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ON S-FINITE CONDUCTOR RINGS
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Abstract. Let R be a commutative ring with nonzero identity and let S ⊆ R
be a multiplicatively closed subset of R. In this paper, we introduce and
study S-finite conductor rings. Moreover, R is said to be an S-finite conductor
ring if (0 : a) and Ra ∩ Rb are S-finite ideals of R for each a, b ∈ R. Some
basic properties of S-finite conductor rings are studied. For instance, we give
necessary and sufficient conditions for a ring to be S-finite conductor. Also, we
prove that every pre-Schreier S-finite conductor domain is an S-GCD domain
and that the converse is true for some particular cases of S. Furthermore,
we examine the stability of these rings in localization and study the possible
transfer to direct product, trivial ring extension, and amalgamated algebra
along an ideal.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero
identity and all modules are nonzero unital. Let R denote such as a ring and
S such as a multiplicatively closed subset of R. Also, Reg(R) denotes the set
of regular elements of the ring R; Q(R) := RReg(R), the total quotient ring of
R. For an ideal I of R and an element a ∈ R, we denote by (I : a) := {x ∈
R | xa ⊆ I} the conductor of Ra into I. Also, for a (fractional) ideal I of R,
I−1 := {x ∈ Q(R) | xI ⊆ R} and Iv := (I−1)−1. Recall that an R-module M is
called a finitely presented R-module if there is an exact sequence of R-modules
F1 → F0 → M → 0 such that both F0 and F1 are finitely generated free R-
modules. A finitely generated R-module M is said to be a coherent R-module
if every finitely generated R-submodule of M is a finitely presented R-module;
and a ring R is called a coherent ring if R is coherent as an R-module. An
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excellent summary of work done on coherence up to 1989 can be found in [14].
On the other hand, Zafrullah [21] defined finite conductor domains as a new
generalization of coherent domains. Moreover, Glaz [15] extended the definition
of a finite conductor domains to rings with zero divisors. A ring R is called a
finite conductor ring if Ra ∩ Rb and (0 : a) are finitely generated ideals of R for
every a, b ∈ R. Anderson and Dumitrescu [1] introduced the concept of S-finite
modules as follows: an R-module M is called an S-finite if there exist a finitely
generated R-submodule N of M and s ∈ S such that sM ⊆ N. Recently, Bennis
and El Hajoui [7] investigated the S-versions of finitely presented modules and
coherent modules, which are called, respectively, S-finitely presented modules and
S-coherent modules. An R-module M is called an S-finitely presented module
for some multiplicatively closed subset S of R if there exists an exact sequence
of R-modules 0 → K → F → M → 0, where F is a finitely generated free
R-module and K is an S-finite R-module. Moreover, an R-module M is said to
be S-coherent, if it is finitely generated and every finitely generated submodule
of M is S-finitely presented. They showed that the S-coherent rings have a
characterization similar to the classical one given by Chase for coherent rings
(see [7, Theorem 3.8]). Recall from [16] that a nonzero ideal I of a domain R is
said to be S-v-principal if there exist s ∈ S and a ∈ R such that sI ⊆ aR ⊆ Iv.
Also, Hamed and Hizem [16] introduced S-GCD domains. A domain R is called
an S-GCD domain if each finitely generated nonzero ideal of R is S-v-principal.
Additional information about S-GCD domains can be found in [2].

Some of our results use the R ∝ M construction. Let R be a ring and let
M be an R-module. Then R ∝ M , the trivial (ring) extension of R by M , is
the ring whose additive structure is that of the external direct sum R ⊕M and
whose multiplication is defined by (r1,m1)(r2,m2) := (r1r2, r1m2 + r2m1) for all
r1, r2 ∈ R and all m1,m2 ∈ M . The basic properties of trivial ring extensions
are summarized in the books [14, 17]. Mainly, trivial ring extensions have been
useful for solving many open problems and conjectures in both commutative and
non-commutative ring theory. See, for instance, [3, 5, 6, 12, 19, 20].

In present note, we define S-finite conductor rings as a new generalization of
finite conductor rings, S-coherent rings, and S-GCD domains. If R is a ring
and S is a multiplicatively closed subset of R, then we say that R is an S-finite
conductor ring if Ra ∩ Rb and (0 : a) are S-finite ideals of R for any a, b ∈ R.
In Theorem 2.5, we give some characterizations of S-finite conductor rings. In
addition, we show that every pre-Schreier S-finite conductor domain is an S-finite
conductor domain (see Theorem 2.6). Moreover, we prove that if R is an S-finite
conductor ring, then RS is a finite conductor ring, and the converse is not true in
general (see Proposition 2.7 and Example 2.8). Also, we characterize finite con-
ductor rings in term of S-finite conductor rings (see Theorem 2.9). Moreover, we
study some particular cases of the trivial ring extension and examine conditions
under which R ∝ M is an (S ∝ M)-finite conductor ring (see Theorem 2.12 and
Proposition 2.13). Finally, we investigate the S-finite conductor property that
the amalgamation A ▷◁f J might inherit from the ring A for some classes of ideals
J and homomorphisms f .
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2. Main results

Definition 2.1. Let R be a ring and let S be a multiplicatively closed subset of
R. We say that R is an S-finite conductor ring if (0 : a) and Ra∩Rb are S-finite
ideals for each a, b ∈ R.

Remark 2.2. Let R be a ring and let S be a multiplicatively closed subset of R.
(1) If R is an S-coherent ring, then R is an S-finite conductor ring.
(2) If R is an S-GCD domain, then R is an S-finite conductor domain.
(3) If R is a finite conductor ring, then R is an S-finite conductor ring. The

converse is true if S ⊆ U(R), the set of units of R.

The following example shows that the converse of Remark 2.2(3) is not true,
in general.

Example 2.3. Let M be a countable direct sum of copies of Z/2Z, let R = Z ∝
M and let S = {(2, 0)n | n ∈ N} be a multiplicatively closed subset of R. Then,
by Remark [7, Remark 3.4], R is an S-coherent ring (so S-finite conductor ring).
However, R is not a finite conductor since (0 : (2, 0)) = 0 ∝ M is not finitely
generated.

For each multiplicatively closed subset S ⊆ R, S∗ := {a ∈ R | a
1

is a unit of RS}
denotes the saturation of S. Note that S∗ is a multiplicatively closed subset con-
taining S.

Proposition 2.4. Let R be a ring. Then the following statements hold:
(1) If S1 ⊆ S2 are multiplicatively closed subsets of R and R is an S1-finite

conductor ring, then R is an S2-finite conductor ring.
(2) If S is a multiplicatively closed subset of R, then R is an S-finite conductor

ring if and only if R is an S∗-finite conductor ring, where S∗ is the
saturation of S.

Proof. Clear. □
Let I be an ideal of a ring R. We denote by µ(I) the cardinality of a minimal

set of generators of I. The following theorem gives equivalent conditions for a
ring to be an S-finite conductor ring. It is well known that if we take S to be a
subset of the group of units of R, then these conditions are all equivalent to R
being a finite conductor ring.

Theorem 2.5. Let R be a ring and let S be a multiplicatively closed subset of R.
Then the following statements are equivalent:

(1) R is an S-finite conductor ring.
(2) Every (fractional) ideal of R with µ(I) ≤ 2 is S-finitely presented.
(3) (a : b) is an S-finite ideal of R for each a, b ∈ Q(R).

In addition, if R is a domain, then the above three conditions are equivalent to
(4) I−1 is S-finite for any (fractional) ideal I of R with µ(I) ≤ 2.

Proof. (1) ⇒ (2) Assume that R is an S-finite conductor ring. Let I be an
ideal of R such that µ(I) ≤ 2. If I = Ra for some a ∈ R, then the result
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follows from the standard exact sequence 0 → (0 : a) → R → I → 0. Now, we
suppose that I = Ra + Rb, where a, b ∈ R. Fix an exact sequence of R-modules
0 → Ra ∩ Rb → Ra

⊕
Rb → I → 0. By the hypothesis, we get that I is an

S-finitely presented ideal. Now, we suppose that I is a fractional ideal of R.
Then, there is a ∈ Reg(R) such that aI ⊆ R. Since µ(I) ≤ 2, we have I ∼= aI is
S-finitely presented.
(2) ⇒ (3) Let a, b ∈ R and let 0 → K → R2 → I → 0 be the canonical S-
finite presentation of I := Ra + Rb. Also, we define the R-module epimorphism
u : K → (a : b) by u(r, s) = −s for each (r, s) ∈ K. As K is an S-finite R-module,
then (a : b) is an S-finite ideal of R.
(3) ⇒ (1) It suffices to prove that Ra ∩ Rb is an S-finite ideal of R for each
a, b ∈ R. This, in turn, follows from the fact that Ra ∩Rb = (a : b)b.
Now, we will prove that (4) ⇔ (1) under the additional hypothesis that R is a
domain. Assume that R is an S-finite conductor domain. Let I be an ideal of R
such that µ(I) ≤ 2. If I = Ra for some a ∈ R, then aI−1 = R and so I−1 is finitely
generated. Now, we suppose that I = Ra+Rb for some elements a, b ∈ R \ {0}.
One can see that I−1 = R 1

a
∩ R 1

b
. It follows that abI−1 = Ra ∩ Rb is S-finite,

and thus I−1 is S-finite. The converse is clear. □

Let R be a domain. Recall that an element x of R is called primal if x | ab
implies that x = rs, where r | a and s | b. Also, an element x of R is said to be a
completely primal if every factor of x is primal. According to [8], a domain R is
called a pre-Schreier domain if every element of R is primal.
Theorem 2.6. If R be a pre-Schreier S-finite conductor domain for some mul-
tiplicatively closed subset S of R, then R is an S-GCD domain. The converse is
true if S is generated by completely primal elements of R.
Proof. Let a, b ∈ R\{0}. Since R is an S-finite conductor domain, then there exist
s ∈ S and a finite subset {x1, . . . , xn} of R such that s(Ra∩Rb) ⊆ (x1, . . . , xn) ⊆
Ra ∩ Rb. Also, by [22, Theorem 1.1], there exists d ∈ Ra ∩ Rb such that d |xi

for each i = 1, . . . , n. It follows that s(Ra ∩ Rb) ⊆ Rd ⊆ Ra ∩ Rb, and hence R
is an S-GCD domain. The converse follows from Remark 2.2, [4, Theorem 4.2],
and [2, Theorem 2.2]. □
Proposition 2.7. Assume that R is an S-finite conductor ring for some multi-
plicatively closed subset S of R. Then RS is a finite conductor ring.
Proof. Let a

s
∈ RS. As t(0 : a) ⊆ (x1, . . . , xn) ⊆ (0 : a) for some t ∈ S and

{x1, . . . , xn} ⊆ R, an easy calculation reveals that {x1

1
, . . . , xn

1
} is a finite gen-

erating set for (0 : a
s
) as an ideal of RS. Now, we let b

t
, b

′

t′
∈ RS. Since R is an

S-finite conductor ring, there exist u ∈ S and a finite subset {x1, . . . , xn} ⊆ R
such that u(Rb∩Rb′) ⊆ (x1, . . . , xn) ⊆ Rb∩Rb′. One can prove that RS

b
t
∩RS

b′

t′

is generated by {x1

1
, . . . , xn

1
}, as needed. □

We next give an example of a domain R and a multiplicatively closed subset
S such that RS is a finite conductor domain, but R is not an S-finite conductor
domain.
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Example 2.8 ([2, Example 3.1]). Let A = Z(p) + YQ[[Y ]], where Z is the ring
of integers, p a prime number, Q the field of rational numbers, and Y an inde-
terminate over Q. Let S = {pn | n ∈ N}, and note that S is a multiplicatively
closed subset of A such that AS = Q[[Y ]]. Now, let R = A + XAS[[X]] =
Z(p) + YQ[[Y ]] + XQ[[X,Y ]]. So, RS = Q[[X,Y ]] is a GCD domain (so a finite
conductor domain). On the other hand, by [2, Example 3.1], R is a pre-Schreier
domain that is not an S-GCD domain, which gives that R is not an S-finite
conductor domain by Theorem 2.6.

Let P be a prime ideal of a ring R. If R is an (R \ P )-finite conductor ring,
then we say that R is a P -finite conductor ring.

Theorem 2.9. Let R be a ring. Then the following conditions are equivalent:
(1) R is a finite conductor ring.
(2) R is a P -finite conductor ring for each P ∈ Spec(R).
(3) R is an m-finite conductor ring for each m ∈ Max(R).

Proof. (1) ⇒ (2) It follows from Remark 2.2.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Assume that R is an m-finite conductor ring for all maximal ideals
m of R. Let a, b ∈ R. So, (0 : a) and Ra ∩ Rb are m-finite ideals for every
m ∈ Max(R). Hence, by the proof of [1, Proposition 12], (0 : a) and Ra∩Rb are
finitely generated ideals of R. Thus R is a finite conductor ring. □
Proposition 2.10. Let {Ri | 1 ≤ i ≤ n} be a finite family of rings and let Si be a
multiplicatively closed subset of Ri. Set R := R1×· · ·×Rn and S := S1×· · ·×Sn.
Then R is an S-finite conductor ring if and only if Ri is an Si-finite conductor
ring for each i = 1, . . . , n.
Proof. It suffices to prove the converse. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R.
Then (0 : a) = (0 : a1) × · · · × (0 : an) and Ra ∩ Rb = (R1a1 ∩ R1b1) × · · · ×
(Rnan∩Rnbn). As Ri is an Si-finite conductor ring for each i = 1, . . . , n, we must
have (0 : a) and Ra∩Rb are S-finite ideals of R. Thus R is an S-finite conductor
ring. □
Proposition 2.11. Let R be a ring and let S be a multiplicatively closed subset
of R. If R is an S-finite conductor ring, then RT is an ST -finite conductor ring
for every multiplicatively closed subset T of R.
Proof. Let T be a multiplicatively closed subset of R and let a, b ∈ RT . So, there
exist x, y ∈ R such that RTa = RTx and RT b = RTy. Since RT is a flat R-module,
then RTa ∩ RT b = RTx ∩ RTy = (Rx ∩ Ry)RT and (0 : a) = (0 : x)RT . As R is
an S-finite conductor ring, we conclude that RTa ∩RT b and (0 : a) are ST -finite
ideals of RT . Thus RT is an ST -finite conductor ring, as needed. □
Theorem 2.12. Let (R,m) be a local ring, let S be a multiplicatively closed
subset of R, and let M be an R-module such that mM = (0). Then R ∝ M is an
(S ∝ M)-finite conductor ring if and only if R is an S-finite conductor ring, m
is an S-finite ideal of R, and M is an S-finite R-module.
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Proof. Suppose that R ∝ M is an (S ∝ M)-finite conductor ring, and let a ∈ R.
Then (0 : (a, 0)) = (0 : a) ∝ N is an (S ∝ M)-finite ideal of R ∝ M , where
N := {m ∈ M | am = 0}. This implies that (0 : a) is an S-finite ideal of R.
Also, let a, b ∈ R. We will prove that Ra ∩ Rb is an S-finite ideal of R. This, in
turn, follows from the fact that (R ∝ M)(a, 0) ∩ (R ∝ M)(b, 0) = (Ra ∩Rb) ∝ 0
is an (S ∝ M)-finite ideal of R ∝ M . On the other hand, let 0 ̸= m ∈ M . So,
(0 : (0,m)) = m ∝ M is an (S ∝ M)-finite ideal of R ∝ M , which gives that m
is an S-finite ideal of R and that M is an S-finite R-module.

Conversely, let (a,m) ∈ R ∝ M . If a is invertible in R, then (a,m) is invertible
in R ∝ M . Then, without loss of generality, we may assume that a ∈ m. Hence
(0 : (a,m)) = {(b,m′) ∈ m ∝ M | ab = 0}. Moreover, we have (0 : (a,m)) =
m ∝ M if a = 0 and (0 : (a,m)) = (0 : a) ∝ M if a ̸= 0. In the both cases, we
conclude that (0 : (a,m)) is an S-finite ideal. Now, let (a,m), (b,m′) ∈ R ∝ M ,
where a, b ∈ m, and set J = (R ∝ M)(a,m) ∩ (R ∝ M)(b,m′). Assume that
J ⫋ (R ∝ M)(a,m) and J ⫋ (R ∝ M)(b,m′). Let (c, f) ∈ J . So, there are
(a1, e1), (b1, f1) ∈ m ∝ M such that (c, f) = (a1, e1)(a,m) = (b1, f1)(b,m

′). Hence
(c, f) = (a1a, 0) = (b1b, 0). It follows that J = (Ra ∝ 0)∩(Rb ∝ 0) = (Ra∩Rb) ∝
0 is an (S ∝ M)-finite ideal of R ∝ M . Thus R ∝ M is an (S ∝ M)-finite
conductor ring. □

Next, we explore a different context, namely, the trivial ring extension of a
domain by its quotient field.

Proposition 2.13. Let R be a domain that is not a field and let K = Q(R).
Then R ∝ K is never an (S ∝ K)-finite conductor ring for every multiplicatively
closed subset S of R.

Proof. The result follows from (0 : (0, x)) = 0 ∝ K is not an (S ∝ K)-finite ideal
for each x ∈ K \ {0}. □

Let A and B be two rings, let J be an ideal of B, and let f : A → B be a ring
homomorphism. In this setting, we can consider the following subring of A×B:

A ▷◁f B = {(a, f(a) + j) | a ∈ A and j ∈ J},

called the amalgamation of A with B along J with respect to f . This construction
has been first introduced and studied by D’Anna, Finocchiaro, and Fontana [9,
10, 13]. In particular, if I is an ideal of A and idA : A → A is the identity
homomorphism on A, then A ▷◁ I = A ▷◁idA I = {(a, a+ i) | a ∈ R and i ∈ I} is
the amalgamated duplication of A along J (introduced and studied by D’Anna
and Fontana in [11]).

Theorem 2.14. Let (A,m) be a local ring, let f : A → B be a ring homomor-
phism, let S be a multiplicatively closed subset of A such that S ∩ker(f) = ∅, and
let J be a proper ideal of B. Let R = A ▷◁f J and let S ′ = {(s, f(s)) | s ∈ S}.

(1) If R is an S ′-finite conductor ring, then A is an S-finite conductor ring.
(2) Assume that f(m)J = (0), in which J ⊆ Rad(B), the Jacobson radical of

B. Then the following assertions are equivalent:
(a) A ▷◁f J is an S ′-finite conductor ring.
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(b) A is an S-finite conductor ring, m and ma∩mb are S-finite ideals of
A for all a, b ∈ m, and J , Jk ∩ Jl, and (0 : k) ∩ J are f(S)-finite of
f(A) + J for all k, l ∈ J .

(c) m, (0 : a), and ma ∩mb are S-finite ideals of A for all a, b ∈ m, and
J , Jk ∩ Jl, and (0 : k) ∩ J are f(S)-finite ideals of f(A) + J for all
k, l ∈ J .

In order to prove the theorem, we start by giving some lemmas that prepares
the way.

Lemma 2.15. Let f : A −→ B be a ring homomorphism, let S be a multiplica-
tively closed subset of A, and let J be an ideal of B. Let I and K be two ideals
of A and B, respectively, such that K ⊆ J .

(1) Assume that f(I)J ⊆ K. If I is an S-finite ideal of A and K is an
f(S)-finite ideal of f(A)+J , then I ▷◁f K is an S ′-finite ideal of A ▷◁f J .

(2) Assume that (A,m) is a local ring such that f(m)J = (0). Then I ▷◁f K
is an S ′-finite ideal of A ▷◁f J if and only if I is an S-finite ideal of A
and K is an f(S)-finite ideal of f(A) + J .

Proof. (1) Since I is an S-finite ideal of A, there exist s1 ∈ S and a1, . . . , an ∈ I
such that sI ⊆ (a1, . . . , an) ⊆ I. Since K is an f(S)-finite ideal of f(A)+J , there
exist s2 ∈ S and k1, . . . , km ∈ K such that f(s2)K ⊆ (k1, . . . , km)f(A) + J ⊆ K.
Put s = s1s2. Then for each a ∈ I, there exist α1, . . . , αn ∈ A such that sa =∑n

i=1 αiai, and for each k ∈ K, we can find β1, . . . , βm ∈ A and l1, . . . , lm ∈ J
such that f(s)k =

∑m
j=1(f(βj) + lj)kj. Hence for each (a, f(a) + k) ∈ I ▷◁f K,

we have

(s, f(s))(a, f(a) + k) = (sa, f(sa) + f(s)k)

= (
n∑

i=1

αiai,
n∑

i=1

f(αi)f(ai) +
m∑
j=1

(f(βj) + lj)kj)

=
n∑

i=1

(αi, f(αi))(ai, f(ai)) +
m∑
j=1

(βj, f(βj) + lj)(0, kj)

∈
n∑

i=1

(A ▷◁f J)(ai, f(ai)) +
m∑
j=1

(A ▷◁f J)(0, kj).

Therefore we obtain

(s, f(s))I ▷◁f K ⊆ ({((ai, f(ai)), (0, kj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}) ⊆ I ▷◁f K,

which implies that I ▷◁f K is S ′-finite.
(2) By (1) it remains to show that if I ▷◁f J is S ′-finite, then I (resp., K)

is S-finite (resp., f(S)-finite) ideal of A (resp., f(A) + J). Since I ▷◁f J is S ′-
finite, then there exist s ∈ S and (a1, f(a1) + j1), . . . , (an, f(an) + jn) such that
(s, f(s))I ▷◁f K ⊆ ((a1, f(a1) + k1), . . . , (an, f(an) + kn)) ⊆ I ▷◁f K. We get
easily that sI ⊆ (a1, . . . , an) ⊆ I. Let k ∈ K. Then (0, k) ∈ I ▷◁f K. So there
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exist (α1, f(α1) + l1), . . . , (αn, f(αn) + ln) ∈ A ▷◁f J such that

(s, f(s))(0, k) =
n∑

i=1

(αi, f(αi) + li)(ai, f(ai) + ki)

=

n∑
i=1

(αiai, f(αi)f(ai) + f(ai)li + (f(αi) + li)ki.

So, f(s)k =
∑n

i=1(f(αi)+li)ki since ai ∈ m for each i = 1, . . . , n and f(m)J = (0).
Therefore f(s)k ∈

∑n
i=1(f(A) + J)ki, as desired. □

Lemma 2.16. Let f : A −→ B be a ring homomorphism, let S be a multi-
plicatively closed subset of A, let J be a proper ideal of B, and let a, b ∈ A. If
A ▷◁f J(a, f(a)) ∩ A ▷◁f J(b, f(b)) is an S ′-finite ideal of A ▷◁f J , then Aa ∩ Ab
is an S-finite ideal of A.
Proof. Assume that A ▷◁f J(a, f(a))∩A ▷◁f J(b, f(b)) is an S ′-finite ideal of A ▷◁f

J . Then there exist s ∈ S and (a1, f(a1)+k1), . . . , (an, f(an)+kn) ∈ A ▷◁f J such
that (s, f(s))A ▷◁f J(a, f(a))∩A ▷◁f J(b, f(b)) ⊆ ((a1, f(a1)+k1), . . . , (an, f(an)+
kn)) ⊆ A ▷◁f J(a, f(a)) ∩ A ▷◁f J(b, f(b)). Let x ∈ Aa ∩ Ab. Then x =
αa = βb, where α, β ∈ A. So (s, f(s))(x, f(x)) = (s, f(s))(α, f(α))(a, f(a)) ∈
(s, f(s))A ▷◁f J(a, f(a)). Also, we have

(s, f(s))(x, f(x)) = (s, f(s))(β, f(β))(b, f(b)) ∈ (s, f(s))A ▷◁f J(b, f(b)).

Hence (s, f(s))(x, f(x)) ∈ (s, f(s))A ▷◁f J(a, f(a))∩A ▷◁f J(b, f(b)). So (s, f(s))
(x, f(x)) ∈

∑n
i=1A ▷◁f J(ai, f(ai) + ki). Thus, we get easily that sx ∈

∑n
i=1 Aai.

Hence, we obtain s(Aa ∩Ab) ⊆ (a1, . . . , an) ⊆ Aa ∩Ab, which says that Aa ∩Ab
is an S-finite ideal of A. □

It was shown that if (A,m) is a local ring, f : A → B is a ring homomorphism,
and J an ideal of B such that J ⊆ Rad(B), then U(A ▷◁f J) = (A \ m) ▷◁f J
(see [18, Lemma 2.5]).
Lemma 2.17. Let (A,m) be a local ring, let S be a multiplicatively closed subset
of A, let f : A −→ B be a ring homomorphism, and let J be a proper ideal of B.

(1) If (0 : c) is an S ′-finite of A ▷◁f J for each c ∈ A ▷◁f J , then (0 : a) is an
S-finite ideal of A for each a ∈ A.

(2) Assume that J ⊂ Rad(B) and that f(m)J = (0). Then (0 : c) is an S ′-
finite ideal of A ▷◁f J for each c ∈ A ▷◁f J if and only if m and (0 : a) are
S-finite ideals of A for each a ∈ A, and J and (0 : k) ∩ J are f(S)-finite
ideals of f(A) + J for each k ∈ J .

Proof. (1) Assume that (0 : c) is an S ′-finite ideal of A ▷◁f J . Let a ∈ A. First,
assume that a /∈ m. We get (0 : a) = 0. Then there is nothing to prove, so
assume that a ∈ m. Set c = (a, f(a)) ∈ A ▷◁f J . We can easily show that
(0 : c) = (0 : a) ▷◁f ((0 : f(a)) ∩ J). So, by Lemma 2.15(1), (0 : a) is an S-finite
ideal of A.
(2) Assume that (0 : c) is an S ′-finite ideal of A ▷◁f J . By (1), (0 : a) is S-finite
for a ∈ A. Let k ∈ J , and set c = (0 : k) ∈ A ▷◁f J . We verify easily that
(0 : c) = m ▷◁f ((0 : k) ∩ J). So m is an S-finite ideal of A and (0 : k) ∩ J
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is an f(S)-finite ideal of f(A) + J by Lemma 2.15(2). Also, let a ∈ A. Set
c1 = ((a, f(a)) ∈ A ▷◁f J . Clearly (0 : c1) = (0 : a) ▷◁f J . So J is an f(S)-finite of
f(A) + J by Lemma 2.15(2). Conversely, let (0, 0) ̸= c = (a, f(a) + j) ∈ A ▷◁f J .
Without loss of generality, we may assume that a ∈ m. Three cases are then
possible:
Case 1: If a = 0, then (0 : c) = m ▷◁f ((0 : j) ∩ J) is an S ′-finite since m is
S-finite and (0 : j) ∩ J is an f(S)-finite ideal of f(A) + J (see Lemma 2.15).
Case 2: If j = 0, then (0 : c) = (0 : a) ▷◁f J is an S ′-finite ideal of A ▷◁f J
since (0 : a) is an S-finite ideal of A and J is an f(S)-finite ideal of f(A)+J (see
Lemma 2.15).
Case 3: Assume that a ̸= 0 and j ̸= 0. Then we get easily that (0 : c) = (0 :
a) ▷◁f ((0 : j) ∩ J) is an S ′-finite ideal of A ▷◁f J since (0 : a) is an S-finite
ideal of A and (0 : j) ∩ J is an f(S)-finite ideal of f(A) + J by Lemma 2.15, as
desired. □

Proof of Theorem 2.14 . (1) Assume that R is an S ′-finite conductor ring. We
will prove that A is an S-finite conductor ring. This, in turn, follows immediately
from Lemmas 2.16 and 2.17 (1).
(2) (a) ⇒ (b) By (1), A is an S-finite conductor ring. Let a, b ∈ A and let k, l ∈ J .
By [18, Lemma 2.6 (1)], A ▷◁f J(a, f(a)+k)∩A ▷◁f J(b, f(b)+ l) = (ma∩mb) ▷◁f

(Jk ∩ Jl). Then the result follows immediately from Lemmas 2.15(2) and 2.17.
(b) ⇒ (c) Clear.
(c) ⇒ (a) This follows immediately from Lemmas 2.15(2) and 2.17 and the fact
that (A ▷◁f J)(a, f(a) + k) ∩ (A ▷◁f J)(b, f(b) + l) = (ma ∩mb) ▷◁f (Jk ∩ Jl) for
each a, b ∈ A and k, l ∈ J . □

Applying Theorem 2.14 to the case when S consists of units elements, we can
recover the first two assertions of [18, Theorem 2.1].

Corollary 2.18. Let (A,m) be a local ring, let f : A −→ B be a ring homomor-
phism, and let J be a proper ideal of B.

(1) If A ▷◁f J is a finite conductor ring, then so is A.
(2) Assume that f(m)J = (0) and J ⊆ Rad(B). Then the following conditions

are equivalent:
(a) A ▷◁f J is a finite conductor ring.
(b) A is a finite conductor ring, m and ma ∩ mb are finitely generated

ideals of A for all a, b ∈ m, and J , Jk∩Jl and (0 : k)∩J are finitely
generated ideals of f(A) + J for all k, l ∈ J .

(c) m, (0 : a), and ma ∩ mb are finitely generated ideals of A for all
a, b ∈ m, and J , Jk ∩ Jl, and (0 : k) ∩ J are finitely generated ideals
of f(A) + J for all k, l ∈ J .

Note that if S is a multiplicatively closed subset of A, then the set T =
{(s, s)| s ∈ S} is a multiplicatively closed subset of A ▷◁ I. As a consequence
of Theorem 2.14, we have the following corollary.

Corollary 2.19. Let (A,m) be a local ring and let I be a proper ideal of A.
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(1) If A ▷◁ I is a T -finite conductor ring, then A is an S-finite conductor
ring.

(2) Assume that mI = (0). Then the following assertions are equivalent:
(a) A ▷◁ I is a T -finite conductor ring.
(b) A is an S-finite conductor ring, m, I, and ma∩mb are S-finite ideals

of A.
(c) m, I, (0 : a), and ma ∩mb are S-finite ideals of A for all a, b ∈ m.
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