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ABSTRACT. In this paper, we define a particular class of Fourier integral oper-
ators with SG-symbol. These classes of operators turn out to be bounded on
the spaces S (R™) of rapidly decreasing functions and turn out to be Hilbert—
Schmidt on L% (R™).

1. INTRODUCTION

In the early 1960s, the theory of pseudo-differential operators was born, and it
later evolved into the theory of partial differential equations; see [17].

As a result, many subjects in these two theories, such as hypo-ellipticity of
operators and SG-symbols [0, 7], are intimately related.

First and foremost, the SG-calculus on R™ may be traced back to early 1970s
efforts by Cordes [3] and Parenti [21]. Schrohe [24] expanded on the idea by
demonstrating that the SG-operators can be defined on a SG-manifold, a class
that includes important noncompact manifolds.

In the framework of SG-manifolds with boundary, Erkip and Schrohe [10]
studied boundary value problems as well. Melrose [19] devised the so-called scat-
tering calculus on asymptotically Euclidean spaces, which coincides with the SG-
calculus on R™. The book [9] by Cordes is a standard reference for SG-theory
on R™ and on manifolds with ends. Shubin presented several classes of symbol
satisfying global estimates on R™ to explore the features of Schrodinger operators
with polynomially rising potential (see, e.g., [2—1,206,27]).
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Schulze [25], in particular, employed SG-symbols as an element in his pseudo-
differential calculus on manifolds with singularities. Also, SG-symbols have been
investigated by a number of authors in their classical form. Egorov and Schulze
[15], Witt [28], and Coriasco and Panarese [12] are only a few examples.

However, this theory fails to be adequate for studying SG hyperbolic problems,
and one is then forced to examine a wider class of operators, the so-called SG-
Fourier integral operators. The corresponding classes of Fourier integral operators
have been incorporated in the SG-calculus by Coriasco [10], together with their
application for solving SG-hyperbolic problems.

The works [13, 14, 23] deal with the global LP-boundedness (1 < p < o0) of
SG-Fourier integral operators.

Furthermore, Maniccia and Panarese [18], Nicola [20], Battisti and Coriasco [5],
and Coriasco and Maniccia [11] have looked at the notion of noncommutative
trace and the spectrum theory for SG-operators.

The aim of this paper is to study the Hilbert—Schmidtness of SG-Fourier inte-
gral operators. Let us now describe the plan of this article. In the second section,
we introduce the relevant notations and preliminaries about Hilbert—Schmidt op-
erators that will be used throughout the paper.

In the last section, we will go over some fundamental definitions and theorems
from the theory of SG-Fourier integral operators, which will serve as the starting
point for our main result.

We end this section by providing a motivation for the study of the topic of
SG-Fourier integral operators.

Inspired by certain restriction problems, we consider first-order homogeneous
systems of the form

Ou—iK(tu = 0, tel0,T], T >0,

u(0) = uy,
where K is a (v X v)-matrix of pseudo-differential operators with symbol k = (k;;)
such that k;;(t;x,€) € C®([0,T], SG™Y) while u is a vector valued function in
L2
Furthermore, we will make the assumption that K is hyperbolic with diagonal
principal part and constant multiplicities, k satisfies

atk - ko + kl,

ko € C=(]0,T],SG*),

kl € Coo([ov T]? SG(LI)))
where k; = diag(j\l, ce 5\0), S\j = diag();,..., ;) is an [; x [; diagonal matrix,
with v > [; > 1 and [; is the multiplicity of A\;,j =1,...,0 <.

For each \; € ([0, T],SG™Y), we have
N1t x, &) — Nt 2, 8) > C(6)(x), j

for suitable C; > 0.

The usual wave operator 02 — A,, r € R™, is not SG-hyperbolic (its charac-
teristic equation has real solutions +|£|, but they do not satisfy (1.1)). Indeed

I
—

o —1, (1.1)
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the operator 92 4+ (1 + 2%)(1 — 2), = € R, can be taken as the standard model
of second-order SG-hyperbolic operator (or SG-wave operator in one spatial di-
mension). In fact, the roots of the characteristic equation are A\ o = £(x)({) and
obviously satisfy (1.1). More generally, we can consider operators of the form

L = 0? + 2k (2)0,0, + ka(2)0? + (-, 1)?, (1.2)
where k; € SGOY and ky € SG? gatistying the following condition:

k3 () — ko(x
There exists C' > 0, for all z € R, such that C! < %PQ() < C. (1.3)
x
Assumption (1.3) assures that (1.1) is satisfied. Under such conditions, operators
of the form (1.2) are strictly SG-hyperbolic (the characteristic roots have constant
multiplicity one). As an example of operator with multiple characteristics in the
SG environment, we can consider

L =080+ (1+2%)(1—8?)),

whose distinct characteristic roots ;o = £(z)(¢) and A3 = 0 (double) again
satisfy (1.1).

2. PRELIMINARIES

We assume n € N throughout the whole paper unless otherwise noted. In
particular, n # 0. For all z,£ € R", we define

(x,€) = Z:cjfj and d¢ := (27)"d€.
=0

Additionally, let us recall weight functions defined by
1/2
(&) = (1+1)

and "
A, &) = (1+[z]* +|¢%) 7.

Partial derivatives with respect to a variable z € R" scaled with the factor —i

are denoted by
D2 = (=)o = (—d)llger .. oo,

where o = (a, ..., a,) € N is a multi-index and |«o| = 2?21 «a; is the length of
a.

Considering two Fréshet spaces E and F', the set L(F, F) contains of all linear
and bounded operators A : E — F. If E = F, then we also just write L(E).

Let S(R™) be the space of rapidly decreasing smooth functions (Schwartz
space). We define the Fourier transform 4 and its inverse F!(u) of u € S(R")

by

n n

ile) = () = |
For all ¢ € S(R"), we set

e " u(x)dr and .Fl(u)(:c):/ eiga‘"u(w)dz.

d(L’SO - (8171907 A ’aajn(p)?
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and
Ve = (O, 0, 0)"
Lemma 2.1. Let s < 5. Then (x)* € L*(R") for all x € R".
Proof. An alternative approach can be found in [22, Lemma 1.3]. O

In what follows, we will look at the Hilbert—Schmidt operators, which are
another significant class of bounded operators. The Hilbert—Schmidt operator
class has a Hilbert space structure that is natural.

Definition 2.2. Let H; and H, be two Hilbert spaces. A bounded linear operator
A Hy — H, is called a Hilbert—Schmidt operator if for some orthonormal basis
{en},—, in Hy, we have

> [l Aen3, < +oo. (2.1)

n=0
The set of all Hilbert—Schmidt operators A : H; — H, is denoted by Co (H1, Hs),
or C (H) in the case when Hy = Hy = H.

Remark 2.3. The Hilbert—Schmidt norm, also known as the Frobenius norm of
the operator A, is defined as the square root of the left-hand side of (2.1) and is
denoted by |||,
Proposition 2.4. Let A € Cy (H).

(1) The Hilbert-Schmidt norm ||-||2 is independent of the choice of orthonormal

basis;
(2) A", = [[All,
(3) [|All < ||All2, where || - || is the usual operator norm;

(4) Every operator A € Co(Hy, Hs) is a compact operator.
Lemma 2.5. If T € L(H), then AT, TA € C,(H) and
max {||AT ||z, [|TAll2} < [ T]|[|A]]2-

Proof. [26] contains the proof of the above lemma. O

Now, let R" be a space with a positive measure and let H; = Hy = L? (R").
In this situation, the operators A € Co(Hy, Hs) are described as follows.

Theorem 2.6. The operators A € Co(L? (R™)) are exactly those that can be
represented as

Aute) = [ klz)u)dy 2.2)
with a kernel k € L? (R*"). We then also have
1Al = [1%[] L2 geny - (2.3)

For more details about this class of operators you can see [26].
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3. SG-FOURIER INTEGRAL OPERATORS
Let m = (mq,mz2) € R?, and let p;,d; be real numbers with 0 < §; < p; <
1, j € {1,2}, and denote p = (p1, p2) and & = (d1, 92).
Definition 3.1. We say that a function a(z, &) € C(R?") is a symbol of class
SG)js if for any «, 8 € N", there exists C, 5 > 0 such that
D;“D?a(x, )] < Ca’ﬁ<x>m17m|a|+5llﬁl<£>mzfp2|5|+52\al7
for all z,& € R™.

For a € SG”'s, we can put the set of weighted semi-norms defined by
p,6
|ala,s = S (a)~matelel=alBl(g) matelfl=22lel | D2 Dla(x, )] .
xvg eRn

Then, in terms of the topology produced by these semi-norms, SG}'s is a Fréchet
space.

Remark 3.2. When p = (1,1) and § = (0,0), we write SG™ instead of SG7.
Moreover, we define
SG* = | J SG™, SG™= (] SG™ =S([R™).
meR? meR?
Proposition 3.3. Let m,m’' € R.
(i) Ifa € SG™ and b € SG™, then ab € SG™™ .
(i) If m < m’, then SG™ C SG™.
(iii) If a € SG™, then 920/a € SG™ such that
m" =m — |ale; — |B] e,
where e; = (1,0) and e; = (0, 1).
Proof. The proof is based on Leibniz’s formula. O

Definition 3.4 (Phase functions). We will call a phase function any smooth real
valued function satisfying the following conditions:
(H;) For all (o, B) € N?", there exists C, g > 0 such that

O p(w, )| < Cup X101, ).
(Hs) There exists gp such that

2
det 8890—(;)2@’ {)‘ > 0o.

For suitable constants C,Cs > 0 and denote by ® the set of all phase functions.
In addition, we define for all ¢ > 0, the set of all regular phase functions,

denoted by ®., as follows:
92
det ( © ) ' > g} |
Pz; P,

inf
z,£€R”

@6:{<,DE(I>: for all x,£ € R"
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Example 3.5. Consider the function given by
o (x, &) = Z K,pz®,  forall (z,€) € R*,
o +18]=2
where K, 3 € R for all o, 8 € N".
Then ¢ (z,§) verifies (H;) and (Hy).

Let a € SG™ and let ¢ € ®. Then
Agpu(x) = / ei“"(x’g)a(x,f)ﬁ(f)aff for all u € S(R"), (3.1)

defines the associated Fourier integral operator in SG classes (SG-Fourier integral
operator). In particular, if ¢ = (-,-), then A, := Op (a) is called a SG-pseudo-
differential operator.

To give a meaning to the right-hand side of (3.1) , we use the oscillatory integral
method.

So we consider g € S (R?") with g (Og2.) = 1. If a € SG™, then we define

ar (2,8) = g (x/r.§/r)a(x, &), r>0.
Theorem 3.6. If ¢ € ® and a € SG™, then the following statements hold:
(1) For all w € S(R"), lim, o Aq, pu (x) exists for every x € R™ and is
independent of the choice of the function g. We set then

A, ou = lim A, ,u.
“e rooo  Om®

(2) Agp € L(S(R™) and A, € L(S'(R™)).
Proof. See [1, theorem 2.6] or [3]. O

Now, we have the following result concerning the Hilbert—Schmidtness of SG-
Fourier integral operators.

Proposition 3.7. Let us recall that A,, on R™ is an integral operators of the
form

Auu(@) = [ #5902, (6) .

where a € SG™ and ¢ € .
For any m € R? such that max(my,my) < —%, A, can be extended as a
Hilbert-Schmidt operator on L* (R™).

Proof. Let us observe that the SG-Fourier integral operator A, ,can be written
as

Agou=1,,(Fu), forallueSIR"), (3.2)
with

Lula) = [ e . ue) de
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It results so from (3.2) and using lemma 2.5 that

[Aaglly = lHagFl,,

< Maglly 1Fnll 22 @ny) -

It is enough to prove I, , € Co (L*(R™)). First, let us observe that I, , has a in-
tegral representation just as (2.2) with kernel k,, (x,€). In fact, a straightforward
computation shows us that

Lt @)= [ s (9 u(6)de

where
e (2,€) := %0 (2,€)
Now let us show that, for k,, € L* (R*"),
ap (2,6 = [e¥Ya(z,€)|

= a(z,8)
< Coolx)™ ()™

Then
2 mi |2 mo ||2
Kool 2 @eny < Coo @)™ 2y 146)™ 2 (gry -
We deduce from lemma 2.1 that
kay € L* (R*"),

—-n

for all m € R? such that max(m;, ms) < 5%, and from (2.3), we have

Masolly = gl aggony < +00,
which proves that A, is a Hilbert-Schmidt operator. O
Example 3.8. We consider the Hermite operator

L=(-A+2%"2, zcR

The function a(z,€&) = (22 + £2)72 is a pseudo-differential symbol of operator
L. Since a € SG#2732(R?) and —3/2 < —1 then L is a Hilbert-Schmidt
operator on L?(R).

4. CONCLUSION AND SOME OPEN PROBLEMS

4.1. Conclusion. We considered a class of Fourier integral operators defined by
SG-symbols and smooth phase functions. We proved, under some assumptions
on the symbols, that these operators are Hilbert—Schmidt on L?.
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4.2. Some open problems. The following conditions can be investigated:

1. The Hilbert-Schmidtness of SG-Fourier integral operators on L? with a
class of nonsmooth phase functions.

2. H?-compactness of a class of SG-Fourier integral operators.

3. The boundedness of SG-Fourier integral operators on Holder spaces.
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