
Khayyam J. Math. 9 (2023), no. 1, 102-115
DOI: 10.22034/KJM.2022.355505.2629

A STUDY OF BESSEL SEQUENCES AND FRAMES VIA
PERTURBATIONS OF CONSTANT MULTIPLES OF THE

IDENTITY
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Communicated by A. Jiménez-Vargas

Abstract. We study those Bessel sequences {fk}∞k=1 in an infinite dimen-
sional, separable Hilbert space H for which operator S defined by Sf =∑∞

k=1〈f, fk〉fk is of the form cI + T , for some real number c and a bounded
linear operator T , where I denotes the identity operator. We use a reverse
Schwarz inequality to provide conditions on T and c that allow {fk}∞k=1 to be a
frame. Moreover, we study frames whose frame operators are compact (respec-
tively, finite-rank) perturbations of constant multiples of the identity, frames
to which we refer as compact-tight (respectively, finite-rank-tight) frames. As
our final result, we prove a theorem on the weaving of certain compact-tight
frames.

1. Introduction and preliminaries

Frames were defined by Duffin and Schaeffer [10] in 1952 in the context of
non-harmonic Fourier series. Later on, various generalizations of frames were
proposed; see [1, 3, 4, 12, 16], for example. A frame for a Hilbert space H can be
considered as a generalization of an orthonormal basis. Unlike a basis, a frame
consists of vectors that are not necessarily linearly independent. Due to the flexi-
bility of frames, they have found many applications in mathematics, physics, and
engineering, including signal processing, image processing, and sampling theory.
To learn more about the basic theory and applications of frames, we refer the
reader to [4, 6, 7, 11, 13, 14].
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Throughout the paper, H denotes an infinite-dimensional, separable Hilbert
space over the field F of real or complex numbers (F = R or C). A sequence
{fk}∞k=1 in a Hilbert space H is called a frame if there exist constants A,B > 0
such that

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2, for all f ∈ H.

The numbers A and B are called lower and upper frame bounds, respectively.
If we can choose A = B, then the frame is called tight, and if A = B = 1, then
the frame is called Parseval. The sequence {fk}∞k=1 is said to be a Bessel sequence
if at least the upper frame condition holds.

Let F = {fk}∞k=1 be a frame for H. Then, the operators UF and U∗
F defined by

UF : ℓ2 → H, UF({ck}k∈I) =
∞∑
k=1

ckfk,

and
U∗
F : H → ℓ2, U∗

Ff = {〈f, fk〉}k∈I
are known as the synthesis and analysis operators of F = {fk}∞k=1, respectively.
The frame operator S : H → H, defined by

Sf = UFU
∗
Ff =

∞∑
k=1

〈f, fk〉fk,

is a positive, self-adjoint, and invertible operator.
The paper is organized as follows. In Section 2, we study those Bessel sequences

{fk}∞k=1 in a separable Hilbert space H for which the operator S defined by
Sf :=

∑∞
k=1〈f, fk〉fk is of the form cI+T , for some real number c and a bounded

linear operator T , where I is the identity operator. We also use a reverse Schwarz
inequality to provide conditions on T and c that allow {fk}∞k=1 to be a frame. For
more information on reverse Schwarz inequalities, we refer the reader to [8, 9].
In Section 3, we study frames whose frame operators are compact or finite-rank
perturbations of constant multiples of the identity. We refer to such frames as
compact- and finite-rank-tight frames, respectively. After a careful examination
of these notions of frame, we establish a result on the weaving of certain compact-
tight frames.

In the rest of this section, we set the stage by discussing some results and
notations, which will be used later.

Theorem 1.1 (Spectral theorem for compact self-adjoint operators). Let T be
a compact, self-adjoint operator on an infinite-dimensional, separable Hilbert
space H. Then, H has a complete orthonormal system (an orthonormal basis)
{e1, e2, . . .} consisting of the eigenvectors of T . Moreover, for every x ∈ H,

Tx =
∞∑
k=1

λk〈x, ek〉ek,

where λk is the eigenvalue corresponding to ek.
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In what follows, we present a well-known perturbation theorem (see [6, Theo-
rem 22.1.1]).

Theorem 1.2 ([6]). Let {fk}∞k=1 be a frame for H with lower and upper bounds
A, B respectively. Let {gk}∞k=1 be a sequence in H and assume that there exist
constants λ, µ ≥ 0 such that λ+ µ√

A
< 1 and

‖
∞∑
k=1

ck(fk − gk)‖ ≤ λ‖
∞∑
k=1

ckfk‖+ µ‖ck‖

for all finite scalar sequences {ck}∞k=1. Then, {gk}∞k=1 is a frame for H with bounds
(1− (λ+ µ√

A
))2 and B(1 + λ+ µ√

B
)2.

The following proposition is a special and rephrased version of the previous
theorem that will be needed in Definition 1.4 and Theorem 2.3. In fact, it can be
obtained from the previous theorem by letting λ = 0.

Proposition 1.3 ([2]). Let F = {fk}∞k=1 be a frame for H with bounds A, B,
respectively. Let G = {gk}∞k=1 be a sequence in H. If there exists µ ≥ 0 such
that ‖UF −UG‖ ≤ µ <

√
A, then {gk}∞k=1 is a frame with lower and upper bounds

A(1− µ√
A
)2 and B(1 + µ√

A
)2, and ‖UF − UG‖ ≤ µ.

Next, we present the important concept of µ-perturbation. We will use this
concept in Theorem 2.3 (3).

Definition 1.4. Let F = {fk}∞k=1 and G = {gk}∞k=1 be Bessel sequences in a
Hilbert space H. For µ > 0, we say that G is a µ-perturbation of F if

‖UF − UG‖ ≤ µ.

The following theorem is that part of [15, Corollary 1], which is appropriate
for our destinations. It presents a reverse Schwarz inequality, which will be used
later in Theorem 2.3.

Theorem 1.5 ([15]). Let (V, 〈·, ·〉) be an inner product space over the real or
complex number field F (F = R or C). Fix τ ≥ 0 and κ ≥ 1 with κ2 = τ 2 + 1.
For nonzero vectors x, y ∈ V , the following conditions are equivalent:

(1) ||x|| ||y|| ≤ κ|〈x, y〉|.
(2) There exists λ ∈ F\{0} such that ||λx− y|| ≤ τ

κ
||y||.

Note that κ =
√
1 + τ 2. Therefore, the equivalence stated in Theorem 1.5 can

be written as
||x|| ||y|| ≤

√
1 + τ 2|〈x, y〉| ⇐⇒ ||λx− y|| ≤ τ√

1 + τ 2
||y||.

Our next definition will be utilized in Theorem 3.11.

Definition 1.6 ([5]). A finite family of frames {fij}Mj=1,i∈I in a Hilbert space H
is said to be woven if there exist universal constants A and B such that for every
partition {σj}Mj=1 of I, the family {fij}Mj=1,i∈σj

is a frame for H with bounds A

and B, respectively. Each family {fij}Mj=1,i∈σj
is called a weaving.
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If {fk}∞k=1 is a Bessel sequence in H, then we let S denote the operator, which
is defined by

Sf :=
∞∑
k=1

〈f, fk〉fk, (1.1)

for every f ∈ H.

2. From Bessel sequences to frames

Let {fk}∞k=1 be a Bessel sequence in an infinite-dimensional, separable Hilbert
space H, and let S be the operator defined as in (1.1). Assume that S = cI + T
for some real number c and an operator T . Let us begin with some questions.

1) Assuming that (1.1) holds, what can be proved for T? For instance, is T
necessarily bounded? If yes, what is an estimate for ‖T‖?

2) Under what conditions on c and T , {fk}∞k=1 can be a frame?
3) If {fk}∞k=1 is a frame, what further properties can be proved for T?

In the remainder of this section, we try to answer these questions. However,
before doing so, let us describe the reason such questions are really worthy of
consideration. It is known that the frame operator of a tight frame is a constant
multiple of the identity. So, it would be a rewarding idea to study those frames
for which the frame operator is a perturbation of some constant multiple of the
identity, for example, a compact perturbation. The latter case is of great impor-
tance, because by studying such perturbations, we obtain frames which are, in a
sense, the closest relatives of tight frames.

Proposition 2.1. Let {fk}∞k=1 be a Bessel sequence in H. Also, assume that S
is the operator defined as in (1.1). If S = cI + T for some real number c and a
linear operator T , then the following statements are true:

(1) The operator T is bounded and self-adjoint.
(2) If T is a positive operator and c > 0, then {fk}∞k=1 is a frame with c as a

lower bound.
(3) If {fk}∞k=1 is a frame with lower bound A, then T is a positive operator

whenever c ≤ A.

Proof. (1) Since {fk}∞k=1 is a Bessel sequence, S is a bounded operator. Hence,
T = S − cI is also bounded. That T is self-adjoint is obvious, because c is a real
number.
(2) Given f ∈ H,

∞∑
k=1

|〈f, fk〉|2 = 〈Sf, f〉

= 〈cf, f〉+ 〈Tf, f〉
≥ c||f ||2.

(3) Note that for every f ∈ H,
〈Tf, f〉 = 〈Sf, f〉 − 〈cf, f〉

≥ (A− c)||f ||2.
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Therefore, c ≤ A implies that 〈Tf, f〉 ≥ 0 for every f ∈ H. □

Remark 2.2. If {fk}∞k=1 is a Bessel sequence in H and S is defined by Sf :=∑
k〈f, fk〉fk for every f ∈ H, then for every c ∈ R, one can find an operator T

for which (1.1) holds. To see this, we just need to let T = S − cI. Indeed, what
matters is the way c affects T . For example, Proposition 2.1 (3) shows that when
{fk}∞k=1 is a frame, for certain values of c, the resulting operators T are positive.

According to Proposition 2.1, the positivity of both T and c implies that
{fk}∞k=1 is a frame with lower bound c. In the following theorem, we use a reverse
Schwarz inequality to provide some other conditions that make {fk}∞k=1 into a
frame. We will see shortly (in Example 2.4) that in some cases, the proposed
lower bound can be a better substitute for the value c itself as a lower bound for
{fk}∞k=1. Moreover, the positivity of c is not assumed in Theorem 2.3 below.

Theorem 2.3. Let {fk}∞k=1 be a sequence in H such that for every f ∈ H,
∞∑
k=1

〈f, fk〉fk = cf + Tf, (2.1)

where c is a real scalar and T is a bounded operator.
(1) The sequence {fk}∞k=1 is a Bessel sequence with bound |c|+ ||T ||.
(2) Assume that λ ∈ F\{0} and τ ≥ 0 are such that

||λf − Tf || ≤ τ√
1 + τ 2

||Tf ||, (2.2)

for every f ∈ H. If T is also bounded from below by D and
D√
1 + τ 2

> |c|, (2.3)

then {fk}∞k=1 is a frame with lower frame bound
D√
1 + τ 2

− |c|.

(3) With the assumptions of (2), suppose also that {gk}∞k=1 is a µ-perturbation
of {fk}∞k=1. If µ <

√
D√
1+τ2

− |c|, then {gk}∞k=1 is a frame for H with bounds(√
D√
1+τ2

− |c| − µ
)2

and
(√

|c|+ ‖T‖ − µ
)2

.

Proof. (1) It follows from (2.1) that
∞∑
k=1

|〈f, fk〉|2 = |〈cf, f〉+ 〈Tf, f〉|

≤ |c| ‖f‖2 + |〈Tf, f〉|
≤ |c| ‖f‖2 + ‖Tf‖.‖f‖
≤ |c| ‖f‖2 + ‖T‖.‖f‖.‖f‖
= (|c|+ ‖T‖)‖f‖2.
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(2) In view of Theorem 1.5 and the assumption that T is bounded from below
by D, we can write

∞∑
k=1

|〈f, fk〉|2 = |〈cf, f〉+ 〈Tf, f〉|

≥ |〈Tf, f〉| − |c| ||f ||2

= |〈f, Tf〉| − |c| ||f ||2

≥ 1√
1 + τ 2

||f || ||Tf || − |c| ||f ||2 (2.4)

≥ D√
1 + τ 2

||f ||2 − |c| ||f ||2 (2.5)

=

(
D√
1 + τ 2

− |c|
)
||f ||2.

In fact, (2.4) follows from (2.2) and Theorem 1.5, and (2.5) is an outgrowth of
the assumption that T is bounded from below by D.

(3) Since {fk}∞k=1 is a frame with bounds |c| + ||T || and D√
1+τ2

− |c|, for every
f ∈ H, (√

D√
1 + τ 2

− |c|

)
‖f‖ ≤ ‖U∗

Ff‖ ≤
(√

|c|+ ||T ||
)
‖f‖.

Therefore,

‖U∗
G(f)‖ ≥ ‖U∗

F(f)‖ − ‖ (UF(f)− UG(f))
∗ ‖ ≥

(√
D√
1 + τ 2

− |c| − µ

)
‖f‖.

Furthermore,

‖U∗
G(f)‖ ≤ ‖ (UF(f)− UG(f))

∗ ‖+ ‖U∗
F(f)‖ ≤ (µ+

√
|c|+ ||T ||)‖f‖.

Hence,(√
D√
1 + τ 2

− |c| − µ

)2

‖f‖2 ≤
∞∑
i=1

|〈f, gk〉|2 ≤
(
µ+

√
|c|+ ||T ||

)2
‖f‖2.

□

In the following example, we present an operator T and constants c for which
(2.2) and (2.3) are true.

Example 2.4. Define T : ℓ2 → ℓ2 by

f := (f1, f2, f3, . . .) 7→ (0.99f1, 0.98f2, 0.97f3, f4, f5, . . .).

Then, T is linear and
1√
2
||f ||2 ≤ ||Tf ||2 ≤ ||f ||2, (2.6)
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for every f ∈ ℓ2. So, we may let D = 1√
2

in the context of Theorem 2.3. Also, by
letting λ = 0.99, we see that

||λf − Tf ||22 ≤
(
(0.02)2 + (0.01)2

)
||f ||22

= (5)(10−4)||f ||22.
Therefore, choosing τ = 1 and having (2.6) in mind, we can write

||λf − Tf ||2 ≤
√
5

100
||f ||2

≤
√
10

100
||Tf ||2

≤ 1√
2
||Tf ||2

=
τ√

1 + τ 2
||Tf ||2,

for every f ∈ H. Therefore, (2.2) holds for our choices of T , λ, and τ . If
0 < c < 1

4
, for example c = 1

5
, then

D√
1 + τ 2

=
1

2
> c,

so that (2.3) also holds. Moreover,
D√
1 + τ 2

− c =
1

2
− c > c.

This shows that for 0 < c < 1
4
, the lower bound proposed in Theorem 2.3 is better

than the lower bound c presented in Proposition 2.1.

In the next section, we focus on Bessel sequences for which the operator S
defined by (1.1) is of the form S = cI + K with K a compact or finite-rank
operator.

3. Compact-tight and finite-rank-tight frames

Let T be a compact self-adjoint operator. By the spectral theorem (Theorem
1.1), the operator T has the form

T =
∞∑
k=1

λk〈·, ek〉ek, (3.1)

where {ek}∞k=1 is an orthonormal basis for H consisting of the eigenvectors of T .
In the following theorem, we use this fact to present conditions that allow us to
conclude that a Bessel sequence is a frame.

Theorem 3.1. Let {fk}∞k=1 be a Bessel sequence such that S = cI + T , for some
c > 0 and a compact operator T . Assume that T has a spectral decomposition like
(3.1) such that

λ := c+ inf
k
λk > 0.

Then, {fk}∞k=1 is a frame with lower bound λ.
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Proof. According to Proposition 2.1 (1), the operator T is self-adjoint. So, we
can use the spectral theorem. For every f ∈ H,

Sf = cf +
∞∑
k=1

λk〈f, ek〉ek

= c
∞∑
k=1

〈f, ek〉ek +
∞∑
k=1

λk〈f, ek〉ek

=
∞∑
k=1

(c+ λk)〈f, ek〉ek.

Therefore,
∞∑
k=1

|〈f, fk〉|2 = 〈Sf, f〉

=
∞∑
k=1

(c+ λk)|〈f, ek〉|2

≥ λ||f ||2.

□

The following definition facilitates our discussion.

Definition 3.2. We say that a frame is compact-tight (respectively, finite-rank-
tight) if its frame operator S is a compact (respectively, finite-rank) perturbation
of a constant multiple of the identity, that is, S = cI+K with K being a compact
(respectively, finite-rank) operator.

Let {fk}∞k=1 be a compact-tight frame whose frame operator S can be written
as c1I + K1 and c2I + K2, with K1 and K2 being compact operators. Then, it
follows from the equality

(c1 − c2)I = K2 −K1 (3.2)

that c1 = c2. In fact, the operator on the right side of (3.2) is a compact operator,
while the operator on the left cannot be compact unless c1 − c2 = 0. Indeed, in
the latter case, (3.2) shows that K1 = K2. We summarize our above discussion
in the following proposition.

Proposition 3.3. Let {fk}∞k=1 be a compact-tight frame with frame operator S.
Then, the representation of S as a compact perturbation of a constant multiple of
the identity is unique.

A similar reasoning allows us to formulate a version of Proposition 3.3 for
finite-rank-tight frames.

If {fk}∞k=1 is a compact-tight frame whose frame operator is S = cI + K, we
say that {fk}∞k=1 is a (c,K)-compact-tight frame.
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Remark 3.4. In general, a frame is compact-tight if and only if its frame operator
S can be written as

Sf =
∞∑
k=1

(c+ λk)〈f, ek〉ek,

for some nonzero real number c, a sequence {λk}∞k=1 of nonzero real numbers
converging to 0, and an orthonormal basis {ek}∞k=1 of H.

In our next theorem, we present a procedure for constructing compact-tight
frames from a given orthonormal basis.

Theorem 3.5. Let c be a positive real number, and let {tk}∞k=1 be a sequence of real
numbers greater than c such that limk−→∞ tk = c. If {ek}∞k=1 is any orthonormal
basis of H, then {

√
tkek}∞k=1 is a compact-tight frame for H with frame bounds c

and supk tk.

Proof. Given f ∈ H, the equality
∞∑
k=1

|〈f,
√
tkek〉|2 =

∞∑
k=1

tk|〈f, ek〉|2

implies that
c‖f‖2 ≤

∑
|〈f,

√
tkek〉|2 ≤ (sup

k
tk)‖f‖2.

Thus, {
√
tkek}∞k=1 is a frame for H with frame bounds c and supk tk. To prove

that this frame is compact-tight, note that

Sf =
∞∑
k=1

〈f,
√
tkek〉

√
tkek

=
∞∑
k=1

tk〈f, ek〉ek

= c
∞∑
k=1

〈f, ek〉ek +
∞∑
k=1

(tk − c)〈f, ek〉ek

= cf +Kf.

Here,

K :=
∞∑
k=1

(tk − c)〈., ek〉ek

is a compact operator because (tk − c) → 0 as k → ∞. □
In what follows, we present a simple example for Theorem 3.5.

Example 3.6. Let {ek}∞k=1 be an orthonormal basis for H. Since

tk := 1 +
1

k2
> 1

for every k and
lim
k→∞

tk = 1,
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Theorem 3.5 shows that the sequence
{gk}∞k=1 := {

√
tkek}∞k=1

is a compact-tight frame with bounds 1 and 2.

Of course, the procedure proposed in Theorem 3.5 is not the only way for the
construction of compact-tight frames. This is what we show in the following
example.

Example 3.7. Let {gk}∞k=1 be as in Example 3.6, and let {fk}∞k=1 be the sequence
in which

√
1
k
(1 + 1

k2
)ek is repeated k times, for each k. Then, {fk}∞k=1 is also a

frame with the same frame operator as {gk}∞k=1. This is because
∞∑
k=1

|〈f, fk〉|2 =
∞∑
k=1

k

∣∣∣∣∣
〈
f,

√
1

k

(
1 +

1

k2

)
ek

〉∣∣∣∣∣
2

=
∞∑
k=1

(
1 +

1

k2

)
|〈f, ek〉|2

and
∞∑
k=1

|〈f, gk〉|2 =
∞∑
k=1

∣∣∣∣∣
〈
f,

√
1 +

1

k2
ek

〉∣∣∣∣∣
2

=
∞∑
k=1

(
1 +

1

k2

)
|〈f, ek〉|2.

Therefore, {fk}∞k=1 is also a compact-tight frame. However, it is clear that this
frame is not constructed in the way proposed in Theorem 3.5.

The following example presents a frame that is not compact-tight.

Example 3.8. Let {ek}∞k=1 be an orthonormal basis for H, and consider fk =√
2 + 1

k2
ek when k is even, and fk =

√
3 + 1

k2
ek otherwise. Then

∞∑
k=1

|〈f, fk〉|2 =
∑
k∈Ne

(
2 +

1

k2

)
|〈f, ek〉|2 +

∑
k∈No

(
3 +

1

k2

)
|〈f, ek〉|2,

where Ne and No denote the sets of even and odd natural numbers, respectively.
Hence

2||f ||2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ 4||f ||2,

showing that {fk}∞k=1 is a frame with bounds 2 and 4. If S = cI + T for some
scalar c and an operator T , then

Tf = (S − cI)f

=
∑
k∈Ne

(
2− c+

1

k2

)
〈f, ek〉ek +

∑
k∈No

(
3− c+

1

k2

)
〈f, ek〉ek.

Thus

Tf =
∞∑
k=1

λk〈f, ek〉ek,

where the sequence {λk}∞k=1 does not converge. The operator T cannot be, ac-
cordingly, compact.
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In the following proposition, we present some conditions under which a frame
obtained from an orthonormal basis is finite-rank-tight.

Proposition 3.9. Let {fk}∞k=1 be a frame in H that is obtained from an orthonor-
mal basis by repeating a finite number of the basis elements, each a finite number
of times. Then, {fk}∞k=1 is a finite-rank-tight frame.

Proof. Let {e1, e2, . . .} be an orthonormal basis for H. Suppose that {fk}∞k=1 is
obtained from the basis by repeating the basis elements ej1 , . . . , ejn , such that ejm
is repeated lm > 1 times for each m ∈ {1, . . . , n}. Then, for every f ∈ H,

Sf =
∞∑
k=1

〈f, fk〉fk

=
∞∑
i=1

〈f, ei〉ei +
n∑

m=1

(lm − 1)〈f, ejm〉ejm

= f +Kf.

Here,

K =
n∑

m=1

(lm − 1)〈·, ejm〉ejm

is a finite-rank operator. □
Now, we consider a quite natural question. Is the canonical dual of a compact-

tight frame, compact-tight? The affirmative answer is given in our next theorem.

Theorem 3.10. The canonical dual of a compact-tight frame, is compact-tight.

Proof. Let {fk}∞k=1 be a (c,K)-compact-tight frame such that the frame operator
S can be written as S = cI +K, in which c 6= 0 and K is a compact operator.
Then, the operator S−1 can be written in the form

S−1 = c−1I + T, (3.3)
where T is a compact operator. To see this, we just need to choose T in such a
way that

TS = −c−1K.

Then, it is clear that T is a compact operator. Also,
(c−1I + T )S = c−1S + TS

= c−1(cI +K)− c−1K

= I.

This completes the proof by obtaining the desired representation (3.3). □
Next, we present a theorem on the weaving of certain compact-tight frames.

Theorem 3.11. Let F = {fk}∞k=1 and G = {gk}∞k=1 be (1, K1)- and (1, K2)-
compact-tight frames, respectively. Also, assume that there exists an infinite
subset σ of N such that {fk}k∈σ and {gk}k∈σc are orthonormal bases. Then,
{fk}∞k=1 and {gk}∞k=1 cannot be woven.
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Proof. Assume on the contrary that {fk}∞k=1 and {gk}∞k=1 are woven. Then, for
the partition {σ, σc}, we obtain the frame {fk}k∈σc ∪ {gk}k∈σ. According to the
definition of compact-tight frames, the frame operators for {fk}∞k=1 and {gk}∞k=1

can be written as

SFf =
∞∑
k=1

〈f, fk〉fk

=
∑
k∈σ

〈f, fk〉fk +
∑
k∈σc

〈f, fk〉fk

=f +K1f

and

SGf =
∞∑
k=1

〈f, gk〉gk

=
∑
k∈σc

〈f, gk〉gk +
∑
k∈σ

〈f, gk〉gk

=f +K2f.

Denote the frame operator of {fk}k∈σc ∪ {gk}k∈σ by SW . Then for every f ∈ H,

SWf =
∑
k∈σc

〈f, fk〉fk +
∑
k∈σ

〈f, gk〉gk

=K1f +K2f

=(K1 +K2)f.

Thus, SW = K1 +K2. Since K1 and K2 are compact operators, SW is a compact
operator, which is a contradiction. □

Of course, it is necessary to present a concrete example of frames that satisfy
the hypotheses of Theorem 3.11. We conclude the paper with such an example.

Example 3.12. Let {fk}∞k=1 and {gk}∞k=1 be the sequences defined by

{fk}∞k=1 =

{
e1, e1,

1

2
e2, e2,

1

3
e3, e3,

1

4
e4, e4, . . .

}
and

{gk}∞k=1 =

{
e1,

1

2
e1, e2,

1

3
e2, e3,

1

4
e3, . . .

}
,

where {ei}∞i=1 is an orthonormal basis for H. Then, it is clear that {fk}∞k=1 and
{gk}∞k=1 are frames with bounds 1 and 2. Denote the frame operators of these
frames by SF and SG, respectively. Then,

SFf =
∞∑
k=1

〈f, fk〉fk =
∞∑
j=1

〈f, ej〉ej +
∞∑
j=1

1

j2
〈f, ej〉ej
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and

SGf =
∞∑
k=1

〈f, gk〉gk =
∞∑
j=1

〈f, ej〉ej +
∞∑
j=1

1

(j + 1)2
〈f, ej〉ej.

Thus, {fk}∞k=1 is a (1, K1)-compact-tight frame, and {gk}∞k=1 is a (1, K2)-compact-
tight frame, where

K1f =
∞∑
j=1

1

j2
〈f, ej〉ej

and

K2f =
∞∑
j=1

1

(j + 1)2
〈f, ej〉ej

are compact operators. Now, let σ = Ne, so that σc = No. Then, {fk}k∈σ
and {gk}k∈σc are orthonormal bases, because these are both equal to {ek}∞k=1.
Therefore, {fk}∞k=1 and {gk}∞k=1 are frames that satisfy the hypotheses of Theorem
3.11.
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