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ITERATED FUNCTION SYSTEMS OVER ARBITRARY SHIFT
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Abstract. The orbit of a point x ∈ X in a classical iterated function system
(IFS) can be defined as {fu(x) = fun

◦ · · · ◦ fu1
(x) : u = u1 · · ·un is a word of a

full shift Σ on finite symbols and fui
is a continuous self map on X}. One also

can associate to σ = σ1σ2 · · · ∈ Σ a non-autonomous system (X, fσ), where
the trajectory of x ∈ X is defined as x, fσ1

(x), fσ1σ2
(x), . . .. Here instead of

the full shift, we consider an arbitrary shift space Σ. Then we investigate basic
properties related to this IFS and the associated non-autonomous systems. In
particular, we look for sufficient conditions that guarantee that in a transitive
IFS one may have a transitive (X, fσ) for some σ ∈ Σ and how abundance are
such σ’s.

1. Introduction

In a classical dynamical system, here called a conventional dynamical system,
we have a phase space and a unique map where the trajectories of points are
obtained by iterating this map. However, in various problems, including applied
ones, one may have some finite sequences of maps in place of a single map acting
on the same phase space. As an example, let X be the space of a mixture of
some materials that are supposed to be mixed by the application of two robotic
arms r0 and r1 and only one of them at each unit of time. Due to some technical
considerations, two r1 cannot be applied in a row, though this consideration is not
in place for r0. Thus the application of these arms and hence the dynamics of the
system are bound to the golden subshift, that is, the subshift whose forbidden
set is {11}. In fact, there are many natural processes whose evolution evolves
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with discrete time and are involved with two or more interactions. For instance,
two or more maps have appeared in Physics [2, 18], in Economy [21], and in
Biology [7]. In Mathematics, this has been studied either by non-autonomous
systems in literature, such as [14] or as iterated function system (IFS). In fact,
IFS was first discovered by Hutchinson in 1981 [12], who was able to obtain
some fancy fractal sets by some finite continuous and contracting maps where
images of those fractals generated by a computer are now a source of motivation
for popularizing Mathematics among the general audience. Later, IFS appeared
in many studies [3, 4, 9–11, 20] where they addressed some internal dynamical
problems.

What we call here the “classical” IFS, is a general dynamical system, that
is, the action of a semigroup on a compact metric space X arising from free
combinations of some k continuous maps {f0, . . . , fk−1} on X [9,20]. In fact, the
semigroup is the set of words in the full shift Σk, either one-sided or two-sided
on k symbols, and its operation is defined by concatenating any two words. We
write fu = fun ◦ · · · ◦fu1 , where u = u1 · · ·un is a word in Σk. Hence no limitation
is applied as in our aforesaid example on the robotic arms when their words were
forbidden to have 11 as a subword. In this paper, we apply some limitations on
the classical IFS by replacing the full shift Σk with a subshift Σ ⊆ Σk, and we
call it just IFS versus the classical IFS when Σ = Σk. Thus one may look at X
as a phase space, and the subshift Σ as a parameter space showing how the maps
must be combined.

A summary of the results in this paper is as follows. In Section 2, we
formalize the definitions and notations. Section 3 is mainly devoted to the def-
initions of transitivity in IFS and the relation between them. In particular, we
show that when the shift space is sofic, topological transitivity in the constituent
IFS implies the point transitivity along a transitive orbit in the shift space; a
fact which is not necessarily satisfied for nonsofics. In Section 4, we like to see
how large the set S = {σ ∈ Σ : ∃x ∈ X, Oσ(x) = X} can be. In Section 5,
mixing and exactness of an IFS versus those properties along orbits through some
examples, have been considered.

2. Preliminaries

2.1. Symbolic dynamics. A brief recall of the symbolic dynamics is given here.
Notations and main ideas are borrowed from [16], and the proofs of the claims
can be found there. Let A be a nonempty finite set and let Σ|A| = AZ (resp. AN)
be the collection of all bi-infinite (resp. right-infinite) sequences of symbols from
A. The map τ : Σ|A| → Σ|A| defined by τ(σ)i = σi+1 is called the shift map, and
the pair (Σ|A|, τ) is the full shift on k symbols. Any closed invariant subset Σ of
Σ|A| is called a subshift or a shift space. A word or block over A is a finite sequence
of symbols from A. Denote by Ln(Σ) the set of all admissible n-words and call
L(Σ) :=

⋃∞
n=0 Ln(Σ) the language of Σ. For u ∈ Lk(Σ), let the cylinder ℓ[u]ℓ+k−1

=ℓ [uℓ · · ·uℓ+k−1]ℓ+k−1 be the set {σ = · · ·σ−1σ0σ1 · · · ∈ Σ : σℓ · · ·σℓ+k−1 = u}. If
ℓ = 0, then we drop the subscripts and we just write [u].
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A shift space Σ is irreducible if for every ordered pair of words u, v ∈ L(Σ),
there is a word w ∈ L(Σ) such that uwv ∈ L(Σ). A point σ ∈ Σ is transitive if
every word in Σ appears in σ infinitely many often. A subshift Σ is irreducible if
and only if Σ has a transitive point.

Shift spaces described by a finite set of forbidden blocks are called shifts of
finite type (SFT) and their factors are called sofic. A word w ∈ L(Σ) is called
synchronizing if uwv ∈ L(Σ) whenever uw,wv ∈ L(Σ). A synchronized system is
an irreducible shift which has a synchronizing word. Any sofic is synchronized.

A subshift Σ is specified or has the specification property, if there is N ∈ N such
that if u, v ∈ L(Σ), then there is w of length N such that uwv ∈ L(Σ). A specified
system is mixing and synchronized, and any mixing sofic is specified. A coded
system is the closure of the set of sequences obtained by freely concatenating the
words in a list of words. In particular, any synchronized system is coded.

All synchronized systems have an (edge) labeled graph presentation called
cover. These are directed graphs whose edges are with assigned labels from A
and infinite walk on the graph and recording the labels will represent a point in
the subshift. The set of all such points is dense in the subshift.

2.2. Iterated function systems. Throughout the paper, X will be a compact
metric space. The classical iterated function system (IFS) consists of finitely
many continuous self maps F = {f0, . . . , fk−1} on X. The forward orbit of
a point x ∈ X, denoted by O+(x), is the set of all values of finite possible
combinations of fi’s at x. We need the following equivalent statement: Let Σ|F|
be the full shift on k symbols and let L(Σ|F|) called the language of Σ|F| be the
set of words or blocks. Define fu(x) : X → X by

fun ◦ · · · ◦ fu1(x), u = u1 · · ·un ∈ L(Σ|F|). (2.1)

Then O+(x) = {fu(x) : u ∈ L(Σ|F|)}. Such iterated function systems, here
called classical IFS, have been the subject of study for quite a long time.

Here we define an IFS to be

I = (X, F = {f0, . . . , fk−1} , Σ). (2.2)

where each fi is continuous and Σ is an arbitrary subshift on k symbols, not
necessarily the full shift Σ|F| as in the classical IFS. By this setting, Σ|F| above will
be replaced with Σ, and thus O+(x) = {fu(x) : u ∈ L(Σ)} is the forward orbit
of x. In particular, fu(fv(x)) = fvu(x) whenever vu is admissible or equivalently
vu ∈ L(Σ). Let u = u1 · · ·un ∈ L(Σ), and set u−1 := un · · ·u1. Then for A ⊆ X,

(fu)
−1(A) = (fun ◦ · · · ◦ fu1)

−1(A)

= f−1
u1

◦ · · · ◦ f−1
un

(A)

= f−1
u−1(A),

where for the last equality, we used (2.1). Also,

f−1
u−1(f

−1
v−1(A)) = f−1

v−1u−1(A) = f−1
(uv)−1(A)

= (fuv)
−1 (A).
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Thus the backward orbit and the (full) orbit of a point x ∈ X are O−(x) =
{f−1

u−1(x) : u ∈ L(Σ)} and O(x) = O+
−(x) = O+(x) ∪ O−(x), respectively.

When all fi’s are homeomorphisms, the backward, forward, and full trajectory
of x are defined.

We say F = {f0, . . . , fk−1} is surjective, injective, and homeomorphism if all
fi’s in F are so.

When k = 1 and Σ = {0∞}, we simply have the classical dynamical system,
here called conventional dynamical system denoted either by the pair (X, f) or
I = (X, {f0}, {0∞}).

3. Transitivity

Two sorts of transitivity are very common in the study of topological dynamical
systems: topological transitivity and point transitivity. These two concepts are
the same for surjective conventional dynamical systems on the compact metric
spaces such as subshifts but not for IFS’s and non-autonomous dynamical sys-
tems. Hence we say it a transitive point in Σ, but will emphasize point transitivity
or topological transitivity in other places.

Definition 3.1. Consider I as in (2.2) and let U and V be arbitrary open sets
in X. Then I is

(1) “forward” point transitive, if there is x ∈ X such that {fu(x) : u ∈ L(Σ)}
is dense in X. We drop “forward” when it is clear from the context.
Backward point transitivity is likewise defined.

(2) topological transitive, if there is u ∈ Ln(Σ) such that fu(U) ∩ V ̸= ∅.
(3) mixing, if there is M = M(U, V ) ∈ N such that for n ≥ M , there is

u ∈ Ln(Σ) such that fu(U) ∩ V ̸= ∅.
(4) exact, if there is u(U) ∈ L(Σ) such that for any uu′ ∈ L(Σ), fuu′(U) = X.

We have the following implications in any IFS:

exactness ⇒ mixing ⇒ topological transitivity ⇒ point transitivity. (3.1)

The first two implications follow from the definition and the last from the next
proposition. Also, since conventional dynamical systems are IFS, they provide
examples that the first two implications are not reversible.

Proposition 3.2. Let I = (X, F , Σ) be an IFS. If for arbitrary nonempty open
sets U, V , there is u ∈ L(Σ) such that (fu)

−1(U) ∩ V ̸= ∅, then I is point
transitive.

Proof. Let B = {Un : n ∈ N} be a countable base for X. Fix n ∈ N and set

Gn := ∪u∈L(Σ)(fu)
−1(Un). (3.2)

By the assumption for an arbitrary open set V , Gn ∩ V ̸= ∅ and so the open set
Gn is dense. As a result, ∩n∈NGn is residual. Hence for x ∈ ∩n∈NGn and any
n ∈ N, there is u ∈ L(Σ) such that x ∈ (fu)

−1(Un). This means fu(x) ∈ Un and
so x is a transitive point. □
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Figure 1. Nodes represent the points in X. The farthest node on
the right is 1, the second 1

2
and so on.

In the above proposition, we did not assume that our IFS is surjective; though
unlike a surjective conventional dynamical system, even applying surjectivity, the
last implication in (3.1) is not reversible. This fact was noted (for classical IFS)
in some literature [15, 17]; however, we did not find any proof, so we bring our
own.
Proposition 3.3. In a surjective IFS, topological and point transitivity are not
equivalent.
Proof. We construct an example of a classical IFS which is point transitive but
not topological transitive.

Let I = (X, {f0, f1, f2}, Σ3), where X = {1/n : n ∈ N}∪{0} ⊂ R is equipped
with the subspace topology.

Our maps are defined as follows (see Figure 1). For all i, fi(0) = 0 and
fi(1) = 1.

f0(
1

n+ 1
) =

1

n
, n ≥ 1,

f1(
1

2n+ 1
) =

1

2n
, n ≥ 1,

f1(
1

2n
) =

1

2n+ 1
, n ≥ 1 and f1(

1

2
) =

1

3
.

Also, f2(14) =
1
2
, f2(12) =

1
3

and

f2(
1

2n+ 1
) =

1

2n+ 2
, n ≥ 1,

f2(
1

2n+ 2
) =

1

2n+ 1
, n ≥ 2.

All maps are continuous, open, and surjective. Both f1 and f2 are homeomor-
phisms, but f0 is not injective: f0(

1
2
) = f0(1) = 1.

Observe that any point x = 1
n
, n ≥ 2 is transitive. However, the system is not

topological transitive. Because, for any u, fu({1}) ∩ {1
2
} = ∅. □

It is worth mentioning that if F was homeomorphism in Definition 3.1, then
topological and point transitivity were equivalent [6].
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3.1. Dynamics along an orbit as a non-autonomous dynamical system.
Let X be a topological space and let fn : X → X be a continuous map for n ∈ N.
Then the sequence {fn}∞1 denoted by f1,∞ defines a non-autonomous discrete
dynamical system (X, f1,∞) [14]. In an IFS, dynamics along a σ also defines a
non-autonomous system, which we show it by (X, fσ) or fσ := {fσi

}∞i=1 (resp.
fσ := {fσi

}+∞
i=−∞) when Σ is one-sided (resp. two-sided). If Σ is over a finite

alphabet, then clearly fσ is defined only by finitely many different fi’s.
Let σ = σ1σ2 · · · ∈ Σ. Then the sequence x, fσ1(x), fσ1σ2(x), . . . is the trajec-

tory of x along σ, and O+
σ (x) the set of points in this trajectory is the (forward)

orbit of x along σ. The backward orbit and backward trajectory may be defined
similarly for the case where Σ is a two-sided subshift. Hence one may say that
I = (X, F , Σ|F|) has property P along σ ∈ Σ if the respective non-autonomous
system (X, fσ) has property P . By this convention, the following definition may
sound abundance, though we bring it for the sake of completeness.

Definition 3.4. Let I = (X, F , Σ|F|) be an IFS and let U and V be arbitrary
non-empty open sets in X. Then I is called

(1) forward point transitive along an orbit σ ∈ Σ, if there is a point x ∈ X,
called the transitive point, such that O+

σ (x) = X.
(2) topological transitive along an orbit σ ∈ Σ, if there is n ∈ N such that

fσ1···σn(U) ∩ V ̸= ∅.
(3) mixing (resp. exact) along an orbit σ ∈ Σ, if there is N ∈ N such that for

n ≥ N , fσ1···σn(U) ∩ V ̸= ∅ (resp. fσ1···σn(U) = X).
Note that if one of the properties given in the above definition holds along

some σ ∈ Σ for an IFS, then the IFS posses that property as well. However, the
converse is not true. For instance, the example given in Proposition 3.3 is point
transitive but not point transitive along any orbit.

Similar implications as in (3.1) hold here as well. So we have the following
result.

Proposition 3.5 ([19, Proposition 4.6]). If an IFS has topological transitivity
along σ, then it is point transitive along σ.

Proof. The proof is similar to the proof of Proposition 3.2 by replacing (3.2) with
Gn = ∪ℓ∈N(fσ1σ2···σℓ

)−1(Un) and applying the same reasoning. □

The converse of the above proposition is not necessarily true as the next exam-
ple shows. This example also shows that point transitivity along an orbit does
not imply that the transitive points in X are residual along that orbit.

Example 3.6. Let X = [0, 1] and let I = (X, {f0, f1}, Σ|F|), where

f0(x) =


2x, 0 ≤ x ≤ 1

2
,

1
1

2
≤ x ≤ 1,

and f1(x) =


0, 0 ≤ x ≤ 1

2
,

2x− 1,
1

2
≤ x ≤ 1.
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Also let f : [0, 1] → [0, 1] be defined as f(x) = 2x mod 1, that is,

f(x) =


f0(x), 0 ≤ x ≤ 1

2
,

f1(x),
1

2
≤ x ≤ 1.

Let z ∈ (0, 1/2) be a transitive point of f and set σ := σ1σ2 · · · ∈ Σ|F|, where
σ1 = 0 and for i > 1, σi = 0 (resp. σi = 1) whenever fσ1···σi−1

(z) ∈ (0, 1/2) (resp.
fσ1···σi−1

(z) ∈ (1/2, 1)). By this settings, z is a transitive point and so the non-
autonomous system ([0, 1], fσ) is point transitive, but not topological transitive.
Because for U = (1/2, 1), V = (0, 1/2) and for any n ∈ N, fσ1···σn(U) ∩ V = ∅.

3.2. Transitivity in IFS vs transitivity in the subshift. In general, there
is no meaningful relation between the dynamical properties of (Σ, τ) and that of
I. For instance, consider I = (X, F , Σ), where X = [0, 1] and F = {f0(x) ≡
0, f1(x) = 2x mod 1}. Let Σ be the golden mean shift; that is, a subshift of
Σ2 = {0, 1}N whose forbidden set is {11}. Then, Σ has rich dynamical properties;
however, this is not true for I. The situation is different when our maps in F are
surjective and Σ has some certain properties.

In this section, we like to address the following questions.
(1) Does transitivities given in Definition 3.1 imply some sort of transitivity

given in Definition 3.4?
(2) If the answer to the above question is affirmative, in which situation there

is a transitive t ∈ Σ such that for some x ∈ X, O+
t (x) = X?

The following example shows, as one expects, that transitivity depends on the
subshift.

Example 3.7. Let I = (X, F , Σ), where Σ is an SFT generated by W =
{01, 10} and f0 is the shift map on the two-sided full shift X = {0, 1}Z and
f1 = f−1

0 . Clearly this system is not point transitive. Moreover, if W =−1[000]1
and V =−1[111]1 are two open central cylinders in X and if w is any word in Σ,
then f−1

w W ∩ V = ∅ and so I is not topological transitive either. However, if Σ
were generated by W ∪ {0}, then the constituent IFS was both topological and
point transitive, showing that transitivity depends on our subshift.

Later the sets X and F = {f0, f1} introduced in the following example will be
used in several occasions such as Examples 3.13 and 4.6 and Proposition 4.5.

Example 3.8. Let {xn}n∈Z be an increasing sequence (xn+1 > xn) in [0, 1] such
that limn→+∞ xn = 1 and limn→−∞ xn = 0. Let X be the set of points of this
sequence together with 0 and 1 and equip X with the subset topology of [0, 1].

(1) Let I1 = (X, {f0}, {0Z}) be the conventional dynamical system, where

f0(x) =

{
x if x ∈ {0, 1},
xn+1 if x = xn.

(3.3)

This system is point transitive but not forward point transitive. In fact,
any point in X \ {0, 1} is a transitive point and 0 and 1 are fixed points.
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(2) Let I2 = (X, {f0, f1}, Σ) and let f0 be as in (3.3) but f1 be defined as

f1(x) =

{
x if x ∈ {0, 1},
xn−1 if x = xn.

(3.4)

Also, let Σ ⊆ {0, 1}N0 be generated by W = {w0, w1, w3, . . .} so that
there are two words in W , say w0 and w1 such that |w0| = |w1| and
0w0

|w0| =
1w1

|w1| >
1
2
, where iwj

is the number of i’s appearing in wj. We show
that I2 is point transitive along some orbits. To see this, let

σ0 = w0w1w1w0w0w0w1w1w1w1 · · ·wn
0w

n+1
1 wn+2

0 wn+3
1 · · · (3.5)

and let x ∈ X\{0, 1}. Then, O+
σ0(x) = X. One example is when Σ = Σ|F|

and W = {w0 = 0, w1 = 1}, where 0w0

|w0| =
1w1

|w1| = 1.

Now we set up to show that when Σ is an irreducible sofic, functions are semi-
open, that is, the interior of image of any open set is nonempty, and when the
respective IFS is topological transitive, then for some transitive t ∈ Σ, one has
point transitivity along t. This will give an answer to questions 1 and 2 on the
beginning of this section for special cases where Σ is an irreducible sofic. First,
we recall a classical result.

Lemma 3.9 (Boyle [5]). Let Σ and Σ′ be irreducible SFT with h(Σ) > h(Σ′).
Then, there is a factor code from Σ onto Σ′ if and only if P (Σ) ↘ P (Σ′).

Proposition 3.10. Let I = (X, F , Σ) be a surjective and topological transitive
IFS and maps in F semi-open. Also let Σ be an irreducible sofic. Then there is
a forward transitive t ∈ Σ such that the non-autonomous system (X, ft) is point
transitive.

Proof. Let A = {0, . . . , k− 1} be the set of characters of Σ. If Σ does not have a
fixed point, then replace A with A′ = A∪{k} and replace F with {f0, . . . , fk−1}∪
{fk}, where fk is the identity map, and set Σ′ to be the corresponding subshift
whose set of forbidden set is the same as Σ. Observe that kN0 is a fixed point
of Σ′. If t′ ∈ Σ′ is a transitive point, then t obtained from t′ by forgetting the
entries whose value is k is transitive in Σ. Thus without loss of generality, we
may assume that Σ has a fixed point.

So let I be topological transitive, and set I′ := (X, F , Σ|F|), and let B :=
{Wm : m ∈ N} be a base for the topology on X. First we construct a transitive
point t ∈ Σ|F| such that O+

t (x) = X.
Let Um be an open set such that Um ⊆ Wm. Pick v1 ∈ L(Σ|F|) such that

fv1(U1)∩U2 ̸= ∅, and consider fv1v′1 , where v′1 is the concatenation of all characters
or words of length 1. Then by the fact that fi’s are semi-open and that our
system is topological transitive, there is v2 such that fv1v′1v2(U1) ∩ U3 ̸= ∅. By
the same reasoning and induction argument, there is vk such that for uk :=
v1v

′
1v2 · · · viv′ivi+1 · · · vk−1v

′
k−1vk, we have

fuk
(U1) ∩ Uk+1 ̸= ∅. (3.6)
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Here v′i is the concatenation of all words of length i. Let Ck = U1∩ (fuk
)−1(Uk+1)

be the compact set in W1, and note that Ck+1 ⊆ Ck; in particular, ∩kCk is a
nonempty compact set in W1. Thus if x ∈ ∩kCk, then fuk

(x) ∈ Wk. This means
that our system is point transitive along the transitive t = v1v

′
1v2 · · · ∈ Σ|F|. So

the problem is set when Σ is a full shift.
Now, let Σ be SFT and recall that we are assuming that it has a fixed point.

This means P (Σ|F|) ↘ P (Σ), and so by Lemma 3.9, there is a factor code ϕ
from Σ|F| onto Σ. In particular, there exists a transitive point ϕ(t) ∈ Σ with
O+

ϕ(t)(x) = X. It remains to prove the case when Σ is sofic. Indeed, any sofic is a
factor of an SFT and transitivity is preserved by factor codes and take this factor
code to be a 1-block factor code. By an argument as above, we may extend this
SFT to have a fixed point and the new character, if any, will map to a new added
character in character set of Σ by the block factor map whose associated map in
I is identity. As a result, a transitive t ∈ Σ and x ∈ X exist as required. □

In the above proposition, the same conclusion holds if we are sure that for any k,
there is uk such that as in (3.6), then the intersection has a nonempty interior. In
fact, we conjecture that this is the case, that is, if IFS is topological transitive, F
surjective, then for any nonempty open sets U and V , there is u ∈ Σ|F| such that
fu(U) ∩ V has nonempty interior. In that case, we do not require semi-openness
in the hypothesis.

Next we bring examples showing that none of the other conditions on the
hypothesis of the above proposition can be ignored.

Example 3.11. The alphabet defining our subshift in the above proposition was
finite; the conclusion is not valid for an infinite case. Authors in [17, Example
2.1] claimed that in that situation, even when the subshift is a full shift, the
topological transitivity does not imply topological transitivity along any orbit.

Example 3.12. The topological transitivity of the IFS in Proposition 3.10 cannot
be replaced with point transitivity. For instance, the system given in Proposi-
tion 3.3 had all the conditions on the hypothesis of the proposition (subshift was
the full shift, and so sofic and all maps were open) except topological transitiv-
ity. There we had point transitivity of the IFS, but yet we did not have point
transitivity along any orbit.

Now we show that the sofic property cannot be omitted in the hypothesis of the
above proposition. Moreover, this example shows that, in general, the topological
transitivity of an IFS does not necessarily imply the point transitivity along any
σ ∈ Σ.

Example 3.13. Let f0 and f1 be homeomorphisms defined in Example 3.8, and
let I = (X, {f0, f1}, Σ), where Σ ⊆ {0, 1}N is the non-sofic shift generated by
W = {0n1n : n ∈ N}. Then any σ ∈ Σ consists of concatenation of words in W
and their shifts together with points in the closure of them. Thus since f0n1n ≡ id
for n ∈ N, any σ ∈ Σ is either concatenation of words in W or terminating at 0∞
or 1∞. Therefore, O+

σ (x) ̸= X for any σ ∈ Σ and x ∈ X.
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On the other hand, any point x0 ∈ X \ {0, 1} has dense orbit. Because, since
0N0 and 1N0 are points of Σ, so x0 can travel left and right as far as required by
f0 and f1, respectively. As a result, I is topological transitive and yet not point
transitive along any σ ∈ Σ.

4. The abundance of point transitive non-autonomous systems in
an IFS

When a dynamical property such as transitivity, mixing, and exactness occur
along a σ ∈ Σ, then the IFS will possess that property as well, though the converse
is not necessarily true. In fact, it may not even hold along just a single orbit. In
this section, we investigate transitivity in this respect.

Let
S = S(I) := {σ ∈ Σ : ∃x ∈ X s.t. O+

σ (x) = X}. (4.1)
In general, except in few cases, a definite structure cannot be given for S, though
its largeness can be understood in some cases. Let us demonstrate how different
S can be.

Example 4.1. (1) S may be all of Σ. For an example, let f0(x) = 2x mod 1
and let f1(x) = 3x mod 1, and consider I = ([0, 1], {f0, f1}, Σ2).

(2) S may be an empty set. This is the case when we have an IFS, which is
not point transitive. Though even for a topological transitive IFS, S still
may be empty (see Example 3.13).

(3) S may be residual and yet not all of Σ. The IFS in Example 3.6 has such
property.

(4) S may be dense and uncountable, yet not a residual subset; see Example
4.6.

Now we give sufficient conditions for S being dense in Σ; first a weaker version
of specification property for subshifts:

Definition 4.2. A subshift Σ is called a subshift of variable gap length or SVGL,
if there exists M ∈ N such that for u and v in L(Σ), there is w with |w| ≤ M
and uwv ∈ L(Σ).

When Σ is mixing and SVGL, then Σ has specification property and in this
situation, there exists M ∈ N such that for u and v in L(Σ) there is w with
|w| = M and uwv ∈ L(Σ). Clearly an SVGL is irreducible. Moreover, all sofics
are SVGL; however, there are SVGL’s that are not sofic. The SVGL is called
almost specification property in [13].

Proposition 4.3. Let I = (X, F , Σ) be point transitive along some σ ∈ Σ, F
surjective and Σ an SVGL. Then, S defined in (4.1) is dense in Σ. If S ̸= Σ,
then Σ \ S is also dense in Σ.

Proof. We prove the first part; the other part has a similar proof.
Choose any σ = σ1σ2 · · · ∈ Σ such that O+

σ (x) = X. Let [u] be a cylinder in Σ
and use the SVGL property of Σ to pick wn ∈ L(Σ) such that uwnσ1σ2 · · ·σn ∈
L(Σ) with |wn| ≤ M , where M is provided by the definition of SVGL. Since
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u0 u0

b

w0 w0

w0 w0
σ0
1

σ0
1 σ0

2

· · ·

w0 w0

w0 w0

w0 w0

... ...

... ...

σ0
1 σ0

n

Figure 2. Any word in W starts and terminates at b.

{wn ∈ L(Σ) : |wn| ≤ M} is finite, there is w in L(Σ) and an infinite subsequence
ni such that for all i, wni

= w. Let σ′ = uwσ1σ2 · · · be the unique point in
∩i∈N[uwσ1σ2 · · ·σni

], and observe that for x′ ∈ (fuw)
−1(x), O+

σ′(x′) = X. This
implies σ′ ∈ [u] ∩ S and since [u] was arbitrary, we are done. □

Remark 4.4. Assume the hypothesis of Proposition 4.3, and let for some σ ∈ Σ,
ωσ(x) be the ω limit set of x along σ, that is the limit set of O+

σ (x) = {fσ1σ2···σn(x) :
n ∈ N}. The proof of Proposition 4.3 shows that

{σ′ ∈ Σ : ∃x′ ∈ X s.t. ωσ′(x′) = ωσ(x)}

is dense in Σ.

The following implications hold for irreducible shifts.
full shift ⇒ SFT ⇒ sofic ⇒ SVGL ⇒ synchronized ⇒ coded.

Now we show that the SVGL property is a necessity in the hypothesis of Propo-
sition 4.3. This in turn shows that the transitive non-autonomous systems in an
IFS whose subshift is synchronized or beyond may be scarce.

Proposition 4.5. There is I satisfying in the conditions of the above proposition
except that Σ is synchronized and for which S is not dense in Σ.

Proof. Let X, w0 = 010, w1 = 101, f0 and f1 be as in Example 3.8, and set
u0 = 000. Let σ0 = σ0

1σ
0
2 · · ·σ0

ℓ · · · = w0w1 · · · be defined as in (3.5) and let
I = (X, {f0, f1}, Σ), where Σ is generated by

W = {u0w
ℓ
0σ

0
1σ

0
2 · · ·σ0

ℓw
ℓ
0u0 : ℓ ∈ N}.

See a presentation for Σ in Figure 2. Note that u0u0 is a synchronizing word and
so Σ is synchronized.
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If v = v1 · · · v|v| ∈ W , then 0 and 1 are fixed by fv and for any other xi ∈
X \ {0, 1}, fv1···vℓ(xi) = xj, where 1 ≤ ℓ ≤ |v| and j > i.

Observe that σ0 ∈ Σ does not have u0 as a subword and also, by the same
reasoning for I2 in Example 3.8 , O+

σ0(x) = X for x ∈ X \ {0, 1}. On the
other hand, if u0 appears in σ ∈ Σ infinitely (resp. finitely) many times, then
by our construction where any u0 appears only on the beginning or ending of
members of W , this σ must start with a terminal subword of a w ∈ W , may
be empty, and afterwards has some infinite concatenation of the members of W
(resp. eventually will terminate at w∞

0 ). This in turn implies that O+
σ (x) ̸= X

for any x ∈ X. In fact, then 0 and 1 are fixed by the orbit along σ and any other
x marches to 1 along that orbit with some relatively minor fluctuations. Hence,
if σ is transitive, then for any x, O+

σ (x) ̸= X. In particular, if σ ∈ [u0], then
σ ̸∈ S and consequently S is not dense in Σ. □

Observe that by Proposition 3.10, the conclusion of Proposition 4.3 is imme-
diate when Σ is sofic; that is because the orbit of a transitive σ, attained by
Proposition 4.3, is again in S and is dense in Σ. However, still we cannot guar-
antee that S is residual as the next example shows, even for a case where Σ is a
mixing SFT.
Example 4.6. Let X and F = {f0, f1} be as in Example 3.8, and consider
IΣ = (X, F , Σ).

(1) First let Σ = Σ|F| and let wi be a word consisting of the concatenation of
all words of length i ∈ N in L(Σ|F|), and note that 0wi

|wi| =
1
2
. As a result,

if u = 1|wi|wi, then fu(x) moves x ̸∈ {0, 1} at least |wi|
2

to left. Therefore,
for the transitive

t = 1|w1|w11
|w2|w21

|w3|w3 · · · ∈ Σ|F|,

1 /∈ O+
t (x) and so O+

t (x) ̸= X. In particular, this shows that the conclu-
sion of Proposition 3.10 is not necessarily valid for all transitive points in
an irreducible sofic shift. Clearly S(IΣ|F|), although dense, it is not closed
and hence it is not a subshift.

(2) To complete our collection of the possible various cases of S(I), we con-
struct an example, where S(I) is a dense uncountable but not residual
subset of the subshift. To do this let ΣW be the SFT generated by
W = {w0 = 100, w1 = 011, w2 = 000}, and call the associated IFS
IW .

We have 0w0

|w0| =
1w1

|w1| =
2
3
. Hence if σ0 is chosen as in (3.5), then O+

σ0(x) =

X for x ∈ X \ {0, 1}. However, O+
0∞(x) is not dense for any x ∈ X, and

hence S(IW) is not closed and again not a subshift. Also, observe that
the subshift ΣW ′ generated by W ′ = ∪k∈N{wk

0w
k
1 , w

k
1w

k
0} is a subsystem

of ΣW and any transitive point of that lies in S(IW). The latter follows
from the fact that fu(x) = x for u = wk

0w
k
1 or u = wk

1w
k
0 , and the fact that

wk
0w

k
1w

k
1w

k
0 is a subword for a transitive point in ΣW ′ for any k ∈ N. Thus

any x ∈ X \ {0, 1} moves left and right as far as possible. This implies
that S(IW ′) ⊂ S(IW) has uncountable points.
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Now we show that in this example, S(IW) is not a residual subset of
ΣW . It is an easy consequence of the Birkhoff’s ergodic theorem that
the frequency of wi ∈ W is 1

3
for almost all σ ∈ ΣW (we consider the

Markov measure on ΣW : A unique ergodic Borel measure µ, which is
positive on open sets and has the maximum metric entropy among all
other measures). This means that the occurrence of 0 is as twice as that
of 1 for almost all σ. Thus for x ∈ X and almost all σ, O+

σ (x) ̸= X. This
in turn implies that µ(S(IW)) = 0. Now if S(IW) was residual in ΣW ,
then S(IW) would be measurable and since it is shift invariant it must
have full measure, which is impossible for this example.

If one chooses w2 in W to be 0000, then gcd{|wi| : wi ∈ W , 0 ≤ i ≤
2} = 1, which implies that ΣW is a mixing SFT ( [1,8]). So either mixing
or non-mixing, there are examples that S, in spite of being invariant and
having a transitive point under the shift map, is not residual.

5. Mixing and exactness in an IFS

Clearly mixing along an orbit given in Definition 3.4 implies mixing defined
in Definition 3.1 and the converse is not true as the next example shows. This
example also shows that if the IFS is mixing, then we may not have mixing along
an orbit.

Example 5.1. Let I = (X = {0, 1}N,F = {f0, f1},Σ2), and for ξ = ξ1ξ2 · · · ∈ X,
define

f0(ξ) = 0ξ = 0ξ1ξ2 · · · ,
f1(ξ) = 1ξ = 1ξ1ξ2 · · · .

For w = w1 · · ·wn−1wn, set w−1 := wnwn−1 · · ·w1, and observe that fw(ξ) = w−1ξ.
Now let [u] and [v] be any cylinder, and set M := |v|. Then for m ≥ M and
w ∈ Lm(Σ), fw([u]) ∩ [v] ̸= ∅ if and only if w is a word terminating at v−1 and
hence I is mixing. On the other hand, assume σ ∈ Σ, v = 100 and u any word.
Now for m ≥ 2, if fσ1...σm([u])∩ [v] ̸= ∅, then w = σ1 · · ·σm terminates at v−1 but
neither w0 nor w1 terminates at v−1. This implies that both fw0([u]) ∩ [v] and
fw1([u]) ∩ [v] are empty sets. Thus I is not mixing along any orbit σ.

The next result shows that simple dynamics in the individual maps in an IFS
may raise rich dynamics in the IFS. Intuitively, if we have two maps in an IFS
where one flows all the points in a definite direction and the other on the opposite
direction, then the arbitrary combination of these maps can create complicated
dynamics. Example 5.1 had this property, but the IFS was not as rich as the
following.

Example 5.2. Here we give an example such that none of the maps of the IFS,
considering as a conventional dynamical system is transitive but the IFS itself is
exact and thus mixing and topological transitive.
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Let I = (X = {0, 1}N, {f0, f1}, Σ2 = {0, 1}N) be an IFS, where for ζ =
ζ1ζ2 · · · ∈ {0, 1}N,

fi(ζ) =

{
iζ1ζ2 · · · if ζ1 = i,

ζ2ζ3 · · · if ζ1 ̸= i.
(5.1)

We have the following observations:
(1) fi is a finite to 1 surjective open map with 0∞ and 1∞ its only fixed points.
(2) f0 (resp. f1) attracts all points in X \ {1∞} (resp. X \ {0∞}) and leaves

the point 1∞ (resp. 0∞) fixed. Thus fi is not transitive and has a very
simple dynamics.

(3) Any ζ = ζ1ζ2 · · · ∈ X is periodic of any given even period p = 2q ∈ N
along σ ∈ Σ. To see this, set

σ = (ζq1ζ
∗
1
q)∞ =

 q times︷ ︸︸ ︷
ζ1ζ1 · · · ζ1

q times︷ ︸︸ ︷
ζ∗1ζ

∗
1 · · · ζ∗1

∞

,

where for a ∈ A = {0, 1},

a∗ =

{
1, a = 0,

0, a = 1.
(5.2)

Also, any transitive ζ = ζ1ζ2 · · · ∈ X is transitive along the transitive
point ζ∗ = ζ∗1ζ

∗
2 · · · ∈ Σ. A point such as ζ = (ζ1ζ2 · · · ζp)∞ ∈ X is the

periodic of period p along the periodic point ζ∗ = (ζ∗1ζ
∗
1 · · · ζ∗p )∞ ∈ Σ.

(4) I is exact along a transitive point.

Proof. Fix an open set U ⊆ X, and pick w ∈ Lk(Σ|F|) such that [w] ⊆ U .
Set w∗ := w∗

0 · · ·w∗
k, w∗

i defined as in (5.2), and note that X = fw∗v([w]),
where w∗v is any word whose initial segment is w∗.

The set Lm(Σ|F|) has 2m words. Set Pm(Lm(Σ|F|)) = {vm1 , . . . , vm2m!}
⊆ Lm2m(Σ|F|) to be the set of 2m! words constructed from the permutation
of words in Lm(Σ|F|) and for n > m, let

t = v11v
1
2 · · · vm1 · · · vm2m! · · · vn1 · · · vn2n! · · · = u1u2 · · · ∈ Σ|F|,

be the transitive point, where u1 = v11, u2 = v12, and so on. So each ui

is one of the vmj ’s coming after each other in the obvious order. Observe
that ui has the same number of 0’s and 1’s and any word v ∈ L(Σ|F|)
appears as the initial segment of infinitely many ui’s. We will show that
I is exact along t.

Another observation is that for any word b such as ui whose 0’s and 1’s
are equal, and any cylinder [a], |fb([a])| ≤ |[a]|.

Set [ai] := fu1···ui
([w]) and note that {|ai|}i∈N is a nonincreasing se-

quence. Moreover, if |ai+1| < |ai| for some |w| instances of i’s along t,
then call the last instance ℓ and note that then fu1···uℓ

([w]) = X and so in
this case, this IFS is exact along t. Otherwise, without loss of generality,
assume that for all i ∈ N, |ai| = |w|. We will show that this latter case
does not happen and so we are done.
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First let b = b1 · · · b|b| be any word and let |fb([a])| = |[a]|, where a =
a1 · · · a|a|. Let m(a, b) = min{|fb1···bi([a])| : 1 ≤ i ≤ |b|}, and set

α = α(a, b) := max{i : |fb1···bi([a])| = m(a, b), 1 ≤ i ≤ |b|}.
In other words, α(a, b) is the last instance, where fb1···bi([a]) has the short-
est length. Let fb1···bα([a]) = [a′] = [a′1 · · · a′|a′|] for some a′, |a′| < |a|.
In fact a′ is the terminal segment of a. Since |fb1···bα+i

([a])| > |a′| for
1 ≤ i ≤ |b| − α, by the definition of fj’s, bα+1 = a′1, and in particular
fb([a]) = [a

′β(a, b)
1 a′], where

β(a, b) = |a| − |a′|.
Now assume |ai| = |w|, and set αi = α(ai, ui+1) and βi = β(ai, ui+1).

If βi+1 ≤ βi, then [ai] = [ai+1]. So if there is M ∈ N such that for i ≥ M ,
βi+1 ≤ βi; or equivalently, for i ≥ M , [ai] = [aM ], then along t, we arrive
at uℓ whose initial segment is a∗M and then fu1···uℓ

([w]) = X. This violates
our assumption that |ai| = |w|.

So the only other possibility is that |ai| = |w| and for any M ∈ N, there
is an i > M , where 0 ≤ βi < βi+1 ≤ |ai|, which is clearly not possible. □

The following is an immediate result from the above example.
Proposition 5.3. There is a surjective IFS, which is exact along a transitive
orbit and yet none of its constituent maps are transitive.

1

1

4

3

4
1

x0

x1

x0 x1

1

1

4

3

4
1

x0

x1

x0 x1

f0 f1

( 1
2
, 1) ( 1

2
, 1)

Figure 3. ([0, 1], fi) is exact, but
I = ([0, 1], {f0, f1}, {(01)∞, (10)∞}) is not even point transitive.

Next we give an example whose any map in the IFS is exact as a conventional
dynamical system, though the IFS itself is not exact; somehow presenting opposite
properties comparing to the previous example.
Example 5.4. Let I = (X = [0, 1], {f0, f1}, Σ = {(01)∞, (10)∞}). To define
fi, choose two different points x0, x1 ∈ (0, 1) and small open interval Ii around
xi such that xj ̸∈ Ii if j ̸= i. We aim to have

I0
f0−→ I1

f1−→ I0
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and f0 (resp. f1) being contracting on points of I0 (resp. I1) with an infimum
rate c0 ∈ (1

2
, 1) and elsewhere expansive with infimum rate e0 > 2. An example

of f0 and f1 can be those presented in Figure 3.
This construction guarantees that fi being exact; however, a sufficiently small

neighborhood around x0 shrinks to a point along σ = (01)∞. Thus I cannot be
exact.

6. Conclusion and further work

Full shifts show up in many situations in dynamical systems, say, in classical
IFS and various attractors. Then, the natural question is what happens if one
replaces that full shift with a general subshift. Here, we considered that ques-
tion for the very basic topological properties of the dynamics of an IFS, and we
observed some diverse problems. However, we have left open other issues, such
as ergodicity and stochastic problems, that are of interest when one is dealing
with more than one map acting on a phase space. Also, dynamics along an orbit
in this paper is, in fact, a non-autonomous dynamical system, and its dynamics
with respect to the IFS, where that orbit belongs must be of interest. We hope
that we or others can address some of these issues.
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