a + ϕ(I), b + ϕ(I)) is a
γ-S̄-twin zero of I/ϕ(I).

Proof. (1) It follows from Theorem 3.4(2) and Lemma 3.7.
(2) It follows from Theorem 3.4(3) and Lemma 3.7. □
Theorem 3.9. Suppose that I is a ϕ-δ-S-primary ideal of R associated with
s ∈ S. If there exist a, b ∈ R such that (a, b) is a ϕ-δ-S-twin zero of I, then
aI ⊆ ϕ(I), bI ⊆ ϕ(I). In this case

√
I =

√
ϕ(I).

Proof. Since (a, b) is a ϕ-δ-S-twin zero of I, we have ab ∈ ϕ(I), sa ̸∈ I, and
sb ̸∈ δ(I). So, I is not a δ-S-primary ideal of R associated with s. So, by
Proposition 2.17, I2 ⊆ ϕ(I) ⊆ I implies that

√
I =

√
ϕ(I). Now, we show that

aI ⊆ ϕ(I) and bI ⊆ ϕ(I) case by case.
Since sb ̸∈ δ(I), by Theorem 2.20, (I : b) ⊆ (I : s) or (I : b) = (ϕ(I) : b). Also,
since a ∈ (I : b) and a ̸∈ (I : s), we get that (I : b) = (ϕ(I) : b). Hence we
conclude that bI ⊆ ϕ(I).
Similarly, by Theorem 2.21, sa ̸∈ I implies that (I : a) ⊆ (δ(I) : s) or (I : a) =
(ϕ(I) : a). Since b ∈ (I : a) and b ̸∈ (δ(I) : s), we get that (I : a) = (ϕ(I) : a).
Hence we conclude that aI ⊆ ϕ(I). □
Definition 3.10. Suppose that I is a ϕ-δ-S-primary ideal of R such that AB ⊆ I
and AB ̸⊆ ϕ(I), where A and B are proper ideals of R. Then I is said to be a
ϕ-δ-S-free twin zero with respect to AB if (a, b) is not a ϕ-δ-S-twin zero of I for
every a ∈ A and b ∈ B. In particular, I is said to be a ϕ-δ-S-free twin zero, if
whenever AB ⊆ I with AB ̸⊆ ϕ(I), for some ideals A and B of R, then ϕ-δ-S-free
twin zero with respect to AB.
Theorem 3.11. Let I be a ϕ-δ-S-primary ideal of R associated with s ∈ S. Then
I is a ϕ-δ-S-free twin zero if and only if for ideals A and B of R with AB ⊆ I
and AB ̸⊆ ϕ(I), either sA ⊆ I or sB ⊆ δ(I).

Proof. Suppose that I is a ϕ-δ-S-free twin zero, and let A and B be ideals of R
such that AB ⊆ I and AB ̸⊆ ϕ(I). Then I is a ϕ-δ-S-free twin zero with respect
to AB. We show that either sA ⊆ I or sB ⊆ δ(I). Suppose sB ̸⊆ δ(I). Then
there exists b ∈ B such that sb ̸∈ δ(I). Let a ∈ A; then (a, b) is not a ϕ-δ-S-twin
zero of I. If ab ̸∈ ϕ(I), then ab ∈ I − ϕ(I) implies that sa ∈ I, since sb ̸∈ δ(I). If
ab ∈ ϕ(I), then sa ∈ I, since (a, b) is not a ϕ-δ-S-twin zero of I and sb ̸∈ δ(I).
Accordingly, we conclude that sA ⊆ I. Conversely, suppose that if whenever A,
B are ideals R with AB ⊆ I and AB ̸⊆ ϕ(I), then either sA ⊆ I or sB ⊆ δ(I).
We show that I is a ϕ-δ-S-free twin zero. Let P and Q be ideals of R with
PQ ⊆ I and PQ ̸⊆ ϕ(I). Then, by the assumption, either sP ⊆ I or sQ ⊆ δ(I).
Let p ∈ P , q ∈ Q. If (p, q) is a ϕ-δ-S-twin zero of I, then pq ∈ ϕ(I) with sp ̸∈ I
and sq ̸∈ δ(I), a contradiction, since sP ⊆ I or sQ ⊆ δ(I). Thus, (p, q) is not
a ϕ-δ-S-twin zero of I for every p ∈ P and q ∈ Q. Hence we conclude that I is
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a ϕ-δ-S-free twin zero with respect to PQ, which implies that I is a ϕ-δ-S-free
twin zero. □

4. ϕ-δ-S-Primary in direct product of rings

Let Ri be commutative rings with unity for each i = 1, 2 and let R = R1 ×R2

denote the direct product of rings R1 and R2. Also, let S1 and S2 be multiplicative
subsets of R1 and R2, respectively. Then S = S1 × S2 is a multiplicative subset
of R. Suppose that ϕi and δi are reduction and expansion functions of ideals
of Ri for each i = 1, 2 respectively. Following [10], we define the following two
functions:

δ̂(I1 × I2) = δ1(I1)× δ2(I2),

ϕ̂(I1 × I2) = ϕ1(I1)× ϕ2(I2).

Then it is easy to see that δ̂ and ϕ̂ are expansion and reduction functions of ideals
of R, respectively.

Theorem 4.1. Let R1 and R2 be commutative rings with 1 ̸= 0 and let R =
R1×R2 be a direct product ring, and let S = S1×S2 be a multiplicative subset of
R. Suppose that δi is an expansion function of ideals of Ri and ϕi is a reduction
function of ideals of Ri for each i = 1, 2 such that ϕ2(R2) ̸= R2. Then the
following statements are equivalent:

(1) I1 ×R2 is a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2) ∈ S.
(2) I1 is a δ1-S1-primary ideal of R1 associated with s1 and I1 × R2 is a

δ̂-S-primary ideal of R associated with (s1, s2).

Proof. (1) → (2) : Suppose that I1 ×R2 is a ϕ̂-δ̂-S-primary ideal of R associated
with (s1, s2) ∈ S and let a, b ∈ R1 such that ab ∈ I1. Then (a, 1)(b, 1) =

(ab, 1) ∈ I1 × R2 − ϕ̂(I1 × R2). This implies that (s1, s2)(a, 1) ∈ I1 × R2 or
(s1, s2)(b, 1) ∈ δ̂(I1 × R2). Hence we conclude that s1a ∈ I1 or s1b ∈ δ1(I1), and
thus, I1 is a δ1-S1-primary ideal of R1 associated with s1. If I1 ×R2 is not a δ̂-S-
primary ideal of R, then by Proposition 2.17, we have (I1 × R2)

2 ⊆ ϕ̂(I1 × R2),
which implies that R2 = ϕ2(R2), a contradiction. Thus, I1 ×R2 is a δ̂-S-primary
ideal of R associated with (s1, s2).
(2) → (1) : It is clear, since every δ̂-S-primary ideal of R associated with (s1, s2)

is a ϕ̂-δ̂-S-primary ideal. □
Theorem 4.2. Let R1 and R2 be commutative rings with 1 ̸= 0, let R = R1×R2

be a direct product ring, and let S = S1 × S2 be a multiplicative subset of R.
Suppose that δi is an expansion function of ideals of Ri and ϕi is a reduction
function of ideals of Ri for each i = 1, 2. Then the following statements are
equivalent:

(1) I1 × R2 is a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2) ∈ S that is
not δ̂-S-primary.

(2) ϕ̂(I1 × R2) ̸= ∅, ϕ2(R2) = R2 and I1 is a ϕ1-δ1-S1-primary ideal of R1

associated with s1 that is not δ1-S1-primary.
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Proof. (1) → (2) : Suppose that I1 ×R2 is a ϕ̂-δ̂-S-primary ideal of R associated
with (s1, s2) that is not δ̂-S-primary. Then by Proposition 2.17, we have (I1 ×
R2)

2 ⊆ ϕ̂(I1 × R2), which implies that ϕ̂(I1 × R2) ̸= ∅. If ϕ2(R2) ̸= R2, then by
Theorem 4.1, I1 × R2 is a δ̂-S-primary ideal of R associated with (s1, s2), which
is a contradiction. Thus, ϕ2(R2) = R2. Moreover, it is easy to see that I1 is a
ϕ1-δ1-S1-primary ideal of R1 associated with s1, since I1 ×R2 is a ϕ̂-δ̂-S-primary
ideal of R associated with (s1, s2). If I1 is a δ1-S1-primary ideal of R1 associated
with s1, then by the correspondence theorem (Theorem 3.3), I1 × R2 is a δ̂-S-
primary ideal of R associated with (s1, s2), which is a contradiction. Hence I1 is
a ϕ1-δ1-S1-primary ideal of R1 associated with s1 that is not δ1-S1-primary.
(2) → (1) : We show that I1 × R2 is a ϕ̂-δ̂-S-primary ideal of R associated with
(s1, s2) ∈ S. Let (a, c), (b, d) ∈ R such that (a, c)(b, d) = (ab, cd) ∈ I1 × R2 −
ϕ̂(I1 ×R2). Then ab ∈ I1 − ϕ1(I1), since ϕ2(R2) = R2. This implies that s1a ∈ I1
or s1b ∈ δ1(I1), and hence we conclude that (s1, s2)(a, c) = (s1a, s2c) ∈ I1×R2 or
(s1, s2)(b, d) = (s1b, s2d) ∈ δ1(I1) × δ2(R2) = δ̂(I1 × R2). Thus, I1 × R2 is a ϕ̂-δ̂-
S-primary ideal of R associated with (s1, s2). Finally, if I1 ×R2 is a δ̂-S-primary
ideal of R associated with (s1, s2), then it is easy to see that I1 is a δ1-S1-primary
ideal of R1 associated with s1, which is a contradiction. Hence I1 × R2 is not a
δ̂-S-primary ideal of R associated with (s1, s2). □

Now suppose that for each i = 1, 2, if Ii ̸= ϕi(Ii), then Si ∩ ϕi(Ii) = ∅ and if
Si ∩ δi(Ii) ̸= ∅, then Si ∩ Ii = Si ∩ δi(Ii). Then we obtain the following result.
Theorem 4.3. Let R1 and R2 be commutative rings with 1 ̸= 0, let R = R1×R2

be a direct product ring, and let S = S1 × S2be a multiplicative subset of R.
Suppose that δi is an expansion function of ideals of Ri and ϕi is a reduction
function of ideals of Ri for each i = 1, 2. Let I = I1 × I2 be a proper ideal of R,
for some ideals I1 ̸= ϕ1(I1) and I2 ̸= ϕ2(I2) of R1 and R2, respectively, such that
for every i ∈ {1, 2}, if Ii ̸= Ri, then δi(Ii) ̸= Ri. Then the following statements
are equivalent:

(1) I is a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2) ∈ S.
(2) I1 = R1 and I2 is a δ2-S2-primary ideal of R2 associated with s2 or I2 = R2

and I1 is a δ1-S1-primary ideal of R1 associated with s1 or s2 ∈ I2 ∩ S2

and I1 is a δ1-S1-primary ideal of R1 associated with s1 or s1 ∈ I1 ∩ S1

and I2 is a δ2-S2-primary ideal of R2 associated with s2.
(3) I is a δ̂-S-primary ideal of R associated with (s1, s2) ∈ S.

Proof. (1) → (2) : If I1 = R1, then by Theorem 4.1, I2 is a δ2-S2-Primary ideal
of R2 associated with s2. Similarly, if I2 = R2, then by Theorem 4.1, I1 is a
δ1-S1-Primary ideal of R1 associated with s1. Assume that I1 and I2 are proper
ideals of R1, R2, respectively. Let a ∈ I1. Choose b ∈ I2 − ϕ2(I2). Then
(a, 1)(1, b) = (a, b) ∈ I− ϕ̂(I). As I is a ϕ̂-δ̂-S-primary ideal of R associated with
(s1, s2), we have (s1, s2)(a, 1) = (s1a, s2) ∈ I = I1×I2 or (s1, s2)(1, b) = (s1, s2b) ∈
δ̂(I) = δ1(I1)× δ2(I2). Thus, s2 ∈ S2 ∩ I2 or s1 ∈ S1 ∩ δ1(I1) = S1 ∩ I1. Assume
that s2 ∈ S2 ∩ I2. Since S ∩ I = ∅, we have S1 ∩ I1 = ∅. We show that I1 is a δ1-
S1-Primary ideal of R1 associated with s1. Let a, b ∈ R1 such that ab ∈ I1. Then
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(a, s2)(b, 1) ∈ I− ϕ̂(I), since s2 ∈ S2∩I2 and s2 ̸∈ ϕ2(I2). As I is a ϕ̂-δ̂-S-primary
ideal of R associated with (s1, s2) ∈ S, we have (s1, s2)(a, s2) = (s1a, (s2)

2) ∈ I or
(s1, s2)(b, 1) = (s1b, s2) ∈ δ̂(I), which implies that s1a ∈ I1 or s1b ∈ δ1(I1). Thus,
I1 is a δ1-S1-primary ideal of R1 associated with s1. Similarly, if we assume that
s1 ∈ S1 ∩ I1, then I2 is a δ2-S2-primary ideal of R2 associated with s2.
(2) → (3) : If I1 = R1 and I2 is a δ2-S2-Primary ideal of R2 associated with s2,
then by the correspondence theorem, I is a δ̂-S-primary ideal of R associated with
(s1, s2). Similarly, if I2 = R2 and I1 is a δ1-S1-Primary ideal of R1 associated with
s1, then I is a δ̂-S-primary ideal of R associated with (s1, s2). Now, suppose that
s1 ∈ I1 ∩ S1 and I2 is a δ2-S2-primary ideal of R2 associated with s2. We show
that I is a δ̂-S-primary ideal of R associated with (s1, s2). Let (a, c), (b, d) ∈ R
such that (a, c)(b, d) = (ab, cd) ∈ I. Then cd ∈ I2, which implies that s2c ∈ I2 or
s2d ∈ δ2(I2). Since s1 ∈ S1 ∩ I1, we have (s1, s2)(a, c) = (s1a, s2c) ∈ I1 × I2 or
(s1, s2)(b, d) = (s1b, s2d) ∈ I1 × δ2(I2) ⊆ δ1(I1)× δ2(I2). Thus, I is a δ̂-S-primary
ideal of R associated with (s1, s2). Similarly, if we assume that s2 ∈ S2 ∩ I2 and
I1 is a δ1-S1-primary ideal of R1 associated with s1, then I is a δ̂-S-primary ideal
of R associated with (s1, s2).
(3) → (1) : Clear. □

Suppose that for each i = 1, 2, if Ii ̸= ϕi(Ii), then Si ∩ ϕi(Ii) = ∅ and if
Si ∩ δi(Ii) ̸= ∅, then Si ∩ Ii = Si ∩ δi(Ii). Then we obtain the following result.
Theorem 4.4. Let R1 and R2 be commutative rings with 1 ̸= 0, R = R1 × R2.
Let δ1 and δ2 be expansion functions of ideals of R1 and R2, respectively, and let
ϕ1, ϕ2 be reduction functions of ideals of R1 and R2, respectively. Let I = I1 × I2
be a proper ideal of R such that I ̸= ϕ̂(I) for some ideals I1 and I2 of R1 and R2,
respectively, such that for every i ∈ {1, 2}, if Ii ̸= Ri, then δi(Ii) ̸= Ri. Then I is
a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2) ∈ S that is not δ̂-S-primary if
and only if one of the following conditions satisfies:

(1) I = I1 × I2, where ϕ1(I1) ⫋ I1 ⫋ R1, such that I1 is a ϕ1-δ1-S1-primary
ideal of R1 associated with s1 that is not δ1-S1-primary and I2 = ϕ2(I2)
with s2 ∈ S2 ∩ ϕ2(I2).

(2) I = I1 × I2, where ϕ2(I2) ⫋ I2 ⫋ R2, such that I2 is a ϕ2-δ2-S2-primary
ideal of R2 associated with s2 that is not δ2-S2-primary and I1 = ϕ1(I1)
with s1 ∈ S1 ∩ ϕ1(I1).

Proof. Suppose that I is a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2) that is
not δ̂-S-primary. Assume that I1 ̸= ϕ1(I1) and I2 ̸= ϕ2(I2). Then by Theorem 4.3,
I is a δ̂-S-primary ideal of R associated with (s1, s2), a contradiction. Therefore
I1 = ϕ1(I1) or I2 = ϕ2(I2). Without loss of generality, we may assume that I2 =
ϕ2(I2). We show that s2 ∈ S2 ∩ I2 or s1 ∈ S1 ∩ I1. Choose x ∈ I1 − ϕ1(I1). Then
for b ∈ I2, we have (x, 1)(1, b) = (x, b) ∈ I− ϕ̂(I). Since I is a ϕ̂-δ̂-S-primary ideal
of R associated with (s1, s2) ∈ S, we have (s1, s2)(x, 1) ∈ I or (s1, s2)(1, b) ∈ δ̂(I).
Therefore, (s1x, s2) ∈ I = I1 × I2 or (s1, s2b) ∈ δ̂(I) = δ1(I1) × δ2(I2) and hence
s2 ∈ S2 ∩ I2 = S2 ∩ ϕ2(I2) or s1 ∈ S1 ∩ δ1(I1) = S1 ∩ I1.
Case (1): Suppose that s2 ∈ S2 ∩ I2 = S2 ∩ ϕ2(I2). Then S1 ∩ I1 = ∅, since
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S ∩ I = ∅. Next, we show that I1 is a ϕ1-δ1-S1-primary ideal of R1 associated
with s1. Observe that I1 ̸= R1. For if I1 = R1, then S ∩ I = (S1 × S2) ∩ (R1 ×
ϕ2(I2)) = S1 × (S2 ∩ ϕ2(I2)) ̸= ∅, a contradiction. Thus, I1 ̸= R1. Let a, b ∈ R1

such that ab ∈ I1 − ϕ1(I1). Then (a, 1)(b, 0) = (ab, 0) ∈ I − ϕ̂(I) implies that
(s1, s2)(a, 1) = (s1a, s2) ∈ I1 × I2 or (s1, s2)(b, 0) = (s1b, 0) ∈ δ1(I1) × δ2(I2).
So, s1a ∈ I1 or s1b ∈ δ1(I1). Therefore I1 is a ϕ1-δ1-S1-primary ideal of R1

associated with s1. We show that I1 is not a δ1-S1-primary ideal of R1 associated
with s1. Suppose that I1 is a δ1-S1-primary ideal of R1 associated with s1 and
let (a, c), (b, d) ∈ R such that (a, c)(b, d) = (ab, cd) ∈ I. Then ab ∈ I1 implies
that s1a ∈ I1 or s1b ∈ δ1(I1). Since s2 ∈ S2 ∩ ϕ2(I2) then (s1, s2)(a, c) ∈ I or
(s1, s2)(b, d) ∈ δ̂(I). So, I is a δ̂-S-primary ideal of R associated with (s1, s2), a
contradiction. Thus, I1 is a ϕ1-δ1-S1-primary ideal of R1 associated with s1 that
is not δ1-S1-primary.
Case (2): Suppose s1 ∈ S1 ∩ I1. Then S2 ∩ I2 = ∅, since S ∩ I = ∅. We show
that I2 = ϕ2(I2) is a δ2-S2-primary ideal of R2 associated with s2. Let a, b ∈ R2

such that ab ∈ I2 = ϕ2(I2). Choose x ∈ I1 − ϕ1(I1). Then (x, a)(1, b) = (x, ab) ∈
I − ϕ̂(I). Since I is a ϕ̂-δ̂-S-primary ideal of R associated with (s1, s2), we have
(s1, s2)(x, a) = (s1x, s2a) ∈ I = I1 × I2 or (s1, s2)(1, b) = (s1, s2b) ∈ δ̂(I) =
δ1(I1)× δ2(I2), which implies that s2a ∈ I2 or s2b ∈ δ2(I2). Thus, I2 = ϕ2(I2) is a
δ2-S2-primary ideal of R2 associated with s2. Now, we show that case (2) cannot
be happened by proving that I will be a δ̂-S-primary ideal of R associated with
(s1, s2), which is a contradiction. Let (a, c), (b, d) ∈ R such that (a, c)(b, d) =
(ab, cd) ∈ I. Then cd ∈ I2 implies that s2c ∈ I2 or s2d ∈ δ2(I2). Since s1 ∈ S1∩I1
we have (s1, s2)(a, c) = (s1a, s2c) ∈ I1 × I2 = I or (s1, s2)(b, d) = (s1b, s2d) ∈
I1 × δ2(I2) ⊆ δ̂(I). Thus, I is a δ̂-S-primary ideal of R associated with (s1, s2),
which is a contradiction.

Conversely, suppose that (1) satisfies. Let (a, c), (b, d) ∈ R such that (a, c)(b, d) =
(ab, cd) ∈ I − ϕ̂(I). Then ab ∈ I1 − ϕ1(I1) implies that s1a ∈ I1 or s1b ∈ δ1(I1).
Thus, (s1, s2)(a, c) = (s1a, s2c) ∈ I1 × I2 = I or (s1, s2)(b, d) = (s1b, s2d) ∈
δ1(I1) × I2 ⊆ δ̂(I). Thus, I is a ϕ̂-δ̂-S-primary ideal of R associated with
(s1, s2). Finally, we show that I is not a δ̂-S-primary ideal of R associated
with (s1, s2). Suppose that I is a δ̂-S-primary ideal of R associated with (s1, s2),
and let a, b ∈ R1 such that ab ∈ I1. Then (a, s2)(b, 1) = (ab, s2) ∈ I. So,
(s1, s2)(a, s2) = (s1a, (s2)

2) ∈ I or (s1, s2)(b, 1) = (s1b, s2) ∈ δ̂(I), which implies
that s1a ∈ I1 or s1b ∈ δ1(I1). Thus, I1 is a δ1-S1-primary ideal of R1 associated
with s1, a contradiction. Hence I is a ϕ̂-δ̂-S-primary ideal of R associated with
(s1, s2) that is not δ̂-S-primary. □

Corollary 4.5. Let R1 and R2 be commutative rings with 1 ̸= 0, R = R1 × R2.
Let δ1 and δ2 be expansion functions of ideals of R1 and R2, respectively. Let
I = I1 × I2 be a proper ideal of R for some ideals I1 and I2 of R1 and R2,
respectively, such that for every i ∈ {1, 2}, if Ii ̸= Ri, then δi(Ii) ̸= Ri. Then I is
a nonzero weakly-δ̂-S-primary ideal of R associated with (s1, s2) ∈ S that is not
δ̂-S-primary if and only if one of the following conditions satisfies:
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(1) I = I1 × I2, where I1 is a nonzero proper ideal of R1 such that I1 is
a weakly-δ1-S1-primary ideal of R1 associated with s1 ∈ S1 that is not
δ1-S1-primary and I2 = 0, s2 = 0.

(2) I = I1 × I2, where I2 is a nonzero proper ideal of R2 such that I2 is
a weakly-δ2-S2-primary ideal of R2 associated with s2 ∈ S2 that is not
δ2-S2-primary and I1 = 0, s1 = 0.

Proof. In Theorem 4.4, let ϕ̂(I) = ϕ1(I1) × ϕ2(I2) = (0, 0) for each proper ideal
I = I1 × I2 of R. □
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