Khayyam J. Math. J. Math. 9 (2023), no. 1, 81-88 DOI: 10.22034/KJM.2022.351498.2600

GENERALIZED DERIVATIONS ON LIE IDEALS WITH ANNIHILATING ENGEL CONDITIONS

ASHUTOSH PANDEY^{1*} AND BALCHAND PRAJAPATI¹

Communicated by B. Torrecillas

ABSTRACT. Let \mathcal{R} be a non-commutative prime ring with characteristic different from 2, let \mathcal{U} be the Utumi quotient ring of \mathcal{R} , and let \mathcal{C} be the extended centroid of \mathcal{R} . Let \mathcal{G} be a generalized derivation on \mathcal{R} , let \mathcal{L} be a non-central Lie ideal of \mathcal{R} , let $0 \neq c \in \mathcal{R}$, and let n, r, s, t be fixed positive integers. If $cu^{s}[\mathcal{G}(u^{n}), u^{r}]_{k}u^{t} = 0$, for all $u \in \mathcal{L}$, then one of the following properties holds: (1) \mathcal{R} satisfies s_{4} .

- (2) There exists $\lambda \in \mathcal{C}$ such that $\mathcal{G}(\zeta) = \lambda \zeta$ for all $\zeta \in \mathcal{R}$.
- (3) If \mathcal{C} is a finite field, then $\mathcal{R} \cong M_l(\mathcal{C})$, an $l \times l$ matrix ring over \mathcal{C} for l > 2.

1. INTRODUCTION AND PRELIMINARIES

Throughout this article, unless otherwise stated, \mathcal{R} always refers to a prime ring with center $\mathcal{Z}(\mathcal{R})$. The Utumi quotient ring of \mathcal{R} is denoted by \mathcal{U} . The center of \mathcal{U} is known as the extended centroid of \mathcal{R} , and it is denoted by \mathcal{C} . The axiomatic formulation and definition of the Utumi quotient ring can be found in [4]. The commutator of two elements u and v of \mathcal{R} is denoted by [u, v], and it is defined by uv - vu. Define $[u, v]_0 = u$, and for $k \geq 1$, the kth commutator of two elements u and v is given by $[u, v]_k = [[u, v], v]_{k-1} = \sum_{i=0}^k (-1)^i {k \choose i} v^i u v^{k-i}$. An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a derivation if $d(\zeta \chi) = d(\zeta)\chi + \zeta d(\chi)$ for all $\zeta, \chi \in \mathcal{R}$. A very obvious example of a derivation on \mathcal{R} is the additive map δ_p , which is defined by $\delta_p(\zeta) = [p, \zeta]$ for all $\zeta \in \mathcal{R}$, and for some fixed $p \in \mathcal{R}$, this type of derivation is known as inner derivation induced by an element p. A derivation is called an outer derivation if it is not inner. An additive mapping

Date: Received: 12 July 2022; Accepted: 3 November 2022.

^{*}Corresponding author.

²⁰²⁰ Mathematics Subject Classification. Primary 16N60; Secondary 16W25.

Key words and phrases. Lie ideals, generalized derivations, extended centroid, Utumi quotient ring.

 $\mathcal{F}: \mathcal{R} \to \mathcal{R}$ is said to be a generalized derivation if there exists a derivation d on \mathcal{R} such that $\mathcal{F}(\zeta \chi) = F(\zeta)\chi + \zeta d(\chi)$ for all $\zeta, \chi \in \mathcal{R}$.

A series of research articles have been produced to investigate the relationship between the structure of prime ring \mathcal{R} and the behavior of some specific maps defined on a particular subset of \mathcal{R} . The first result in this direction was proved by Posner. Posner [22] proved that if d is a derivation of a prime ring \mathcal{R} such that $[d(\zeta), \zeta] \in \mathcal{Z}(\mathcal{R})$ for all $\zeta \in \mathcal{R}$, then either d = 0 or \mathcal{R} is a commutative ring. By demonstrating the Posner's conclusion on the Lie ideal \mathcal{L} of \mathcal{R} , Lanski [17] generalized it. Specifically, Lanski proved that that if $[d(\zeta), \zeta]_k \in \mathcal{C}$ for all $\zeta \in \mathcal{L}$ and k > 0, then char(\mathcal{R}) is different from 2 and \mathcal{R} is contained $M_2(\mathcal{K})$, for some suitable field \mathcal{K} ; equivalently, \mathcal{R} satisfies s_4 , the standard identity of four noncommuting variables. More recently Argaç et al. [2] generalized Lanski's result by replacing the derivation d by the generalized derivation \mathcal{G} . More precisely, it is proved that if $[\mathcal{G}(\zeta), \zeta]_k = 0$, for all $\zeta \in \mathcal{L}$, then either $\mathcal{G}(\zeta) = a\zeta$ with $a \in \mathcal{C}$ or \mathcal{R} satisfies the standard identity s_4 . The study of generalized derivations on Lie ideals and left ideals are given in [1, 6-10, 21, 23] where further references can be found out. In this article, we continue this line of investigation concerning the identity $cu^s[\mathcal{G}(u^n), u^r]_k u^t = 0$ for all $u \in \mathcal{L}$, where r, n, s, t, k > 0 are fixed integers and $0 \neq c \in \mathcal{R}$. We prove the following main result in this article.

Theorem 1.1. [Main Theorem] Let \mathcal{R} be a non-commutative prime ring of characteristic different from 2, let \mathcal{U} be the Utumi quotient ring of \mathcal{R} , and let \mathcal{C} be the extended centroid of \mathcal{R} . Let \mathcal{G} be a generalized derivation on \mathcal{R} and let \mathcal{L} be a non-central Lie ideal of \mathcal{R} . Let n, s, t, r, k are fixed integers such that $cu^{s}[\mathcal{G}(u^{n}), u^{r}]_{k}u^{t} = 0$ for all $u \in \mathcal{L}$ and for some $0 \neq c \in \mathcal{R}$. Then one of the following properties holds:

- (1) \mathcal{R} satisfies s_4 .
- (2) There exists $\lambda \in \mathcal{C}$ such that $\mathcal{G}(\zeta) = \lambda \zeta$ for all $\zeta \in \mathcal{R}$.
- (3) If \mathcal{C} is a finite field, then $\mathcal{R} \cong M_l(\mathcal{C})$, an $l \times l$ matrix ring over \mathcal{C} for l > 2.

Let \mathcal{R} be a prime ring and let \mathcal{M} denote the collection of all pairs (\mathcal{I}, f) , where \mathcal{I} is an ideal of \mathcal{R} and f is a right module homomorphism from \mathcal{I} into \mathcal{R} . Define a relation \sim on \mathcal{M} by $(\mathcal{I}, f) \sim (\mathcal{J}, g)$ for $(\mathcal{I}, f), (\mathcal{J}, g)$ in \mathcal{M} . If f = g on some ideal \mathcal{W} of \mathcal{R} , where $\mathcal{W} \subset \mathcal{I} \cap \mathcal{J}$. It is trivial to see that this relation is an equivalence relation. Let \mathcal{U} denote the set of equivalence classes of \mathcal{M} . Denote the equivalence class (\mathcal{I}, f) by \tilde{f} . Moreover, \mathcal{U} forms a ring under the operations $\tilde{f} + \tilde{g} = (\mathcal{I} \cap \mathcal{J}, f + g)$ and $\tilde{f} \cdot \tilde{g} = (\mathcal{I}\mathcal{J}, fg)$, where \tilde{f} is the equivalence class of (\mathcal{I}, f) and \tilde{g} is the equivalence class of (\mathcal{J}, g) . The ring \mathcal{U} is the Utumi quotient ring of \mathcal{R} . Clearly, \mathcal{R} embeds in \mathcal{U} .

We recall the following remarks that are useful to prove our main theorem.

Remark 1.2. Let \mathcal{K} be any field and let $\mathcal{R} = M_m(\mathcal{K})$ be the algebra of all $m \times m$ matrices over \mathcal{K} with $m \geq 2$. Then the unit matrix e_{ij} is an element of $[\mathcal{R}, \mathcal{R}]$ for all $1 \leq i \neq j \leq m$. Moreover, e_{ij} has entry 1 at the (i, j)th place and zero everywhere else.

83

Remark 1.3 ([3]). Let \mathcal{R} be a prime ring and let \mathcal{I} be a two-sided ideal of \mathcal{R} . In \mathcal{R} , \mathcal{I} , \mathcal{U} , if any one of these satisfies a generalized polynomial identity (GPI), then rest two will also satisfy the same polynomial identity.

Remark 1.4 ([19]). Let \mathcal{R} be a prime ring and \mathcal{I} a two-sided ideal of \mathcal{R} . In \mathcal{R} , \mathcal{I} , \mathcal{U} if any one of these satisfies a generalized differential identity then rest two will also satisfy the same differential identity.

Remark 1.5 ([3]). Let \mathcal{R} be a prime ring. Then any derivation δ of \mathcal{R} can be extended uniquely to the derivation of \mathcal{U} .

Remark 1.6 ([14, Kharchenko Theorem]). Let \mathcal{R} be a prime ring, let d be a nonzero derivation on \mathcal{R} , and let \mathcal{I} be a nonzero ideal of \mathcal{R} . If \mathcal{I} satisfies the differential identity,

$$f(\zeta_1,\zeta_2,\ldots,x_n,d(\zeta_1),d(\zeta_2),\ldots,d(\zeta)) = 0$$

for any $\zeta_1, \ldots, \zeta_n \in \mathcal{I}$, then either

• \mathcal{I} satisfies the GPI

$$f(\zeta_1,\zeta_2,\ldots,\zeta_n,\chi_1,\chi_2,\ldots,\chi_n)=0$$

for all $\chi_1, \ldots, \chi_n \in \mathcal{R}$,

• d is \mathcal{U} -inner,

$$f(\zeta_1,\zeta_2,\ldots,\zeta_n,[p,\zeta_1],[p,\zeta_2],\ldots,[p,\zeta_n])=0.$$

Remark 1.7. Let $\mathcal{X} = \{\zeta_1, \zeta_2, \ldots\}$ represent a countable set of non-commuting indeterminates ζ_1, ζ_2, \ldots . Let $\mathcal{C}\{\mathcal{X}\}$ denote the free algebra over \mathcal{C} on the set \mathcal{X} and let $\mathcal{T} = \mathcal{U} *_{\mathcal{C}} \mathcal{C}\{\mathcal{X}\}$, denote the free product of the \mathcal{C} -algebras \mathcal{U} and $\mathcal{C}\{\mathcal{X}\}$. The members of \mathcal{T} are known as the generalized polynomials with coefficients in \mathcal{U} . Let \mathcal{B} be a set of \mathcal{C} -independent vectors of \mathcal{U} . Then any $g \in \mathcal{T}$ can be expressed in the form $g = \sum_i \beta_i u_i$, where $\beta_i \in \mathcal{C}$ and u_i are \mathcal{B} -monomials of the form $a_0\xi_1a_1\xi_2a_2\cdots\xi_na_n$, with $a_0, a_1, \ldots, a_n \in \mathcal{B}$ and $\xi_1, \xi_2, \ldots, \xi_n \in \mathcal{X}$. Any generalized polynomial $g = \sum_i \beta_i u_i$ is trivial; that is, g is the zero element in \mathcal{T} if and only if $\beta_i = 0$ for each i. Further details can be found in [5]. If each monomial of a generalized polynomial $f(\zeta_1, \ldots, \zeta_n)$ contains each ζ_i only once for $1 \leq i \leq n$, then $f(\zeta_1, \ldots, \zeta_n)$ is said to be multilinear polynomial.

Remark 1.8 ([13]). For $l \geq 2$, Let $M_l(\mathcal{K})$ be a $l \times l$ matrix algebra over infinite field \mathcal{K} . If $\mathcal{B}_1, \ldots, \mathcal{B}_k$ are matrices in $M_l(\mathcal{K})$, which are non-scalar, then there exists an invertible matrix $\mathcal{B} \in M_m(\mathcal{K})$ such that matrices $\mathcal{BB}_1 \mathcal{B}^{-1}, \ldots, \mathcal{BB}_k \mathcal{B}^{-1}$ have all nonzero entries.

2. INNER CASE

Proposition 2.1. Let \mathcal{R} be a non-commutative prime ring with extended centroid \mathcal{C} , Utumi quotient ring \mathcal{U} , and char(\mathcal{R}) $\neq 2$. If

$$c\left[u^{s}au^{n+t} + u^{n+s}bu^{t}, u^{r}\right]_{k} = 0$$

$$(2.1)$$

for all $u \in [\mathcal{R}, \mathcal{R}]$, where n, s, t, k, r > 0 are fixed positive integers and $0 \neq c \in \mathcal{R}$, then one of the following properties holds:

(1) \mathcal{R} satisfies s_4 . (2) $a, b \in \mathcal{C}$. (3) If \mathcal{C} is finite, then $\mathcal{R} \cong M_l(C)$ for l > 2.

We use the following lemmas in what follows to prove the above proposition.

Lemma 2.2. For $l \geq 3$, let $\mathcal{R} = M_l(\mathcal{K})$ be an $l \times l$ matrix algebra over an infinite field \mathcal{K} and let char(\mathcal{R}) $\neq 2$. If

$$c [u^{s} a u^{n+t} + u^{n+s} b u^{t}, u^{r}]_{k} = 0$$
(2.2)

for all $u \in [\mathcal{R}, \mathcal{R}]$, where s, t, k, n, r are fixed positive integers and $0 \neq c \in \mathcal{R}$, then $a, b \in \mathcal{K} \cdot I_l$.

Proof. From the hypothesis,

$$0 = c \left[u^{s} a u^{n+t} + u^{n+s} b u^{t}, u^{r} \right]_{k}$$

= $c \sum_{i=0}^{k} (-1)^{i} {k \choose i} u^{ri} (u^{s} a u^{n+t} + u^{n+s} b u^{t}) u^{r(k-i)}$ (2.3)

for all $u \in [\mathcal{R}, \mathcal{R}]$. Suppose that both a and b are not central elements. Denote $a = \sum_{i,j}^{l} a_{ij} e_{ij}, b = \sum_{i,j}^{l} b_{ij} e_{ij}$ and $c = \sum_{i,j}^{l} c_{ij} e_{ij}$ where $a_{ij}, b_{ij}, c_{ij} \in \mathcal{K} \cdot I_l$. Since equation (2.3) is invariant under the action of any automorphism of \mathcal{R} thus from Remark 1.2 all the entries of a and b are nonzero. Note that if we left multiply c by an appropriate e_{1j} , then we may assume that $c = e_{11} + \sum_{j=2}^{l} c_{1j} e_{1j}$. Assume that ϕ_i is an inner automorphism of \mathcal{R} which is defined by $\phi_i(y) = (1+c_{1i}e_{1i})y(1-c_{1i}e_{1i})$ for $2 \leq i \leq l$. Then $\phi_{1+1}(c) = e_{11} + \sum_{j=3}^{l} c_{1j}e_{1j}, \phi_3\phi_2(c) = e_{11} + \sum_{j=4}^{l} c_{1j}e_{1j}, \dots, \phi_l \dots \phi_3\phi_2(c) = e_{11}$. Replacing a, b, c by $\phi(a), \phi(b), \phi(c)$, respectively, we may assume that $c = e_{11}$. Thus \mathcal{R} satisfies the following condition:

$$0 = e_{11} \left[u^{s} a u^{n+t} + u^{n+s} b u^{t}, u^{r} \right]_{k}$$

= $e_{11} \sum_{i=0}^{k} (-1)^{i} {k \choose i} u^{ri} (u^{s} a u^{n+t} + u^{n+s} b u^{t}) u^{r(k-i)}$ (2.4)

for all $u \in [\mathcal{R}, \mathcal{R}]$.

It is clear that n + s > s. Since all the entries of b are nonzero, assume without loss of generality that $b_{13} \neq 0$. Let $u = \beta(e_{11} - e_{22}) + (e_{33} - e_{ll})$ for some $\beta \in \mathcal{K}$. Then, $u^j = \beta^j(e_{11} + (-1)^j e_{22}) + (e_{33} + (-1)^j e_{ll})$, $e_{11}u^j = \beta^j e_{11}$ and $u^j e_{33} = e_{33}$. Choosing $u = \beta(e_{11} - e_{22}) + (e_{33} - e_{ll})$ in equation (2.4) and right multiplying by

84

$$0 = e_{11} \sum_{i=0}^{k} (-1)^{i} {\binom{k}{i}} u^{ri} (u^{s} a u^{n+t} + u^{n+s} b u^{t}) u^{r(k-i)} e_{33}$$

$$= \sum_{i=0}^{k} (-1)^{i} {\binom{k}{i}} (\beta^{ri+s} e_{11} a e_{33} + \beta^{ri+n+s} e_{11} b e_{33}$$

$$= (\beta^{rk+s} (-1)^{k} a_{13} + \beta^{rk+s+n} b_{13} + \sum_{i=0}^{k-1} \beta^{ri+s} (-1)^{i} {\binom{k}{i}} a_{13}$$

$$+ \sum_{i=0}^{k-1} \beta^{ri+s+n} (-1)^{i} {\binom{k}{i}} b_{13} e_{13},$$

which implies

$$\left(\beta^{rk+s}(-1)^{k}a_{13} + \beta^{rk+s+n}b_{13} + \sum_{i=0}^{k-1}\beta^{ri+s}(-1)^{i}\binom{k}{i}a_{13} + \sum_{i=0}^{k-1}\beta^{ri+s+n}(-1)^{i}\binom{k}{i}b_{13}\right) = 0$$
(2.5)

for all $\beta \in \mathcal{K}$. Since n + s > s and \mathcal{K} is an infinite field, then using the Vandermonde determinant argument in equation (2.5), we obtain $b_{13} = 0$, a contradiction. Thus $b \in \mathcal{K}$. Thus equation (2.2) reduces to $c[u^s a u^{n+t}, u^r]_k = 0$. Again using similar arguments as above, we can show that $a \in \mathcal{K}$.

Lemma 2.3. Let \mathcal{R} be a non-commutative prime ring with Utumi quotient ring \mathcal{U} , extended centroid \mathcal{C} , and char $(\mathcal{R}) \neq 2$ such that

$$c[u^{s}au^{n+t} + u^{n+s}bu^{t}, u^{r}]_{k} = 0$$
(2.6)

for all $u \in [\mathcal{R}, \mathcal{R}]$, where s, t, n, r, k are fixed positive integers and $0 \neq c \in \mathcal{R}$. If \mathcal{R} does not satisfy any nontrivial GPI, then $a, b \in \mathcal{C}$.

Proof. Suppose that a, b are not central elements. From the hypothesis, \mathcal{R} satisfies the following condition:

$$h(\zeta_1, \zeta_2) = c \big[[\zeta_1, \zeta_2]^s a [\zeta_1, \zeta_2]^{n+t} + [\zeta_1, \zeta_2]^{n+s} b [\zeta_1, \zeta_2]^t, [\zeta_1, \zeta_2]^r \big]$$
(2.7)

for all $\zeta_1, \zeta_2 \in \mathcal{R}$. We know from Remark 1.3 that \mathcal{R} and \mathcal{U} satisfy the same GPIs. Therefore \mathcal{U} satisfies equation (2.7). Suppose that $h(\zeta_1, \zeta_2)$ is a trivial GPI for \mathcal{U} . Let $\mathcal{T} = \mathcal{U} *_{\mathcal{C}} \mathcal{C}\{\zeta_1, \zeta_2\}$ be the free product of \mathcal{U} and $\mathcal{C}\{\zeta_1, \zeta_2\}$, the free \mathcal{C} - algebra in two indeterminates, which is non-commuting. Clearly, $h(\zeta_1, \zeta_2)$ is a zero element of \mathcal{T} . Since $a \notin \mathcal{C}$ then $\{1, a\}$ will be linearly \mathcal{C} independent and therefore equation (2.7) will be a nontrivial polynomial identity of \mathcal{T} because it has a nontrivial monomial $c[\zeta_1, \zeta_2]^{s+rk}a[\zeta_1, \zeta_2]^{nt} = 0$, which is a contradiction. Thus $a \in \mathcal{C}$. By similar arguments, we can show that $b \in \mathcal{C}$.

Proof of Proposition 2.1. Throughout the proof, we assume that \mathcal{R} does not satisfy s_4 . If \mathcal{R} does not satisfy any nontrivial GPI, then by Lemma 2.3, $a, b \in \mathcal{C}$ and we are done. Thus we may assume that equation (2.1) is a nontrivial GPI for \mathcal{R} . We know from Remark 1.3 that \mathcal{R} and \mathcal{U} satisfy the same polynomial identity. Thus equation (2.1) is also an identity for \mathcal{U} . Let \mathcal{F} be the algebraic closure of \mathcal{C} if \mathcal{C} is infinite, and set $\mathcal{F} = \mathcal{C}$ if \mathcal{C} is finite. Clearly, $\mathcal{U} \subseteq \mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$, and \mathcal{U} is embedded in $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ via the map: $x \to x \otimes 1 \in \mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. Thus \mathcal{U} is a subring of $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. From [18], equation (2.1) is a GPI for $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$. Moreover, in the light of [11], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a prime ring with extended centroid \mathcal{F} . Hence $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ satisfies equation (2.1), and it is a prime ring with extended centroid \mathcal{F} , which is either finite or algebraically closed. In the view of the Martindale theorem [20], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a prime ring with nonzero socle and \mathcal{F} as its associated division ring. By [16, p. 75], $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ is a dense subring of $End(\mathcal{V}_{\mathcal{F}})$, the ring of \mathcal{F} -linear transformations on the vector space \mathcal{V} over \mathcal{F} . Since \mathcal{R} is noncommutative therefore $dim_{\mathcal{F}}\mathcal{V} \geq 2$. If $dim_{\mathcal{F}}\mathcal{V} = l < \infty$, then $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F} \cong M_l(\mathcal{F})$. If \mathcal{F} is infinite, then $a, b \in \mathcal{F}$, consequently $a, b \in \mathcal{C}$. Again if \mathcal{F} is finite, then $\mathcal{F} = \mathcal{C}$ and $\mathcal{R} = \mathcal{U} = \mathcal{U} \otimes_{\mathcal{C}} \mathcal{F} = End(\mathcal{V}_{\mathcal{F}}) = M_l(\mathcal{C})$.

Next, we assume the case when $\dim_{\mathcal{F}} \mathcal{V} = \infty$. Assume that both a, b are not central elements. By Martindale's theorem for any idempotent $p^2 = p \in soc(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})$, we have $p(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})p = M_{l'}(\mathcal{F})$, where $\dim_{\mathcal{F}} \mathcal{V} = l'$. Since $a, b \notin \mathcal{F}$ there exist $h_1, h_2 \in soc(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})$ such that $[a, h_1] \neq 0$ and $[b, h_2] \neq 0$. By Littof's theorem [?], there exists idempotent $p \in soc(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})$ such that $ah_1, h_1a, bh_2, h_2b, h_1, h_2 \in p(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})p$. Since $\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F}$ satisfies the identity

$$pc[[\zeta_1, \zeta_2]^s a[\zeta_1, \zeta_2]^{n+t} + [\zeta_1, \zeta_2]^{n+s} b[\zeta_1, \zeta_2]^t, [\zeta_1, \zeta_2]^r]_k p = 0$$
(2.8)

for all $\zeta_1, \zeta_2 \in \mathcal{R}$. Thus $p(\mathcal{U} \otimes_{\mathcal{C}} \mathcal{F})p$ satisfies

$$pcp\big[[\zeta_1,\zeta_2]^s pap[\zeta_1,\zeta_2]^{n+t} + [\zeta_1,\zeta_2]^{n+s} pbp[\zeta_1,\zeta_2]^t, [\zeta_1,\zeta_2]^r\big]_k = 0.$$

Thus by Lemma 2.3, $pap, pbp \in \mathcal{F}$. Hence $ah_1 = eaeh_1 = h_1eae = ah_1$, a contradiction. Thus $a \in \mathcal{F}$, which implies $a \in \mathcal{C}$. Similarly $b \in \mathcal{C}$.

3. Proof of the main theorem 1.1

Since \mathcal{L} is a non-central Lie ideal and char(\mathcal{R}) $\neq 2$, by [15, pp. 4-5], there exists a nonzero two-sided ideal \mathcal{I} of \mathcal{R} such that $\mathcal{I} \subseteq \mathcal{L}$ and $0 \neq [\mathcal{I}, \mathcal{R}] \subseteq \mathcal{L}$. Therefore we have

$$c[\zeta_1, \zeta_2]^s \left[\mathcal{G}([[\zeta_1, \zeta_2]^n), [\zeta_1, \zeta_2]^r]_k [\zeta_1, \zeta_2]^t = 0,$$
(3.1)

for all $[\zeta_1, \zeta_2] \in [\mathcal{I}, \mathcal{I}]$. Since \mathcal{R} and \mathcal{I} satisfy the same GPI (by Remark 1.3), therefore \mathcal{R} satisfies equation (3.1) for all $\zeta_1, \zeta_2 \in \mathcal{R}$. By Remark 1.4, the generalized derivation \mathcal{G} has the form $\mathcal{G}(\zeta) = a\zeta + d(\zeta)$ for some $a \in \mathcal{U}$ and a derivation d on \mathcal{U} .

Case I. If d is an inner derivation induced by an element $w \in \mathcal{U}$, then from equation (3.1), we have

$$c[\zeta_1,\zeta_2]^s [(a+w)[\zeta_1,\zeta_2]^n - [\zeta_1,\zeta_2]^n w, [\zeta_1,\zeta_2]^r]_k [\zeta_1,\zeta_2]^t = 0,$$

which implies

$$c[[\zeta_1,\zeta_2]^s(a+w)[\zeta_1,\zeta_2]^{n+t} - [\zeta_1,\zeta_2]^{n+s}w[\zeta_1,\zeta_2]^t, [\zeta_1,\zeta_2]^r]_k = 0$$

for all $\zeta_1, \zeta_2 \in \mathcal{R}$. Thus by Proposition 2.1, we have one of the following conditions:

- (1) \mathcal{R} satisfies s_4 .
- (2) $a + w, w \in \mathcal{C}$; that is, $a, w \in C$ so that d = 0 and $\mathcal{G}(\zeta) = a\zeta$,
- (3) If \mathcal{C} is finite, then $\mathcal{R} \cong M_l(\mathcal{C}), l \times l$ matrix rings and l > 2.

Case II: If d is an outer derivation, then equation (3.1) becomes

$$c[\zeta_1, \zeta_2]^s \left[a[\zeta_1, \zeta_2]^n + \sum_{i+j=n-1} [\zeta_1, \zeta_2]^i ([d(\zeta_1), \zeta_2] + [\zeta_1, d(\zeta_2)])[\zeta_1, \zeta_2]^j, [\zeta_1, \zeta_2]^r \right]_k [\zeta_1, \zeta_2]^t = 0,$$
(3.2)

for all $\zeta_1, \zeta_2 \in \mathcal{U}$. By Kharchenko's theorem, expression (3.2) can be written as

$$c[\zeta_1, \zeta_2]^s \left[a[\zeta_1, \zeta_2]^n + \sum_{i+j=n-1} [\zeta_1, \zeta_2]^i ([s_1, \zeta_2]^i) + [\zeta_1, s_2] \right] [\zeta_1, \zeta_2]^j, [\zeta_1, \zeta_2]^r \right]_k [\zeta_1, \zeta_2]^t = 0,$$

for all $\zeta_1, \zeta_2, s_1, s_2 \in \mathcal{R}$. In particular, \mathcal{R} satisfies the blended component

$$c[\zeta_1,\zeta_2]^s \Big[\sum_{i+j=n-1} [\zeta_1,\zeta_2]^i ([s_1,\zeta_2] + [\zeta_1,s_2])[\zeta_1,\zeta_2]^j, [\zeta_1,\zeta_2]^r \Big]_k [\zeta_1,\zeta_2]^t = 0.$$

By Remark 1.6, for i = 1, 2, we can replace s_i by $[p, \zeta_i]$, where $p \in \mathcal{U} \setminus \mathcal{C}$. Thus \mathcal{R} satisfies

$$c[\zeta_1,\zeta_2]^s \Big[\sum_{i+j=n-1} [\zeta_1,\zeta_2]^i ([[p,\zeta_1],\zeta_2] + [\zeta_1,[p,\zeta_2]][\zeta_1,\zeta_2]^j, [\zeta_1,\zeta_2]^r \Big]_k [\zeta_1,\zeta_2]^t = 0.$$

The above relation implies

$$c[\zeta_1, \zeta_2]^s [[p, [\zeta_1, \zeta_2]^n], [\zeta_1, \zeta_2]^r]_k [\zeta_1, \zeta_2]^t = 0.$$

Thus from Proposition 2.1, $p \in C$, which is a contradiction.

Acknowledgement. The author is highly thankful to the referee(s) for valuable suggestions and comments. This research is funded by the Dr. B. R. Ambedkar University Delhi.

References

- A. Ali, F. Shujat and V. De Filippis, N-centralizing generalized derivations on left ideals, Tamsui Oxf. J. Inf. Math. Sci, 28 (2012), no. 4, 425–436.
- N. Argac, L. Carini and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math. 12 (2008), no. 2, 419–433.
- K. Beidar, *Rings with generalized identities III*, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. **1978** (1978), no. 4, 66–73.
- K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, *Rings with Generalized Identities*, CRC Press, 1995.
- C.L. Chuang, GPIs having coefficients in Utumi quotient rings. Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728.
- B. Dhara, Annihilator condition on power values of derivations, Indian J. Pure Appl. Math. 42 (2011), no. 5, 357–369.
- B. Dhara, A. Ali and D. Das, Engel conditions of generalized derivations on Lie ideals and left sided ideals in prime rings and Banach algebras, Afr. Mat. 27 (2016), no. 7-8, 1391–1401.

87

- B. Dhara, N. Argac and K.G. Pradhan, Annihilator condition of a pair of derivations in prime and semiprime rings, Indian J. Pure Appl. Math. 47 (2016), no. 1, 111–124.
- B. Dhara and V. De Filippis, Notes on generalized derivations on Lie ideals in prime rings, Bull. Korean Math. Soc. 46 (2009), no. 3, 599–605.
- B. Dhara and V. De Filippis, Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings, Comm. Algebra 48 (2020), no. 1, 154–167.
- T. Erickson, W. Martindale and J. Osborn, *Prime nonassociative algebras*, Pacific J. Math. 60 (1975), no. 1, 49–63.
- C. Faith and Y. Utumi, On a new proof of litoff's theorem, Acta Math. Acad. Sci. Hungar. 14 (1963) 369–371.
- V. De Filippis and O.M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918–1932.
- V.K. Harčenko Differential identities of prime rings, (Russian) Algebra i Logika 17 (1978), no. 2, 220–238, 242–243.
- 15. I.N. Herstein, *Topics in Ring Theory*, University of Chicago Press, Chicago, Ill. London, 1969.
- N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publications, Vol. 37, American Mathematical Society, Providence, RI. 1956.
- C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731–734.
- P. Lee and T. Wong, *Derivations cocentralizing Lie ideals*, Bull. Inst. Math. Acad. Sinica 23 (1995), no. 1, 1–5.
- T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27–38.
- W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576–584.
- T. Pehlivan and E. Albas, Annihilators of skew derivations with engel conditions on prime rings, Czechoslovak Math. J. 70(145) (2020), no. 2, 587–603.
- 22. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093–1100.
- V. Yadav, S. Tiwari and R. Sharma Generalized derivations on Lie ideals in prime rings, Asian-Eur. J. Math. 10 (2017), no. 2, Article no. 1750032, 6 pp.

¹SCHOOL OF LIBERAL STUDIES, AMBEDKAR UNIVERSITY DELHI, DELHI-110006, INDIA. *Email address*: balchand@aud.ac.in; ashutoshpandey064@gmail.com