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ABSTRACT. We study matrix-valued Gabor Bessel sequences and frames in the
matrix-valued space L?(G,C"*™), where G is a locally compact abelian (LCA)
group and n is a positive integer. First, we show that the Bessel condition (or
upper frame condition) can be extended from L?(G) to its associated matrix-
valued signal space L?(G,C"*"), and conversely. However, this is not true
for the lower frame condition. Secondly, we give sufficient conditions for the
extension of a pair of matrix-valued Bessel sequences to matrix-valued dual
frames over LCA groups. A special class of matrix-valued dual generators is
given. It is shown that the symmetric windows associated with a given matrix-
valued Gabor frames constitute a Gabor frame in matrix-valued spaces over
LCA groups.

1. INTRODUCTION

Duffin and Schaeffer [5] introduced the concept of frame in separable Hilbert
spaces in the study of nonharmonic expansion of functions. Let H be a separable
Hilbert space with inner product (-,-) and its associated norm is given by || f|| =
VIS, f), for f € H. A sequence of vectors {fy}72, in H is called a frame for H,

if there exist positive scalars a, < (3, < oo such that

all fII* < Y 1L fd P < Bl £I17 (1.1)
k=1
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for all f € H. The scalars «a, and (3, are called lower frame bound and upper frame
bound of {fi}32,, respectively. If it is possible to choose o, = f3,, then we say
that {fx}%2, is an a,-Parseval frame (or a,-tight frame). If only upper inequality
in (1.1) holds, then we say that {f;}72, is a Bessel sequence with Bessel bound
Bo-
Let {f}32, be a Bessel sequence in H. Then, the map T : > — H given by
T{&}521) = D py &k fr is called the pre-frame operator (or synthesis operator),
and its Hilbert adjoint T* : H — (* given by T*(f) = {{f, fu)}3, is called
the analysis operator. Moreover, T and T™ are bounded linear operators on H.
The composition S : ‘H — H is known as the frame operator that is given by
Sf =00 fs fedfr IE{ S}, is a frame for H, then S is a bounded, linear,
invertible and positive operator on H. This gives the reconstruction formula of
each vector f € H, f = > 7o (f,S ' fe)fr. This formula in useful in signal
analysis. We refer to books by Christensen [1], Grochenig [7], Han [8], Heil [9],
and Young [20] for basic theory on frames.

In this work, we study matrix-valued Bessel sequences and frames in the
matrix-valued signal space L?(G,C"™"), where G is a locally compact abelian
(LCA) group. The matrix-valued signal spaces are related to video imaging and
other applications in signal processing, where signal is multivariate. Xia and
Suter [19] classified and constructed vector-valued (matrix-valued) wavelets with
sampling property. They also showed that certain linear combinations of known
scalar-valued wavelets may yield multiwavelets. Recently, matrix-valued frames
are studied in a series of papers [10-15]. We first discuss an interplay between
matrix-valued Gabor Bessel sequences over LCA groups and its associated Bessel
sequences in atomic spaces. It is shown that the Bessel condition (or upper frame
condition) can be carried from L?(G,C™*™) to its associated atomic space L*(G)
and vice versa. This is not true for the lower frame condition. We give sufficient
conditions for extension of matrix-valued Bessel sequences with Gabor structure
to dual frame pair. This generalizes a result of [2] to matrix-valued function spaces
over LCA groups. Matrix-valued symmetric Gabor frames are also discussed.

2. PRELIMINARIES

In this section, we review the basic facts and terminology concerning the LCA
group and Gabor frames over LCA groups. Symbols Z and C denote the set
of integers and complex numbers, respectively. Also, T denotes the unit circle
group. Let GG denote a second countable LCA group equipped with the Hausdorff
topology. A character on G is a map v: G — T that satisfies v(x+y) = v(2)v(y),
for all z,y € . The collection of all continuous characters on G is denoted by
G, which forms an LCA group under the operation defined by (y 4+ +')(z) :=
v(z)v'(z), where v,7" € G and r € G and an appropriate topology. The group
G is known as a dual group of G. It is well known that there exists a Haar
measure, unique up to a scalar multiple, on a given LCA group; see [6]. Let
pe and ppa denote the Haar measure on G and G, respectively. A lattice of G
is a discrete subgroup A of G for which G/A is compact. The annihilator of
A, denoted by AL, is defined by At = {y € G | y(z) = 1, =z € A}, which
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is a lattice in G. The fundamental domain associated with the lattice At of
G, denoted by V, is a Borel measurable relatively compact set in G such that
G =Uperr(w+V), (w+ V)N (W +V)=0for w#w,ww €At By AutG,
we denote the collection of all continuous automorphisms on G. The space of
measurable square integrable functions over G, denoted by L?(G), is defined as
LAG)={f: [, \f]2dug < 0o}. For a function f € L'(L*(G), the integral

/f v(x)dpc (), v€G,

is known as the Fourier transform of f. It can be extended isometrically to L*(G).
We refer to [6] for basics on LCA groups.

2.1. The space L*(G,C™ ™). Throughout the paper, the matrix-valued func-
tions are denoted by bold letters. Let n be a positive integer. The space of
matrix-valued functions over G, denoted by L?(G,C"*"), is defined as

LG, C™) = {f(z) :x € G, fi(x) € L*(G) (1 <14, j<n)},
where

fu(@)  fia(z) ... fia(@)
fa(x)  falz) ... fou(x)

8

f(x): . . . .
fure) fuale) oo funl)

Functions f;; are called components or atoms of f. The Frobenius norm on
L?(G,C™ ") is given by

Il = Z A ). 2.1)

It is easy to see that L?(G, C"™ ™) is a Banach space with respect to the Frobenius
norm given in (2.1). The integral of a function f € L*(G, C"*") is defined as

fG fudpe fG fredpg ... fG findpc
/ Ja f21dMG Jo f22dMG e fzndﬂc
fdue = :
G i
fG fnld:uG fG fn2d,uG s fG fnnd,uG

For f, g € L*(G,C™"), the matrix-valued inner product is defined as

(£,g) = / f(2)g (@)duc.

Here * denotes the transpose and the complex conjugate. One may observe that
it is not an inner product in usual sense. However, the space L?(G,C"*") forms
a Hilbert space with respect to the inner product (-, -), defined by

(f,g)o = trace(f, g), f. ge L*G,Cvm),
and (-, -), generates the Frobenius norm: ||f||?> = trace(f,f), f € L*(G,C"™*").
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2.2. Gabor Frames in L?(G,C"™"). Let Aj be a finite subset of N, B € AutG,
C € AutG, A a lattice in G, and let A’ be a lattice in G.

Write
Dy, = { P}, C L*(G,C™M),
G(C, B, ®p,) := {EcmTpr®itieaowermer C L*(G,C™M).
For a € G and n € G, we consider the following operators on L?(G,Cmm):
T.f(x) = f(za™') (Translation operator),
E,f(z) =n(z)f(x) (Modulation operator).
For | € Ay, let ®, € L2((G,C™™) be given by @;(z) = [qﬁg;)(g;)]m. Let B €
AutG and let C' € AutG. A family of functions of the form G(C, B, ®,,) :=
{EcmTrr®i}bieng keamen in L2 (G, C™™) is called a multiwindow Gabor system in

the space L?(G,C™ ") over the LCA group G. The functions ®; are called the
matriz-valued Gabor window functions.

Definition 2.1. A frame of the form G(C, B, ®,,) for L?*(G,C"™ ") is called a
matriz-valued Gabor frame. That is, the inequality (frame inequality)

wltl? <> S [(Eentmen )| < aler fe e,

leAo keA,meN’
holds for some positive scalars «, and (3,. As in the case of ordinary frames, «,
and [, are called frame bounds.

Let M,,(C) be the complex vector space of all n x n complex matrices. The
space

62(/\0 X A % AleTL(C)) = {{Ml’j’k}legg}{/&\ C Mn(C) : Z ||Ml,j,k||2 < OO}

l€Ag,jEA
keA’!

is a Hilbert space and its related norm is given by

1
KM hieassennenl = (32 D0 IMul?)”.

leAg jeA ke

Let G(C,B,®,,) be a frame for L*(G,C"*™). The map V : *(Ag x A X
N, M, (C)) — L*(G,C™™) defined by

Vi AMikm Hieno keamen’ — E E M g EomTBrP
leAg keA,meN’

is called the synthesis operator or the pre-frame operator, associated with the
Gabor frame G(C, B, ®,,). The analysis operator is the map W : L*(G,C"™") —
2(Ag x A x ', M,,(C)) given by

W:f— {<f, ECmTBk®z>}

l€Ao,kEA,mEN’
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The frame operator of G(C, B, ®,,) is the composition S = VW : L?(G,C"™") —
L*(G,C™ ™) given by

S > > Af, EenTpe®) EcnTor®,

leAg keA,meN’

where f € L?(G,C™"). The frame operator is bounded, linear, and invertible on

LX(G,C™ ™).

3. MAIN RESULTS

We begin with a motivational example.

Example 3.1. Let G = T be the circle group and let ¢ € L*(G) be given by
o(t) = 1,t € G. Let A be any lattice in G and let A’ = Z, a lattice in G = Z.
Then, the Gabor system {E,,Ti¢}veamer’ = {Em®tmez = {27}z is an
orthonormal basis and hence a Parseval Gabor frame for L?(G). Consider the

matrix-valued function & = [z ﬂ € L*(G,C?*?). Then, the matrix-valued

Gabor system {FE,,T;®}reamer does not constitute a frame for L*(G, C**?).

Indeed, for a non-zero function f, € L*(G), let f € L?*(G,C**?) be given by
_ 2

f— { Jo f"}. Then, Y <EmTk<I>,f>H — 0. Hence, {E,,Ti®}rermen is
0 0 keAmeN

not a frame for L*(G,C**?).

On the other hand, if we take ® = VH ¢12} = {O ﬂ € L*(G,C?*?), then

P21 P22 ¢ 0
for any f = [fn f12} € L*(G,C?*?), we have

f?l f22
3 <EmTk<I>,f>H2 — |IF[%

keA,meN’

Thus, {EnTe® eeamen = {Em®P}mez is a matrix-valued Parseval Gabor frame

for LZ(Gu CZX2)' Indeed {EmTk¢1l}k€A,m€A’ = {Em¢1l}m€Z and {EmTk¢22}k€A,m€A’
= {E;n¢22 }mez are not Gabor frames for L?(G).

Example 3.1 shows that the frame conditions of a frame for L?(G), in general,
cannot be carried to its associated matrix-valued signal space L*(G,C"*™), and
vice versa. In this section, we discuss an interplay between Bessel sequences in
L?(G) and its associated matrix-valued space L*(G,C™*™). The following result
shows that the Bessel condition (upper frame condition) can be carried from
L*(G) to L*(G,C™ ™) and conversely.

Theorem 3.2. The matriz-valued Gabor system { EcmTrr®i}ieng kermen in the
space L*(G,C™") is a Gabor Bessel sequence if and only if for each i,j (1 <

i,7 <n)andl € Ay, the family {ECmTBk(bE;)}kGA’mGA/ is a Gabor Bessel sequence
for L*(Q), where ®; € L*(G,C"") is given by ®;(z) = [qbg)(x)}

nxn
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Proof. For each i,7 (1 < i,7 < n) and [ € Ay, let {ECmTBk¢§;)}k€A7m€A/ be a
Gabor Bessel sequence for L?*(G) with Bessel bound UZ.(;). Then, for any f =
[fij}1<l.j<n € L*(G,C™ ™). We compute

5 (meren )

leNo ke A,meN’

o Z Z ‘Z/ ECmTqublrflrdﬂG" +- +|Z/ EC’mTBk¢ flrd,uG|2

leAg kEA,meN’ r=1

+\Z /G EcmTBk¢§?EduG\2+---+!Z /G EcnTpnd fordpc|” + -+
r=1 r=1

l
< S (S U+ S UL
r=1

leNo r=1

+ 3 U forl? +---+ZU“ | for1?
r=1

<>.n (maxw Jfull? + +<mng$£’>||fm||2+<mng£P>||fm||2+

leNo

o+ (max UL | fonl2 4 -+ + (max UL faal + -+« + (max U] fun )
<Zn maxU MR

leAg

< n2|Aol(maxU(l))Hfll2

Hence, {EcwTpr®i}tica, keamen i a matrix-valued Gabor Bessel sequence in
L*(G,C™ ™) with Bessel bound 3, = nQ\Aol(malX Ui(;)).
Z?]’

Conversely, assume that { Ecy,Trr®:}iengkermesrr C L2 (G, C™") is a matrix-
valued Gabor Bessel sequence with Bessel bound ~v,. Let 4,5 (1 < i,57 < n),
[ € Ay, and f € L*(G) be arbitrary but fixed.

Choose
[0 0 . 0]
0 0 . 0
00 0
h(e) {80 ¢ g oy,
jth place
0 0 .. 0
0 0 0]
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Then
2 2
> [(BenTmol N = > [(BonToenn)|
keA,meN keA,meN
2
<> > ”<ECmTBk(I)lah>H
1€Ao kEA,mEN

< | [h]”

=%llfII*
Hence, for each i,7 (1 <i,j <n)and [ € Ay, the family {ECmTquﬁg)}keA’meA/ is
a Gabor Bessel sequence for L?(G) with the Bessel bound 7. O

Remark 3.3. Example 3.1 shows that the result given in Theorem 3.2 is not true
for the lower frame condition in matrix-valued signal spaces.

The next result gives the majorization of energy of window functions. To be
precise, we can estimate norms of window functions in terms of Bessel bounds.

Theorem 3.4. Let {Ecy/Trr®}icng keamen C L2(G,C™™) be a matriz-valued
Gabor Bessel sequence with Bessel bound (,. Then

(1) > I1Di]* < nlAo|Bo,

leAg
2 W12 < B, for every 1 < i,7 < n,l € A,
(2) ll#s y J

Proof. By the hypothesis, we have
2
S H<ECmTBk<I>l,f>H < B,|IE|1? for all £ € L¥(G, C™™).

leAg keA,meN’

Therefore, for any (but fixed) l, € Ag, k, € A,m, € ', we have

2
| Ecm. Tor, @1, Bom, Tow, @1, )| < Boll Eom, Tor, @02 (31)
We compute
H®lo H4 = HEcmoTBkoq)lo ”4
= |trace(Ecm, Tk, 1, , Ecm, Tpr, ®1,)|°
2
< nH <ECmOTBkO(I)loa ECmOTBkO(I)lo>

< 1B, Ecm, Tk, @1 (by (3.1))
= 1, /| Py, ||

This proves (1).

From the first step of the proof of Theorem 3.2, for each 7,5 (1 < 4,5 < n)
and [ € Ag, the family {ECmTquﬁg)}keA,meA/ is a Gabor Bessel sequence in L?(G)
with bound f,. That is,

2
S [ BenTned 1) < BollfI? for all £ € IHG) (1€ A1 <ij <n).

keA,meN’
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Therefore, for fixed k, € A,m, € A’, we have

(Eom, Tor,@8), Eom, Tor, @) )2 < Boll Ecom, T, @) |2,
which implies
18012 < B, (1€ Ao1<i,j<n).
Hence, (2) is proved. .

3.1. Extension of Bessel sequences to dual frame pairs. Extension of
Bessel sequences to frames or dual frames is one of fundamental topic for re-
search. This is useful in applications of frames in signal processing. In this direc-
tion, Christensen et al. [2] studied the extension of Bessel sequences to frames.
Also, see [10], for the extension of a system to tight frames. Extension of Bessel
sequences to dual frame pairs was further studied in [3,4,15]. The following result
provides sufficient conditions for the extension of a pair of matrix-valued Gabor
Bessel sequences to matrix-valued dual Gabor frames for L?*(G,C"*"). This is
inspired by [2, Lemma 4.1].

Theorem 3.5. Let {EcmTpi®iticaorermen and {EcmTer®i}iengveamen be
matriz-valued Gabor Bessel sequences in L*(G,C™") with pre-frame operators
Vo and Vi and analysis operators We and Wy, respectively. Let I be the identity
operator on L?(G,C"™). Assume there exist ¥; € L*(G,C"™ ") 1 € Ay, with the
following properties:

(1) {EcmTrrY1}ieng kermen 18 a matriz-valued Gabor frame for L*(G, C™ ™)

with a dual {ECmTBk:I/vz}ngo,keA,meAh
(2) V@WéECmTBk\Ijl - ECmTBqu?W@\IIh fO’I"l € AO? k S A7 m e A/'

Let @), ®) € LX(G,C™") be such that ®) = (I — VoW3)¥, and ®} = U1 € A,.
Then, the families

!
{EcmTBe®i}ieng kermen U {EcmTBe®, }ieng kermen

and

{ECmTBk(gl}ler,keA,meA’ U {ECmTBk(g;}ler,keA,meA’
form a matriz-valued dual frames pair for L*(G,C™").
Proof. For all f € L*(G,C™"), we have
VaWef = Vi ({{f, EcmTr®Pi) }ieao ken,men)
=> > EcmTpe®1) EcmTor®:.

l€AQ kEA,mEN’

By condition (1), { EcuTer¥: }ieng senmen and {EemTsrWi}iea permea form
a pair of dual frames for L*(G,C™*"). Therefore, for all f € L*(G,C™"), we

have

(L — VaWe)f = Z Z (I = VaWa)f, BenTpe 1) EonTei ¥,

1€Ao kEA,mEN’
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_Z Z (I — VW, )EcmTBk‘I/>ECmTBk‘I’l (3.2)

leAg keA,meN’

By using condition (2), we have

(I — VaW3)EomTsr¥) = EomTar(I — VaW3) ;. (3.3)
For any f € L*(G,C™™), we have
(I-VeWa)f=£->" > (f EcnTpe®)EcnTpdr. (3.4)
leAo keA,meN’

By using (3.2), (3.3), (3.4), and ®; = (I — VaWz)¥,, ®] = W,,1 € Ay, for all
f € L*(G,C™™), we have

£=>" > (F.EomTor®)EcmTpe®i+ Y, > {f EomTon®) EcmTpe®.
leENg keA,meN lEANg keA,meN

Therefore, the families { By Tsr®: ieaokeamer U {EemTBr®] b ieno kea,menr and

{EcmTer® b ienokermen U {EomTer®| bieaokermen form matrix-valued dual
Gabor frames for L*(G, C™"). O]

Remark 3.6. Conditions given in Theorem 3.5 are sufficient but not necessary.
First we recall that a sequence {f} }ren in L?*(G,C™*™) is called an orthonormal
sequence if

I k=1
f f — nXxXn» 9 3'5
fe, ) {Om, k#1L (35)

Furthermore, a sequence {fj}rey C L*(G,C"™) is an orthonormal basis for
L?(G,C™ ") if it satisfies (3.5) and every f € L?(G,C™ ") can be written as

keN
Now we show that the conditions given in Theorem 3.5 are only sufficient

but not necessary. Let ¢ € L?(T) be given by ¢(t) = 1, t € T. Let A be

any lattice in T and let A’ = Z, a lattice in T = Z. Then, the Gabor system
{EnTid}vermer = {Em®}mez = {€2™)},,cz is an orthonormal basis for L?(T).
Consider

o — [¢ 0} € [(T,C>).

0 ¢
Then, {E,TxP}rermen = {EmP}lmez is an orthonormal system and for any
f € L*(T,C*?). We have f = Y (f, E,,®)F,,®. That is, {E,, P}z is an or-

meEZ
thonormal basis for L?(T,C?*?). In particular, we have a pair of matrix-valued

Gabor Bessel sequences {E,®}mez and {E,®}mez = {En® bmez in L2(T, C2%2)
with pre-frame operators Vp and Vz and analysis operators We and W3, respec-
tively. Furthermore, for any f € L?(T,C?*?), we have

VoW (£) = Vo ({(f, En®) bmez) = > _(f, En®)E,® = f.

mEZ
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Thus, VoW; = I. That is, I — VoW; = 0. Note that {E,,TiV}rermen =
{E,, TkCD}kEA men' = {En, @}mez is a matrix-valued Gabor frame for L?(T, C?*?)
with a dual {E,, Tk\I!}kEA men' = {Em Tk(D}keA men’ = { L, (I’}mez

Choose ¢' = [g 8] ,5’ = 0. Then

{En®}mez | {En®mez and  {En®}tmez |J {En® }mez
constitute matrix-valued dual Gabor frames for L*(T,C?*?). Indeed, for any

® € L*(T,C?*%), we have @ # (I — VgW3)¥ = (I — VaW5)® = 0.

The next result gives sufficient conditions for the extension of a pair of matrix-
valued Gabor Bessel sequences with several generator to matrix-valued Gabor
dual frames for L*(G,C™™). This type of extension for matrix-valued wave
packet system over R¢ can be found in [15].

Theorem 3.7. Let {EcmTpi®i}icaorermen and {EcmTer®i}iengveamen be
matriz-valued Gabor Bessel sequences in L*(G,C™") with pre-frame operators
Vo and Vi and analysis operators We and W5, respectively. Assume there exist
U, € L*(G,C™ ™), 1 € Ay, with the following properties:

(1) {EcmTrrYi ieng keamen 15 a matriz-valued Gabor frame for L*(G, C™ ™)

with a dual {ECmTBk‘\IIl}lEAo,kGA,mEA"
(2) V@W&)TBk\Pl = TBk‘/:pW&)\I’l, fO?“l € AO, ke A.

Then, there exist D, 5; € L*(G,C™ "), 1 € Ay, such that the families
{EcmTBe®i}ieng kenmen U {EcmTBr®) bieao kermen

and

5 -~y
{EcmTBe®i}ieng kenmen U {EcmTBe® }ieng ker,men

form dual matriz-valued Gabor frames for L*(G,C"™).

Proof. For any m’ € A’, we compute

VaWgEco Wi =Y > (Ecw Vi, EonTpe®1) Eco Tor®;

IR kEA,mEN’
= Z Z (U, B_co EonTo1®1) Ecpn T @,
leAo keA,meN’
= EomB_co Y, > (1, Bcmm 0 Tpe®1) B Ton®:
IRy kEA,mEN’

= Eom Y > (W, Ecn-m)Tr®1) Ecn—m) Tor®
1A kEA,mEN’

= Ecw Z Z (U1, EenTpr®0) EomTor®,
IENo kEA,mEN’

= EcmlvchgI;\Ifl.

The result now follows from Theorem 3.5. O
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3.2. Matrix-valued symmetric Gabor frames over LCA groups. Wu and
Cao [18] and Wang and Wu [17] studied symmetric frames with wave packet
structure in the Lebesgue space L*(R?). Let {¢™}M_| be a finite set in L?(R?).
The Wang and Wu [17] considered the following functions:

m prT) + " m " (x) — " (—a
pr(@) = SOEEED g ey = EE D)
Wang and Wu [17] showed that if the wave packet system

{DgEnggm L jE Tk LT me {1,2,...,M}}

1<m< M.

is a frame for L?(R?) with frame bounds a,, b,, then the collection
{D%EnggT UDLETwgl :j € Z, k0 € Z2m e {1,2,..., M}}

is a symmetric or antisymmetric frame about origin with the same frame bounds.
On the other hand, the frame properties, in general, cannot be carried from
L*(G) to L*(G,C™™) and vice-versa. In [15], the authors studied matrix-valued
symmetric wave packet frames over R?. The following result shows that the frame
properties of matrix-valued symmetric Gabor frames over LCA associated with a
given matrix-valued Gabor frame for the underlying function space are preserved.
This is inspired by [17, Theorem 1].

Theorem 3.8. Let { EcinTr®Pi}ieay keamen be a matriz-valued Gabor frame for
L3(G,C™™) with frame bounds Lg,Us. Then

1 2
{EcnTBir®; }ieng ker men U{ECmTBk D7 bieng keh,men

forms a symmetric matriz-valued frame for L*(G,C™™) with the frame bounds
Ly, Usp, where ®),®? € L*(G,C™ ") are defined as

Pl (¢) = Py(&) + (=€) B2(e) = Py(§) — Pu(=¢)

5 , 5 (1€ Ao, € €G).

Proof. For My, My € M, (C), it is easy to see that the Frobenius norm satisfies
the following property:

HMl + M2H2 = HM1H2 + HM2”2 + trace(Ml*MQ) + trace(MlMg*). (36)
Using (3.6), for any f € L*(G, C"™ "), we compute

> 3 [(Eearmain)]

leNg keA,meN
P, (- P (—- 2
=2 % (BT )+ (Boutn 1))
leAg ke A,meN’
(- 2 P, (—- 2
=Y Y (Bt O+ X [(entn )|
leAo kEA,mEN’ 1€Ag kEA,MEN’

+Z Z trace<<ECmTBk(DlT('>7f>*<EcmTBkCI)l(2—-)’f>>

leAo kEA,mEN’
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+3 3 trace<<ECmTqu)l2('>,f><ECmTBk¥,f>*>. (3.7)

leENg keA,meN

Similarly, for any f € L*(G, C"™*"), we have

> X H<ECmTBk@?vf>H2

leNg keA,meN’
D ( —) 2
I M [ S S S e
leAg ke A,meN’ leAg keAmeN’
b, (- * .
3 5 wmee( (BT 0) (B 1))
leAo keA,meA’

-2 > trace(<EcmTqu)’2(’),f><ECmTqu)’(2_'),f>*). (3.8)

1eAg kEA,meN’

From (3.7) and (3.8), we have

> > H<ECmTBk¢?vf>HQ+Z > [(sentmat.e)

leAg ke A,meN leAo keA,meN’
2
=23 Y (om0 P2y 5 |( 222 )
leNo ke A,meN’ leNo ke A,meN’
=3 Y [(Eemmae. )| + z > [(EenTman t-)||
l Ag keA,meN’ leNo ke A,meN’
1 1
> S LallflI* + 5 Lallf (=)
= Lo||f||?, f € L*(G,C™™). (3.9)
Similarly,
2 2
D (TS b ol (CRAL T
leNy ke A,meN’ leAg ke A,meN’
< Us||f||?, f € L*(G,C™™). (3.10)
The proof now follows from (3.9) and (3.10). O

Acknowledgement. The research of Lalit Kumar Vashisht is supported by
the Faculty Research Programme Grant-IoE, University of Delhi (Grant No.: Ref.
No./ToE/2021/12/FRP).

REFERENCES

1. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhduser/Springer, Cham,
2016.

2. O. Christensen, H.O. Kim and R.Y. Kim, Extensions of Bessel sequences to dual pairs of
frames, Appl. Comput. Harmon. Anal. 34 (2013) 224-233.

3. Deepshikha and L.K. Vashisht, Ezxtension of Weyl-Heisenberg wave packet Bessel sequences
to dual frames in L*(R), J. Class. Anal. 8 (2016), no. 2, 131-145.



GABOR BESSEL SEQUENCES AND DUAL FRAMES OVER LCA GROUPS 101

4. Deepshikha and L.K. Vashisht, Eztension of Bessel sequences to dual frames in Hilbert
spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 2,
71-82.

5. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math.
Soc. 72 (1952) 341-366.

6. G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 2nd Edition, Boca
Raton, FL, 2016.

7. K. Grochenig, Foundations of Time-Frequency Analysis, Birkhduser, Boston, 2001.

8. B. Han, Framelets and Wavelets. Algorithms,  Analysis, and Applications,
Birkhéuserr/Springer, Cham, 2017.

9. C. Heil, A Basis Theory Primer, Expanded Edition, Birkhduser, New York, 2011.

10. D. Jindal, U.K. Sinha and G. Verma, Multivariate Gabor frames for operators in matrix-
valued signal spaces over locally compact abelian groups, Int. J. Wavelets Multiresolut. Inf.
Process. 19 (2021), no. 2, 1-24.

11. Jyoti, Deepshikha, L..K. Vashisht and G. Verma, Sums of matriz-valued wave packet frames
in L?(R?,C**"), Glas. Mat. Ser. III, 53 (2018), no. 1, 153-177.

12. Jyoti and L.K. Vashisht, On WH-packets of matriz-malued wave packet frames in
L*(R?,C**7), Int. J. Wavelets Multiresolut. Inf. Process. 16 (2018), no. 3, Paper no.
1850022, 1-22.

13. Jyoti and L.K. Vashisht, On matriz-valued wave packet frames in L?(R?, C**"), Anal. Math.
Phys. 10 (2020), no. 4, Article no. 66, 1-24.

14. Jyoti and L.K. Vashisht, Duality for matriz-malued wave packet frames in L?(R®, C**"),
Int. J. Wavelets Multiresolut. Inf. Process. 20 (2022), no. 4, Article no. 1850022, 20 pp.

15. Jyoti, L.K. Vashisht, G. Verma and Vrinder, Matriz-valued wave packet Bessel sequences
and symmetric frames in L?>(R?, C**"), Poincare J. Anal. Appl. 2018 (2018) 77-96.

16. D.F. Li and W. Sun, Ezpansion of frames to tight frames, Acta Math. Sinica (Engl. Ser.)
25 (2009) 287-292.

17. Z. Wang and G. Wu, Symmetric wave packet frame in higher dimensions, 8 IOP Conf. Ser.:
Earth Environ. Sci. 108 (2018), Article no. 052118, 5 pp.

18. G. Wu and H. Cao, Symmetric wave packet frames, Appl. Mech. Materials 427—429 (2013)
1528-1531.

19. X.G. Xia and B.W. Suter, Vector-valued wavelets and vector filter banks, IEEE Trans. Signal
Proc. 44 (1996), no. 3, 508-518.

20. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York,
1980.

'DEPARTMENT OF MATHEMATICS, SHIVAJI COLLEGE, UNIVERSITY OF DELHI, DELHI-
110027, INDIA.
Email address: uksinha@shivaji.du.ac.in

’DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI, DELHI-110007, INDIA
Email address: 1alitkvashisht@gmail.com



	1. Introduction
	2. Preliminaries
	2.1. The space  L2(G, Cnn)
	2.2. Gabor Frames in L2(G, Cnn)

	3. Main results
	3.1. Extension of Bessel sequences to dual frame pairs
	3.2.  Matrix-valued symmetric Gabor frames over LCA groups

	References

