

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
GENERALIZED DERIVATIONS ON LIE IDEALS WITH ANNIHILATING ENGEL CONDITIONS

ASHUTOSH PANDEY ${ }^{1 *}$ AND BALCHAND PRAJAPATI ${ }^{1}$

Communicated by B. Torrecillas

Abstract

Let \mathcal{R} be a non-commutative prime ring with characteristic different from 2 , let \mathcal{U} be the Utumi quotient ring of \mathcal{R}, and let \mathcal{C} be the extended centroid of \mathcal{R}. Let \mathcal{G} be a generalized derivation on \mathcal{R}, let \mathcal{L} be a non-central Lie ideal of \mathcal{R}, let $0 \neq c \in \mathcal{R}$, and let n, r, s, t be fixed positive integers. If $c u^{s}\left[\mathcal{G}\left(u^{n}\right), u^{r}\right]_{k} u^{t}=0$, for all $u \in \mathcal{L}$, then one of the following properties holds:

(1) \mathcal{R} satisfies s_{4}.
(2) There exists $\lambda \in \mathcal{C}$ such that $\mathcal{G}(\zeta)=\lambda \zeta$ for all $\zeta \in \mathcal{R}$.
(3) If \mathcal{C} is a finite field, then $\mathcal{R} \cong M_{l}(\mathcal{C})$, an $l \times l$ matrix ring over \mathcal{C} for $l>2$.

1. Introduction and preliminaries

Throughout this article, unless otherwise stated, \mathcal{R} always refers to a prime ring with center $\mathcal{Z}(\mathcal{R})$. The Utumi quotient ring of \mathcal{R} is denoted by \mathcal{U}. The center of \mathcal{U} is known as the extended centroid of \mathcal{R}, and it is denoted by \mathcal{C}. The axiomatic formulation and definition of the Utumi quotient ring can be found in [4]. The commutator of two elements u and v of \mathcal{R} is denoted by $[u, v]$, and it is defined by $u v-v u$. Define $[u, v]_{0}=u$, and for $k \geq 1$, the k th commutator of two elements u and v is given by $[u, v]_{k}=[[u, v], v]_{k-1}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} v^{i} u v^{k-i}$. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a derivation if $d(\zeta \chi)=d(\zeta) \chi+\zeta d(\chi)$ for all $\zeta, \chi \in \mathcal{R}$. A very obvious example of a derivation on \mathcal{R} is the additive map δ_{p}, which is defined by $\delta_{p}(\zeta)=[p, \zeta]$ for all $\zeta \in \mathcal{R}$, and for some fixed $p \in \mathcal{R}$, this type of derivation is known as inner derivation induced by an element p. A derivation is called an outer derivation if it is not inner. An additive mapping

[^0]$\mathcal{F}: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a generalized derivation if there exists a derivation d on \mathcal{R} such that $\mathcal{F}(\zeta \chi)=F(\zeta) \chi+\zeta d(\chi)$ for all $\zeta, \chi \in \mathcal{R}$.
A series of research articles have been produced to investigate the relationship between the structure of prime ring \mathcal{R} and the behavior of some specific maps defined on a particular subset of \mathcal{R}. The first result in this direction was proved by Posner. Posner [22] proved that if d is a derivation of a prime ring \mathcal{R} such that $[d(\zeta), \zeta] \in \mathcal{Z}(\mathcal{R})$ for all $\zeta \in \mathcal{R}$, then either $d=0$ or \mathcal{R} is a commutative ring. By demonstrating the Posner's conclusion on the Lie ideal \mathcal{L} of \mathcal{R}, Lanski [17] generalized it. Specifically, Lanski proved that that if $[d(\zeta), \zeta]_{k} \in \mathcal{C}$ for all $\zeta \in \mathcal{L}$ and $k>0$, then $\operatorname{char}(\mathcal{R})$ is different from 2 and \mathcal{R} is contained $M_{2}(\mathcal{K})$, for some suitable field \mathcal{K}; equivalently, \mathcal{R} satisfies s_{4}, the standard identity of four noncommuting variables. More recently Argaç et al. [2] generalized Lanski's result by replacing the derivation d by the generalized derivation \mathcal{G}. More precisely, it is proved that if $[\mathcal{G}(\zeta), \zeta]_{k}=0$, for all $\zeta \in \mathcal{L}$, then either $\mathcal{G}(\zeta)=a \zeta$ with $a \in \mathcal{C}$ or \mathcal{R} satisfies the standard identity s_{4}. The study of generalized derivations on Lie ideals and left ideals are given in [1, 6-10, 21, 23] where further references can be found out. In this article, we continue this line of investigation concerning the identity $c u^{s}\left[\mathcal{G}\left(u^{n}\right), u^{r}\right]_{k} u^{t}=0$ for all $u \in \mathcal{L}$, where $r, n, s, t, k>0$ are fixed integers and $0 \neq c \in \mathcal{R}$. We prove the following main result in this article.

Theorem 1.1. [Main Theorem] Let \mathcal{R} be a non-commutative prime ring of characteristic different from 2 , let \mathcal{U} be the Utumi quotient ring of \mathcal{R}, and let \mathcal{C} be the extended centroid of \mathcal{R}. Let \mathcal{G} be a generalized derivation on \mathcal{R} and let \mathcal{L} be a non-central Lie ideal of \mathcal{R}. Let n, s, t, r, k are fixed integers such that $c u^{s}\left[\mathcal{G}\left(u^{n}\right), u^{r}\right]_{k} u^{t}=0$ for all $u \in \mathcal{L}$ and for some $0 \neq c \in \mathcal{R}$. Then one of the following properties holds:
(1) \mathcal{R} satisfies s_{4}.
(2) There exists $\lambda \in \mathcal{C}$ such that $\mathcal{G}(\zeta)=\lambda \zeta$ for all $\zeta \in \mathcal{R}$.
(3) If \mathcal{C} is a finite field, then $\mathcal{R} \cong M_{l}(\mathcal{C})$, an $l \times l$ matrix ring over \mathcal{C} for $l>2$.

Let \mathcal{R} be a prime ring and let \mathcal{M} denote the collection of all pairs (\mathcal{I}, f), where \mathcal{I} is an ideal of \mathcal{R} and f is a right module homomorphism from \mathcal{I} into \mathcal{R}. Define a relation \sim on \mathcal{M} by $(\mathcal{I}, f) \sim(\mathcal{J}, g)$ for $(\mathcal{I}, f),(\mathcal{J}, g)$ in \mathcal{M}. If $f=g$ on some ideal \mathcal{W} of \mathcal{R}, where $\mathcal{W} \subset \mathcal{I} \cap \mathcal{J}$. It is trivial to see that this relation is an equivalence relation. Let \mathcal{U} denote the set of equivalence classes of \mathcal{M}. Denote the equivalence class (\mathcal{I}, f) by \tilde{f}. Moreover, \mathcal{U} forms a ring under the operations $\tilde{f}+\tilde{g}=(\mathcal{I} \cap \mathcal{J}, f+g)$ and $\tilde{f} \cdot \tilde{g}=(\mathcal{I} \mathcal{J}, f g)$, where \tilde{f} is the equivalence class of (\mathcal{I}, f) and \tilde{g} is the equivalence class of (\mathcal{J}, g). The ring \mathcal{U} is the Utumi quotient ring of \mathcal{R}. Clearly, \mathcal{R} embeds in \mathcal{U}.

We recall the following remarks that are useful to prove our main theorem.
Remark 1.2. Let \mathcal{K} be any field and let $\mathcal{R}=M_{m}(\mathcal{K})$ be the algebra of all $m \times m$ matrices over \mathcal{K} with $m \geq 2$. Then the unit matrix $e_{i j}$ is an element of $[\mathcal{R}, \mathcal{R}]$ for all $1 \leq i \neq j \leq m$.Moreover, $e_{i j}$ has entry 1 at the (i, j) th place and zero everywhere else.

Remark 1.3 ([3]). Let \mathcal{R} be a prime ring and let \mathcal{I} be a two-sided ideal of \mathcal{R}. In $\mathcal{R}, \mathcal{I}, \mathcal{U}$, if any one of these satisfies a generalized polynomial identity (GPI), then rest two will also satisfy the same polynomial identity.
Remark 1.4 ([19]). Let \mathcal{R} be a prime ring and \mathcal{I} a two-sided ideal of \mathcal{R}. In \mathcal{R}, \mathcal{I}, \mathcal{U} if any one of these satisfies a generalized differential identity then rest two will also satisfy the same differential identity.
Remark 1.5 ([3]). Let \mathcal{R} be a prime ring. Then any derivation δ of \mathcal{R} can be extended uniquely to the derivation of \mathcal{U}.
Remark 1.6 ([14, Kharchenko Theorem]). Let \mathcal{R} be a prime ring, let d be a nonzero derivation on \mathcal{R}, and let \mathcal{I} be a nonzero ideal of \mathcal{R}. If \mathcal{I} satisfies the differential identity,

$$
f\left(\zeta_{1}, \zeta_{2}, \ldots, x_{n}, d\left(\zeta_{1}\right), d\left(\zeta_{2}\right), \ldots, d(\zeta)=0\right.
$$

for any $\zeta_{1}, \ldots, \zeta_{n} \in \mathcal{I}$, then either

- \mathcal{I} satisfies the GPI

$$
f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}, \chi_{1}, \chi_{2}, \ldots, \chi_{n}\right)=0
$$

for all $\chi_{1}, \ldots, \chi_{n} \in \mathcal{R}$,
or

- d is \mathcal{U}-inner,

$$
f\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n},\left[p, \zeta_{1}\right],\left[p, \zeta_{2}\right], \ldots,\left[p, \zeta_{n}\right]\right)=0
$$

Remark 1.7. Let $\mathcal{X}=\left\{\zeta_{1}, \zeta_{2}, \ldots\right\}$ represent a countable set of non-commuting indeterminates $\zeta_{1}, \zeta_{2}, \ldots$ Let $\mathcal{C}\{\mathcal{X}\}$ denote the free algebra over \mathcal{C} on the set \mathcal{X} and let $\mathcal{T}=\mathcal{U} *_{\mathcal{C}} \mathcal{C}\{\mathcal{X}\}$, denote the free product of the \mathcal{C}-algebras \mathcal{U} and $\mathcal{C}\{\mathcal{X}\}$. The members of \mathcal{T} are known as the generalized polynomials with coefficients in \mathcal{U}. Let \mathcal{B} be a set of \mathcal{C}-independent vectors of \mathcal{U}. Then any $g \in \mathcal{T}$ can be expressed in the form $g=\sum_{i} \beta_{i} u_{i}$, where $\beta_{i} \in \mathcal{C}$ and u_{i} are \mathcal{B}-monomials of the form $a_{0} \xi_{1} a_{1} \xi_{2} a_{2} \ldots \xi_{n} a_{n}$, with $a_{0}, a_{1}, \ldots, a_{n} \in \mathcal{B}$ and $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \mathcal{X}$. Any generalized polynomial $g=\sum_{i} \beta_{i} u_{i}$ is trivial; that is, g is the zero element in \mathcal{T} if and only if $\beta_{i}=0$ for each i. Further details can be found in [5]. If each monomial of a generalized polynomial $f\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ contains each ζ_{i} only once for $1 \leq i \leq n$, then $f\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ is said to be multilinear polynomial.
Remark $1.8([13])$. For $l \geq 2$, Let $M_{l}(\mathcal{K})$ be a $l \times l$ matrix algebra over infinite field \mathcal{K}. If $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ are matrices in $M_{l}(\mathcal{K})$, which are non-scalar, then there exists an invertible matrix $\mathcal{B} \in M_{m}(\mathcal{K})$ such that matrices $\mathcal{B} \mathcal{B}_{1} \mathcal{B}^{-1}, \ldots, \mathcal{B B}_{k} \mathcal{B}^{-1}$ have all nonzero entries.

2. InNer CaSE

Proposition 2.1. Let \mathcal{R} be a non-commutative prime ring with extended centroid \mathcal{C}, Utumi quotient ring \mathcal{U}, and $\operatorname{char}(\mathcal{R}) \neq 2$. If

$$
\begin{equation*}
c\left[u^{s} a u^{n+t}+u^{n+s} b u^{t}, u^{r}\right]_{k}=0 \tag{2.1}
\end{equation*}
$$

for all $u \in[\mathcal{R}, \mathcal{R}]$, where $n, s, t, k, r>0$ are fixed positive integers and $0 \neq c \in \mathcal{R}$, then one of the following properties holds:
(1) \mathcal{R} satisfies s_{4}.
(2) $a, b \in \mathcal{C}$.
(3) If \mathcal{C} is finite, then $\mathcal{R} \cong M_{l}(C)$ for $l>2$.

We use the following lemmas in what follows to prove the above proposition.

Lemma 2.2. For $l \geq 3$, let $\mathcal{R}=M_{l}(\mathcal{K})$ be an $l \times l$ matrix algebra over an infinite field \mathcal{K} and let $\operatorname{char}(\mathcal{R}) \neq 2$. If

$$
\begin{equation*}
c\left[u^{s} a u^{n+t}+u^{n+s} b u^{t}, u^{r}\right]_{k}=0 \tag{2.2}
\end{equation*}
$$

for all $u \in[\mathcal{R}, \mathcal{R}]$, where s, t, k, n, r are fixed positive integers and $0 \neq c \in \mathcal{R}$, then $a, b \in \mathcal{K} \cdot I_{l}$.

Proof. From the hypothesis,

$$
\begin{align*}
0 & =c\left[u^{s} a u^{n+t}+u^{n+s} b u^{t}, u^{r}\right]_{k} \\
& =c \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} u^{r i}\left(u^{s} a u^{n+t}+u^{n+s} b u^{t}\right) u^{r(k-i)} \tag{2.3}
\end{align*}
$$

for all $u \in[\mathcal{R}, \mathcal{R}]$. Suppose that both a and b are not central elements. Denote $a=\sum_{i, j}^{l} a_{i j} e_{i j}, b=\sum_{i, j}^{l} b_{i j} e_{i j}$ and $c=\sum_{i, j}^{l} c_{i j} e_{i j}$ where $a_{i j}, b_{i j}, c_{i j} \in \mathcal{K} \cdot I_{l}$. Since equation (2.3) is invariant under the action of any automorphism of \mathcal{R} thus from Remark 1.2 all the entries of a and b are nonzero. Note that if we left multiply c by an appropriate $e_{1 j}$, then we may assume that $c=e_{11}+\sum_{j=2}^{l} c_{1 j} e_{1 j}$. Assume that ϕ_{i} is an inner automorphism of \mathcal{R} which is defined by $\phi_{i}(y)=$ $\left(1+c_{1 i} e_{1 i}\right) y\left(1-c_{1 i} e_{1 i}\right)$ for $2 \leq i \leq l$. Then $\phi_{1+1}(c)=e_{11}+\sum_{j=3}^{l} c_{1 j} e_{1 j}, \phi_{3} \phi_{2}(c)=$ $e_{11}+\sum_{j=4}^{l} c_{1 j} e_{1 j}, \ldots, \phi_{l} \ldots \phi_{3} \phi_{2}(c)=e_{11}$. Replacing a, b, c by $\phi(a), \phi(b), \phi(c)$, respectively, we may assume that $c=e_{11}$. Thus \mathcal{R} satisfies the following condition:

$$
\begin{align*}
0 & =e_{11}\left[u^{s} a u^{n+t}+u^{n+s} b u^{t}, u^{r}\right]_{k} \\
& =e_{11} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} u^{r i}\left(u^{s} a u^{n+t}+u^{n+s} b u^{t}\right) u^{r(k-i)} \tag{2.4}
\end{align*}
$$

for all $u \in[\mathcal{R}, \mathcal{R}]$.
It is clear that $n+s>s$. Since all the entries of b are nonzero, assume without loss of generality that $b_{13} \neq 0$. Let $u=\beta\left(e_{11}-e_{22}\right)+\left(e_{33}-e_{l l}\right)$ for some $\beta \in \mathcal{K}$. Then, $u^{j}=\beta^{j}\left(e_{11}+(-1)^{j} e_{22}\right)+\left(e_{33}+(-1)^{j} e_{l l}\right), e_{11} u^{j}=\beta^{j} e_{11}$ and $u^{j} e_{33}=e_{33}$. Choosing $u=\beta\left(e_{11}-e_{22}\right)+\left(e_{33}-e_{l l}\right)$ in equation (2.4) and right multiplying by
e_{33}, we get

$$
\begin{aligned}
0= & e_{11} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} u^{r i}\left(u^{s} a u^{n+t}+u^{n+s} b u^{t}\right) u^{r(k-i)} e_{33} \\
= & \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\left(\beta^{r i+s} e_{11} a e_{33}+\beta^{r i+n+s} e_{11} b e_{33}\right. \\
= & \left(\beta^{r k+s}(-1)^{k} a_{13}+\beta^{r k+s+n} b_{13}+\sum_{i=0}^{k-1} \beta^{r i+s}(-1)^{i}\binom{k}{i} a_{13}\right. \\
& \left.+\sum_{i=0}^{k-1} \beta^{r i+s+n}(-1)^{i}\binom{k}{i} b_{13}\right) e_{13},
\end{aligned}
$$

which implies

$$
\begin{align*}
& \left(\beta^{r k+s}(-1)^{k} a_{13}+\beta^{r k+s+n} b_{13}+\sum_{i=0}^{k-1} \beta^{r i+s}(-1)^{i}\binom{k}{i} a_{13}\right. \\
& \left.+\sum_{i=0}^{k-1} \beta^{r i+s+n}(-1)^{i}\binom{k}{i} b_{13}\right)=0 \tag{2.5}
\end{align*}
$$

for all $\beta \in \mathcal{K}$. Since $n+s>s$ and \mathcal{K} is an infinite field, then using the Vandermonde determinant argument in equation (2.5), we obtain $b_{13}=0$, a contradiction. Thus $b \in \mathcal{K}$. Thus equation (2.2) reduces to $c\left[u^{s} a u^{n+t}, u^{r}\right]_{k}=0$. Again using similar arguments as above, we can show that $a \in \mathcal{K}$.

Lemma 2.3. Let \mathcal{R} be a non-commutative prime ring with Utumi quotient ring \mathcal{U}, extended centroid \mathcal{C}, and $\operatorname{char}(\mathcal{R}) \neq 2$ such that

$$
\begin{equation*}
c\left[u^{s} a u^{n+t}+u^{n+s} b u^{t}, u^{r}\right]_{k}=0 \tag{2.6}
\end{equation*}
$$

for all $u \in[\mathcal{R}, \mathcal{R}]$, where s, t, n, r, k are fixed positive integers and $0 \neq c \in \mathcal{R}$. If \mathcal{R} does not satisfy any nontrivial GPI, then $a, b \in \mathcal{C}$.

Proof. Suppose that a, b are not central elements. From the hypothesis, \mathcal{R} satisfies the following condition:

$$
\begin{equation*}
h\left(\zeta_{1}, \zeta_{2}\right)=c\left[\left[\zeta_{1}, \zeta_{2}\right]^{s} a\left[\zeta_{1}, \zeta_{2}\right]^{n+t}+\left[\zeta_{1}, \zeta_{2}\right]^{n+s} b\left[\zeta_{1}, \zeta_{2}\right]^{t},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right] \tag{2.7}
\end{equation*}
$$

for all $\zeta_{1}, \zeta_{2} \in \mathcal{R}$. We know from Remark 1.3 that \mathcal{R} and \mathcal{U} satisfy the same GPIs. Therefore \mathcal{U} satisfies equation (2.7). Suppose that $h\left(\zeta_{1}, \zeta_{2}\right)$ is a trivial GPI for \mathcal{U}. Let $\mathcal{T}=\mathcal{U} *_{\mathcal{C}} \mathcal{C}\left\{\zeta_{1}, \zeta_{2}\right\}$ be the free product of \mathcal{U} and $\mathcal{C}\left\{\zeta_{1}, \zeta_{2}\right\}$, the free \mathcal{C} - algebra in two indeterminates, which is non-commuting. Clearly, $h\left(\zeta_{1}, \zeta_{2}\right)$ is a zero element of \mathcal{T}. Since $a \notin \mathcal{C}$ then $\{1, a\}$ will be linearly \mathcal{C} independent and therefore equation (2.7) will be a nontrivial polynomial identity of \mathcal{T} because it has a nontrivial monomial $c\left[\zeta_{1}, \zeta_{2}\right]^{s+r k} a\left[\zeta_{1}, \zeta_{2}\right]^{n t}=0$, which is a contradiction. Thus $a \in \mathcal{C}$. By similar arguments, we can show that $b \in \mathcal{C}$.

Proof of Proposition 2.1. Throughout the proof, we assume that \mathcal{R} does not satisfy s_{4}. If \mathcal{R} does not satisfy any nontrivial GPI, then by Lemma $2.3, a, b \in \mathcal{C}$
and we are done. Thus we may assume that equation (2.1) is a nontrivial GPI for \mathcal{R}. We know from Remark 1.3 that \mathcal{R} and \mathcal{U} satisfy the same polynomial identity. Thus equation (2.1) is also an identity for \mathcal{U}. Let \mathcal{F} be the algebraic closure of \mathcal{C} if \mathcal{C} is infinite, and set $\mathcal{F}=\mathcal{C}$ if \mathcal{C} is finite. Clearly, $\mathcal{U} \subseteq \mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$, and \mathcal{U} is embedded in $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ via the map: $x \rightarrow x \otimes 1 \in \mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. Thus \mathcal{U} is a subring of $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. From [18], equation (2.1) is a GPI for $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. Moreover, in the light of [11], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a prime ring with extended centroid \mathcal{F}. Hence $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ satisfies equation (2.1), and it is a prime ring with extended centroid \mathcal{F}, which is either finite or algebraically closed. In the view of the Martindale theorem [20], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a prime ring with nonzero socle and \mathcal{F} as its associated division ring. By [16, p. 75], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a dense subring of $\operatorname{End}\left(\mathcal{V}_{\mathcal{F}}\right)$, the ring of \mathcal{F}-linear transformations on the vector space \mathcal{V} over \mathcal{F}. Since \mathcal{R} is noncommutative therefore $\operatorname{dim}_{\mathcal{F}} \mathcal{V} \geq 2$. If $\operatorname{dim}_{\mathcal{F}} \mathcal{V}=l<\infty$, then $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F} \cong M_{l}(\mathcal{F})$. If \mathcal{F} is infinite, then $a, b \in \mathcal{F}$, consequently $a, b \in \mathcal{C}$. Again if \mathcal{F} is finite, then $\mathcal{F}=\mathcal{C}$ and $\mathcal{R}=\mathcal{U}=\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}=\operatorname{End}\left(\mathcal{V}_{\mathcal{F}}\right)=M_{l}(\mathcal{C})$.
Next, we assume the case when $\operatorname{dim}_{\mathcal{F}} \mathcal{V}=\infty$. Assume that both a, b are not central elements. By Martindale's theorem for any idempotent $p^{2}=p \in \operatorname{soc}\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right)$, we have $p\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right) p=M_{l^{\prime}}(\mathcal{F})$, where $\operatorname{dim}_{\mathcal{F}} \mathcal{V}=l^{\prime}$. Since $a, b \notin \mathcal{F}$ there exist $h_{1}, h_{2} \in \operatorname{soc}\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right)$ such that $\left[a, h_{1}\right] \neq 0$ and $\left[b, h_{2}\right] \neq 0$. By Littof's theorem [?], there exists idempotent $p \in \operatorname{soc}\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right)$ such that $a h_{1}, h_{1} a, b h_{2}, h_{2} b, h_{1}, h_{2} \in$ $p\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right) p$. Since $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ satisfies the identity

$$
\begin{equation*}
p c\left[\left[\zeta_{1}, \zeta_{2}\right]^{s} a\left[\zeta_{1}, \zeta_{2}\right]^{n+t}+\left[\zeta_{1}, \zeta_{2}\right]^{n+s} b\left[\zeta_{1}, \zeta_{2}\right]^{t},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k} p=0 \tag{2.8}
\end{equation*}
$$

for all $\zeta_{1}, \zeta_{2} \in \mathcal{R}$. Thus $p\left(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}\right) p$ satisfies

$$
p c p\left[\left[\zeta_{1}, \zeta_{2}\right]^{s} \operatorname{pap}\left[\zeta_{1}, \zeta_{2}\right]^{n+t}+\left[\zeta_{1}, \zeta_{2}\right]^{n+s} p b p\left[\zeta_{1}, \zeta_{2}\right]^{t},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}=0
$$

Thus by Lemma 2.3, pap, pbp $\in \mathcal{F}$. Hence $a h_{1}=e a e h_{1}=h_{1} e a e=a h_{1}$, a contradiction. Thus $a \in \mathcal{F}$, which implies $a \in \mathcal{C}$. Similarly $b \in \mathcal{C}$.

3. Proof of the main theorem 1.1

Since \mathcal{L} is a non-central Lie ideal and $\operatorname{char}(\mathcal{R}) \neq 2$, by [15, pp. 4-5], there exists a nonzero two-sided ideal \mathcal{I} of \mathcal{R} such that $\mathcal{I} \subseteq \mathcal{L}$ and $0 \neq[\mathcal{I}, \mathcal{R}] \subseteq \mathcal{L}$. Therefore we have

$$
\begin{equation*}
c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[\mathcal{G}\left(\left[\left[\zeta_{1}, \zeta_{2}\right]^{n}\right),\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0\right. \tag{3.1}
\end{equation*}
$$

for all $\left[\zeta_{1}, \zeta_{2}\right] \in[\mathcal{I}, \mathcal{I}]$. Since \mathcal{R} and \mathcal{I} satisfy the same GPI (by Remark 1.3), therefore \mathcal{R} satisfies equation (3.1) for all $\zeta_{1}, \zeta_{2} \in \mathcal{R}$. By Remark 1.4, the generalized derivation \mathcal{G} has the form $\mathcal{G}(\zeta)=a \zeta+d(\zeta)$ for some $a \in \mathcal{U}$ and a derivation d on \mathcal{U}.

Case I. If d is an inner derivation induced by an element $w \in \mathcal{U}$, then from equation (3.1), we have

$$
c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[(a+w)\left[\zeta_{1}, \zeta_{2}\right]^{n}-\left[\zeta_{1}, \zeta_{2}\right]^{n} w,\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0
$$

which implies

$$
c\left[\left[\zeta_{1}, \zeta_{2}\right]^{s}(a+w)\left[\zeta_{1}, \zeta_{2}\right]^{n+t}-\left[\zeta_{1}, \zeta_{2}\right]^{n+s} w\left[\zeta_{1}, \zeta_{2}\right]^{t},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}=0
$$

for all $\zeta_{1}, \zeta_{2} \in \mathcal{R}$. Thus by Proposition 2.1, we have one of the following conditions:
(1) \mathcal{R} satisfies s_{4}.
(2) $a+w, w \in \mathcal{C}$; that is, $a, w \in C$ so that $d=0$ and $\mathcal{G}(\zeta)=a \zeta$,
(3) If \mathcal{C} is finite, then $\mathcal{R} \cong M_{l}(\mathcal{C}), l \times l$ matrix rings and $l>2$.

Case II: If d is an outer derivation, then equation (3.1) becomes

$$
\begin{align*}
& c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[a\left[\zeta_{1}, \zeta_{2}\right]^{n}+\sum_{i+j=n-1}\left[\zeta_{1}, \zeta_{2}\right]^{i}\left(\left[d\left(\zeta_{1}\right), \zeta_{2}\right]\right.\right. \\
& \left.\left.+\left[\zeta_{1}, d\left(\zeta_{2}\right)\right]\right)\left[\zeta_{1}, \zeta_{2}\right]^{j},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0, \tag{3.2}
\end{align*}
$$

for all $\zeta_{1}, \zeta_{2} \in \mathcal{U}$. By Kharchenko's theorem, expression (3.2) can be written as

$$
\begin{aligned}
& c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[a\left[\zeta_{1}, \zeta_{2}\right]^{n}+\sum_{i+j=n-1}\left[\zeta_{1}, \zeta_{2}\right]^{i}\left(\left[s_{1}, \zeta_{2}\right]\right.\right. \\
& \left.\left.+\left[\zeta_{1}, s_{2}\right]\right)\left[\zeta_{1}, \zeta_{2}\right]^{j},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0,
\end{aligned}
$$

for all $\zeta_{1}, \zeta_{2}, s_{1}, s_{2} \in \mathcal{R}$. In particular, \mathcal{R} satisfies the blended component

$$
c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[\sum_{i+j=n-1}\left[\zeta_{1}, \zeta_{2}\right]^{i}\left(\left[s_{1}, \zeta_{2}\right]+\left[\zeta_{1}, s_{2}\right]\right)\left[\zeta_{1}, \zeta_{2}\right]^{j},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0
$$

By Remark 1.6 , for $i=1,2$, we can replace s_{i} by $\left[p, \zeta_{i}\right]$, where $p \in \mathcal{U} \backslash \mathcal{C}$. Thus \mathcal{R} satisfies

$$
c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[\sum_{i+j=n-1}\left[\zeta_{1}, \zeta_{2}\right]^{i}\left(\left[\left[p, \zeta_{1}\right], \zeta_{2}\right]+\left[\zeta_{1},\left[p, \zeta_{2}\right]\right]\left[\zeta_{1}, \zeta_{2}\right]^{j},\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0 .\right.
$$

The above relation implies

$$
c\left[\zeta_{1}, \zeta_{2}\right]^{s}\left[\left[p,\left[\zeta_{1}, \zeta_{2}\right]^{n}\right],\left[\zeta_{1}, \zeta_{2}\right]^{r}\right]_{k}\left[\zeta_{1}, \zeta_{2}\right]^{t}=0 .
$$

Thus from Proposition 2.1, $p \in C$, which is a contradiction.
Acknowledgement. The author is highly thankful to the referee(s) for valuable suggestions and comments. This research is funded by the Dr. B. R. Ambedkar University Delhi.

References

1. A. Ali, F. Shujat and V. De Filippis, N-centralizing generalized derivations on left ideals, Tamsui Oxf. J. Inf. Math. Sci, 28 (2012), no. 4, 425-436.
2. N. Argac, L. Carini and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math. 12 (2008), no. 2, 419-433.
3. K. Beidar, Rings with generalized identities III, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1978 (1978), no. 4, 66-73.
4. K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with Generalized Identities, CRC Press, 1995.
5. C.L. Chuang, GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728.
6. B. Dhara, Annihilator condition on power values of derivations, Indian J. Pure Appl. Math. 42 (2011), no. 5, 357-369.
7. B. Dhara, A. Ali and D. Das, Engel conditions of generalized derivations on Lie ideals and left sided ideals in prime rings and Banach algebras, Afr. Mat. 27 (2016), no. 7-8, 1391-1401.
8. B. Dhara, N. Argac and K.G. Pradhan, Annihilator condition of a pair of derivations in prime and semiprime rings, Indian J. Pure Appl. Math. 47 (2016), no. 1, 111-124.
9. B. Dhara and V. De Filippis, Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc. 46 (2009), no. 3, 599-605.
10. B. Dhara and V. De Filippis, Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings, Comm. Algebra 48 (2020), no. 1, 154-167.
11. T. Erickson, W. Martindale and J. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63.
12. C. Faith and Y. Utumi, On a new proof of litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963) 369-371.
13. V. De Filippis and O.M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918-1932.
14. V.K. Harčenko Differential identities of prime rings, (Russian) Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
15. I.N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, Ill. - London, 1969.
16. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publications, Vol. 37, American Mathematical Society, Providence, RI. 1956.
17. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731-734.
18. P. Lee and T. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), no. 1, 1-5.
19. T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
20. W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584.
21. T. Pehlivan and E. Albas, Annihilators of skew derivations with engel conditions on prime rings, Czechoslovak Math. J. 70(145) (2020), no. 2, 587-603.
22. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100.
23. V. Yadav, S. Tiwari and R. Sharma Generalized derivations on Lie ideals in prime rings, Asian-Eur. J. Math. 10 (2017), no. 2, Article no. 1750032, 6 pp.
${ }^{1}$ School of Liberal Studies, Ambedkar University Delhi, Delhi-110006, INDIA. Email address: balchand@aud.ac.in; ashutoshpandey064@gmail.com

[^0]: Date: Received: 12 July 2022; Accepted: 3 November 2022.

 * Corresponding author.

 2020 Mathematics Subject Classification. Primary 16N60; Secondary 16W25.
 Key words and phrases. Lie ideals, generalized derivations, extended centroid, Utumi quotient ring.

