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Abstract. Let R be a non-commutative prime ring with characteristic dif-
ferent from 2, let U be the Utumi quotient ring of R, and let C be the extended
centroid of R. Let G be a generalized derivation on R, let L be a non-central
Lie ideal of R, let 0 ̸= c ∈ R, and let n, r, s, t be fixed positive integers. If
cus[G(un), ur]ku

t = 0, for all u ∈ L, then one of the following properties holds:
(1) R satisfies s4.
(2) There exists λ ∈ C such that G(ζ) = λζ for all ζ ∈ R.
(3) If C is a finite field, then R ∼= Ml(C), an l× l matrix ring over C for l > 2.

1. Introduction and preliminaries

Throughout this article, unless otherwise stated, R always refers to a prime
ring with center Z(R). The Utumi quotient ring of R is denoted by U . The
center of U is known as the extended centroid of R, and it is denoted by C. The
axiomatic formulation and definition of the Utumi quotient ring can be found
in [4]. The commutator of two elements u and v of R is denoted by [u, v], and it
is defined by uv−vu. Define [u, v]0 = u, and for k ≥ 1, the kth commutator of two
elements u and v is given by [u, v]k = [[u, v], v]k−1 =

∑k
i=0(−1)i

(
k
i

)
viuvk−i. An

additive mapping d : R → R is said to be a derivation if d(ζχ) = d(ζ)χ+ ζd(χ)
for all ζ, χ ∈ R. A very obvious example of a derivation on R is the additive
map δp, which is defined by δp(ζ) = [p, ζ] for all ζ ∈ R, and for some fixed p ∈ R,
this type of derivation is known as inner derivation induced by an element p. A
derivation is called an outer derivation if it is not inner. An additive mapping
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F : R → R is said to be a generalized derivation if there exists a derivation d on
R such that F(ζχ) = F (ζ)χ+ ζd(χ) for all ζ, χ ∈ R.
A series of research articles have been produced to investigate the relationship
between the structure of prime ring R and the behavior of some specific maps
defined on a particular subset of R. The first result in this direction was proved
by Posner. Posner [22] proved that if d is a derivation of a prime ring R such
that [d(ζ), ζ] ∈ Z(R) for all ζ ∈ R, then either d = 0 or R is a commutative ring.
By demonstrating the Posner’s conclusion on the Lie ideal L of R, Lanski [17]
generalized it. Specifically, Lanski proved that that if [d(ζ), ζ]k ∈ C for all ζ ∈ L
and k > 0, then char(R) is different from 2 and R is contained M2(K), for some
suitable field K; equivalently, R satisfies s4, the standard identity of four non-
commuting variables. More recently Argaç et al. [2] generalized Lanski’s result
by replacing the derivation d by the generalized derivation G. More precisely, it
is proved that if [G(ζ), ζ]k = 0, for all ζ ∈ L, then either G(ζ) = aζ with a ∈ C
or R satisfies the standard identity s4. The study of generalized derivations on
Lie ideals and left ideals are given in [1,6–10,21,23] where further references can
be found out. In this article, we continue this line of investigation concerning
the identity cus[G(un), ur]ku

t = 0 for all u ∈ L, where r, n, s, t, k > 0 are fixed
integers and 0 ̸= c ∈ R. We prove the following main result in this article.

Theorem 1.1. [Main Theorem] Let R be a non-commutative prime ring of char-
acteristic different from 2, let U be the Utumi quotient ring of R, and let C be
the extended centroid of R. Let G be a generalized derivation on R and let
L be a non-central Lie ideal of R. Let n, s, t, r, k are fixed integers such that
cus[G(un), ur]ku

t = 0 for all u ∈ L and for some 0 ̸= c ∈ R. Then one of the
following properties holds:

(1) R satisfies s4.
(2) There exists λ ∈ C such that G(ζ) = λζ for all ζ ∈ R.
(3) If C is a finite field, then R ∼= Ml(C), an l× l matrix ring over C for l > 2.

Let R be a prime ring and let M denote the collection of all pairs (I, f), where
I is an ideal of R and f is a right module homomorphism from I into R. Define
a relation ∼ on M by (I, f) ∼ (J , g) for (I, f), (J , g) in M. If f = g on some
ideal W of R, where W ⊂ I ∩ J . It is trivial to see that this relation is an
equivalence relation. Let U denote the set of equivalence classes of M. Denote
the equivalence class (I, f) by f̃ . Moreover, U forms a ring under the operations
f̃ + g̃ = (I ∩ J , f + g) and f̃ · g̃ = (IJ , fg), where f̃ is the equivalence class of
(I, f) and g̃ is the equivalence class of (J , g). The ring U is the Utumi quotient
ring of R. Clearly, R embeds in U .

We recall the following remarks that are useful to prove our main theorem.

Remark 1.2. Let K be any field and let R = Mm(K) be the algebra of all m×m
matrices over K with m ≥ 2. Then the unit matrix eij is an element of [R,R]
for all 1 ≤ i ̸= j ≤ m.Moreover, eij has entry 1 at the (i, j)th place and zero
everywhere else.
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Remark 1.3 ([3]). Let R be a prime ring and let I be a two-sided ideal of R.
In R, I, U , if any one of these satisfies a generalized polynomial identity (GPI),
then rest two will also satisfy the same polynomial identity.
Remark 1.4 ([19]). Let R be a prime ring and I a two-sided ideal of R. In R, I,
U if any one of these satisfies a generalized differential identity then rest two will
also satisfy the same differential identity.
Remark 1.5 ([3]). Let R be a prime ring. Then any derivation δ of R can be
extended uniquely to the derivation of U .
Remark 1.6 ([14, Kharchenko Theorem]). Let R be a prime ring, let d be a
nonzero derivation on R, and let I be a nonzero ideal of R. If I satisfies the
differential identity,

f
(
ζ1, ζ2, . . . , xn, d(ζ1), d(ζ2), . . . , d(ζ

)
= 0

for any ζ1, . . . , ζn ∈ I, then either
• I satisfies the GPI

f(ζ1, ζ2, . . . , ζn, χ1, χ2, . . . , χn) = 0

for all χ1, . . . , χn ∈ R,
or

• d is U -inner,
f
(
ζ1, ζ2, . . . , ζn, [p, ζ1], [p, ζ2], . . . , [p, ζn]

)
= 0.

Remark 1.7. Let X = {ζ1, ζ2, . . .} represent a countable set of non-commuting
indeterminates ζ1, ζ2, . . .. Let C{X} denote the free algebra over C on the set X
and let T = U ∗C C{X}, denote the free product of the C-algebras U and C{X}.
The members of T are known as the generalized polynomials with coefficients
in U . Let B be a set of C-independent vectors of U . Then any g ∈ T can be
expressed in the form g =

∑
i βiui, where βi ∈ C and ui are B-monomials of

the form a0ξ1a1ξ2a2 · · · ξnan, with a0, a1, . . . , an ∈ B and ξ1, ξ2, . . . , ξn ∈ X . Any
generalized polynomial g =

∑
i βiui is trivial; that is, g is the zero element in

T if and only if βi = 0 for each i. Further details can be found in [5]. If each
monomial of a generalized polynomial f(ζ1, . . . , ζn) contains each ζi only once for
1 ≤ i ≤ n, then f(ζ1, . . . , ζn) is said to be multilinear polynomial.
Remark 1.8 ([13]). For l ≥ 2, Let Ml(K) be a l × l matrix algebra over infinite
field K. If B1, . . . ,Bk are matrices in Ml(K), which are non-scalar, then there
exists an invertible matrix B ∈ Mm(K) such that matrices BB1B−1, . . . ,BBkB−1

have all nonzero entries.

2. Inner case

Proposition 2.1. Let R be a non-commutative prime ring with extended centroid
C, Utumi quotient ring U , and char(R) ̸= 2. If

c
[
usaun+t + un+sbut, ur

]
k
= 0 (2.1)

for all u ∈ [R,R], where n, s, t, k, r > 0 are fixed positive integers and 0 ̸= c ∈ R,
then one of the following properties holds:
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(1) R satisfies s4.
(2) a, b ∈ C.
(3) If C is finite, then R ∼= Ml(C) for l > 2.

We use the following lemmas in what follows to prove the above proposition.

Lemma 2.2. For l ≥ 3, let R = Ml(K) be an l× l matrix algebra over an infinite
field K and let char(R) ̸= 2. If

c
[
usaun+t + un+sbut, ur

]
k
= 0 (2.2)

for all u ∈ [R,R], where s, t, k, n, r are fixed positive integers and 0 ̸= c ∈ R,
then a, b ∈ K · Il.

Proof. From the hypothesis,

0 = c
[
usaun+t + un+sbut, ur

]
k

= c
k∑

i=0

(−1)i
(
k

i

)
uri(usaun+t + un+sbut)ur(k−i) (2.3)

for all u ∈ [R,R]. Suppose that both a and b are not central elements. Denote
a =

∑l
i,j aijeij, b =

∑l
i,j bijeij and c =

∑l
i,j cijeij where aij, bij, cij ∈ K · Il. Since

equation (2.3) is invariant under the action of any automorphism of R thus from
Remark 1.2 all the entries of a and b are nonzero. Note that if we left multi-
ply c by an appropriate e1j, then we may assume that c = e11 +

∑l
j=2 c1je1j.

Assume that ϕi is an inner automorphism of R which is defined by ϕi(y) =

(1+ c1ie1i)y(1− c1ie1i) for 2 ≤ i ≤ l. Then ϕ1+1(c) = e11+
∑l

j=3 c1je1j, ϕ3ϕ2(c) =

e11 +
∑l

j=4 c1je1j, . . . , ϕl . . . ϕ3ϕ2(c) = e11. Replacing a, b, c by ϕ(a), ϕ(b), ϕ(c), re-
spectively, we may assume that c = e11. Thus R satisfies the following condition:

0 = e11
[
usaun+t + un+sbut, ur

]
k

= e11

k∑
i=0

(−1)i
(
k

i

)
uri(usaun+t + un+sbut)ur(k−i) (2.4)

for all u ∈ [R,R].
It is clear that n + s > s. Since all the entries of b are nonzero, assume without
loss of generality that b13 ̸= 0. Let u = β(e11 − e22) + (e33 − ell) for some β ∈ K.
Then, uj = βj(e11 + (−1)je22) + (e33 + (−1)jell), e11uj = βje11 and uje33 = e33.
Choosing u = β(e11 − e22) + (e33 − ell) in equation (2.4) and right multiplying by
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e33, we get

0 = e11

k∑
i=0

(−1)i
(
k

i

)
uri(usaun+t + un+sbut)ur(k−i)e33

=
k∑

i=0

(−1)i
(
k

i

)
(βri+se11ae33 + βri+n+se11be33

=
(
βrk+s(−1)ka13 + βrk+s+nb13 +

k−1∑
i=0

βri+s(−1)i
(
k

i

)
a13

+
k−1∑
i=0

βri+s+n(−1)i
(
k

i

)
b13

)
e13,

which implies (
βrk+s(−1)ka13 + βrk+s+nb13 +

k−1∑
i=0

βri+s(−1)i
(
k

i

)
a13

+
k−1∑
i=0

βri+s+n(−1)i
(
k

i

)
b13

)
= 0 (2.5)

for all β ∈ K. Since n + s > s and K is an infinite field, then using the Van-
dermonde determinant argument in equation (2.5), we obtain b13 = 0, a contra-
diction. Thus b ∈ K. Thus equation (2.2) reduces to c[usaun+t, ur]k = 0. Again
using similar arguments as above, we can show that a ∈ K. □
Lemma 2.3. Let R be a non-commutative prime ring with Utumi quotient ring
U , extended centroid C, and char(R) ̸= 2 such that

c
[
usaun+t + un+sbut, ur

]
k
= 0 (2.6)

for all u ∈ [R,R], where s, t, n, r, k are fixed positive integers and 0 ̸= c ∈ R. If
R does not satisfy any nontrivial GPI, then a, b ∈ C.

Proof. Suppose that a, b are not central elements. From the hypothesis, R satisfies
the following condition:

h(ζ1, ζ2) = c
[
[ζ1, ζ2]

sa[ζ1, ζ2]
n+t + [ζ1, ζ2]

n+sb[ζ1, ζ2]
t, [ζ1, ζ2]

r
]

(2.7)
for all ζ1, ζ2 ∈ R. We know from Remark 1.3 that R and U satisfy the same
GPIs. Therefore U satisfies equation (2.7). Suppose that h(ζ1, ζ2) is a trivial
GPI for U . Let T = U ∗C C{ζ1, ζ2} be the free product of U and C{ζ1, ζ2}, the
free C- algebra in two indeterminates, which is non-commuting. Clearly, h(ζ1, ζ2)
is a zero element of T . Since a /∈ C then {1, a} will be linearly C independent
and therefore equation (2.7) will be a nontrivial polynomial identity of T because
it has a nontrivial monomial c[ζ1, ζ2]s+rka[ζ1, ζ2]

nt = 0, which is a contradiction.
Thus a ∈ C. By similar arguments, we can show that b ∈ C. □
Proof of Proposition 2.1. Throughout the proof, we assume that R does not sat-
isfy s4. If R does not satisfy any nontrivial GPI, then by Lemma 2.3, a, b ∈ C
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and we are done. Thus we may assume that equation (2.1) is a nontrivial GPI
for R. We know from Remark 1.3 that R and U satisfy the same polynomial
identity. Thus equation (2.1) is also an identity for U . Let F be the algebraic
closure of C if C is infinite, and set F = C if C is finite. Clearly, U ⊆ U ⊗C F ,
and U is embedded in U ⊗C F via the map: x → x ⊗ 1 ∈ U ⊗C F . Thus U is
a subring of U ⊗C F . From [18], equation (2.1) is a GPI for U ⊗C F . Moreover,
in the light of [11], U ⊗C F is a prime ring with extended centroid F . Hence
U ⊗C F satisfies equation (2.1), and it is a prime ring with extended centroid
F , which is either finite or algebraically closed. In the view of the Martindale
theorem [20], U ⊗C F is a prime ring with nonzero socle and F as its associ-
ated division ring. By [16, p. 75], U ⊗C F is a dense subring of End(VF), the
ring of F -linear transformations on the vector space V over F . Since R is non-
commutative therefore dimFV ≥ 2. If dimFV = l < ∞, then U ⊗C F ∼= Ml(F).
If F is infinite, then a, b ∈ F , consequently a, b ∈ C. Again if F is finite, then
F = C and R = U = U ⊗C F = End(VF) = Ml(C).
Next, we assume the case when dimFV = ∞. Assume that both a, b are not cen-
tral elements. By Martindale’s theorem for any idempotent p2 = p ∈ soc(U⊗CF),
we have p(U ⊗C F)p = Ml′(F), where dimFV = l′. Since a, b /∈ F there exist
h1, h2 ∈ soc(U⊗CF) such that [a, h1] ̸= 0 and [b, h2] ̸= 0. By Littof’s theorem [?],
there exists idempotent p ∈ soc(U ⊗C F) such that ah1, h1a, bh2, h2b, h1, h2 ∈
p(U ⊗C F)p. Since U ⊗C F satisfies the identity

pc
[
[ζ1, ζ2]

sa[ζ1, ζ2]
n+t + [ζ1, ζ2]

n+sb[ζ1, ζ2]
t, [ζ1, ζ2]

r
]
k
p = 0 (2.8)

for all ζ1, ζ2 ∈ R. Thus p(U ⊗C F)p satisfies
pcp

[
[ζ1, ζ2]

spap[ζ1, ζ2]
n+t + [ζ1, ζ2]

n+spbp[ζ1, ζ2]
t, [ζ1, ζ2]

r
]
k
= 0.

Thus by Lemma 2.3, pap, pbp ∈ F . Hence ah1 = eaeh1 = h1eae = ah1, a contra-
diction. Thus a ∈ F , which implies a ∈ C. Similarly b ∈ C. □

3. Proof of the main theorem 1.1

Since L is a non-central Lie ideal and char(R) ̸= 2, by [15, pp. 4-5], there
exists a nonzero two-sided ideal I of R such that I ⊆ L and 0 ̸= [I,R] ⊆ L.
Therefore we have

c[ζ1, ζ2]
s
[
G([[ζ1, ζ2]n), [ζ1, ζ2]r

]
k
[ζ1, ζ2]

t = 0, (3.1)

for all [ζ1, ζ2] ∈ [I, I]. Since R and I satisfy the same GPI (by Remark 1.3),
therefore R satisfies equation (3.1) for all ζ1, ζ2 ∈ R. By Remark 1.4, the gener-
alized derivation G has the form G(ζ) = aζ+d(ζ) for some a ∈ U and a derivation
d on U .

Case I. If d is an inner derivation induced by an element w ∈ U , then from
equation (3.1), we have

c[ζ1, ζ2]
s
[
(a+ w)[ζ1, ζ2]

n − [ζ1, ζ2]
nw, [ζ1, ζ2]

r
]
k
[ζ1, ζ2]

t = 0,

which implies
c
[
[ζ1, ζ2]

s(a+ w)[ζ1, ζ2]
n+t − [ζ1, ζ2]

n+sw[ζ1, ζ2]
t, [ζ1, ζ2]

r
]
k
= 0
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for all ζ1, ζ2 ∈ R. Thus by Proposition 2.1, we have one of the following condi-
tions:

(1) R satisfies s4.
(2) a+ w,w ∈ C; that is, a, w ∈ C so that d = 0 and G(ζ) = aζ,
(3) If C is finite, then R ∼= Ml(C), l × l matrix rings and l > 2.

Case II: If d is an outer derivation, then equation (3.1) becomes

c[ζ1, ζ2]
s
[
a[ζ1, ζ2]

n +
∑

i+j=n−1

[ζ1, ζ2]
i([d(ζ1), ζ2]

+[ζ1, d(ζ2)])[ζ1, ζ2]
j, [ζ1, ζ2]

r
]
k
[ζ1, ζ2]

t = 0, (3.2)
for all ζ1, ζ2 ∈ U . By Kharchenko’s theorem, expression (3.2) can be written as

c[ζ1, ζ2]
s
[
a[ζ1, ζ2]

n +
∑

i+j=n−1

[ζ1, ζ2]
i([s1, ζ2]

+[ζ1, s2])[ζ1, ζ2]
j, [ζ1, ζ2]

r
]
k
[ζ1, ζ2]

t = 0,

for all ζ1, ζ2, s1, s2 ∈ R. In particular, R satisfies the blended component

c[ζ1, ζ2]
s
[ ∑
i+j=n−1

[ζ1, ζ2]
i([s1, ζ2] + [ζ1, s2])[ζ1, ζ2]

j, [ζ1, ζ2]
r
]
k
[ζ1, ζ2]

t = 0.

By Remark 1.6, for i = 1, 2, we can replace si by [p, ζi], where p ∈ U \ C . Thus
R satisfies
c[ζ1, ζ2]

s
[ ∑
i+j=n−1

[ζ1, ζ2]
i([[p, ζ1], ζ2] + [ζ1, [p, ζ2]][ζ1, ζ2]

j, [ζ1, ζ2]
r
]
k
[ζ1, ζ2]

t = 0.

The above relation implies
c[ζ1, ζ2]

s
[
[p, [ζ1, ζ2]

n], [ζ1, ζ2]
r
]
k
[ζ1, ζ2]

t = 0.

Thus from Proposition 2.1, p ∈ C, which is a contradiction.
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