

Khayyam Journal of Mathematics

emis.de/journals/KJM kjm-math.org

FULLY S-IDEMPOTENT MODULES

FARANAK FARSHADIFAR ${ }^{1}$

Communicated by B. Mashayekhy

Abstract

Let R be a commutative ring with identity, let S be a multiplicatively closed subset of R, and let M be an R-module. A submodule N of M is said to be idempotent if $N=\left(N:_{R} M\right)^{2} M$. Also, M is said to be fully idempotent if every submodule of M is idempotent. The aim of this paper is to introduce the concept of fully S-idempotent modules as a generalization of fully idempotent modules and investigate some properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. Also, S will denote a multiplicatively closed subset of R.

Let M be an R-module. The module M is said to be a multiplication module if for every submodule N of M, there exists an ideal I of R such that $N=I M$ [5]. It is easy to see that M is a multiplication module if and only if $N=\left(N:_{R} M\right) M$ for each submodule N of M. A submodule N of M is said to be idempotent if $N=\left(N:_{R} M\right)^{2} M$. Also, M is said to be fully idempotent if every submodule of M is idempotent [4].

In [1], the authors introduced and investigated the concept of S-multiplication modules as a generalization of multiplication modules. An R-module M is said to be an S-multiplication module if for each submodule N of M, there exist $s \in S$ and an ideal I of R such that $s N \subseteq I M \subseteq N$ [1]. One can see that M is an S-multiplication module if and only if for each submodule N of M there exists

[^0]$s \in S$ such that $s N \subseteq\left(N:_{R} M\right) M \subseteq N$. The current studies on S-versions of some important classes of modules/rings can be found in [9,10].

In this paper, we introduce the concept of fully S-idempotent R-modules as a generalization of fully idempotent modules and provide some useful information concerning this new class of modules. We say that a submodule N of an R-module M is an S-idempotent submodule if there exists $s \in S$ such that $s N \subseteq\left(N:_{R} M\right)^{2} M \subseteq N$ (Definition 2.1(b)). We say that an R-module M is a fully S-idempotent module if every submodule of M is an S-idempotent submodule (Definition 2.1(c)). Clearly every fully idempotent R-module is a fully S-idempotent R-module (Remark 2.3(b)). Example 2.4 shows that the converse is not true in general. In Theorem 2.8, we characterize the fully idempotent R-modules. Also, we characterize the fully S-idempotent R-modules, where S satisfying the maximal multiple condition (Proposition 2.9). Let M_{i} be an $R_{i^{-}}$ module for $i=1,2, \ldots, n$ and let S_{1}, \ldots, S_{n} be multiplicatively closed subsets of R_{1}, \ldots, R_{n}, respectively. Assume that $M=M_{1} \times \cdots \times M_{n}, R=R_{1} \times \cdots \times R_{n}$, and $S=S_{1} \times \cdots \times S_{n}$. Then we show that the following statements are equivalent:
(a) M is a fully S-idempotent module;
(b) M_{i} is a fully S_{i}-idempotent module for each $i \in\{1,2, \ldots, n\}$.

Also, among other results, it is shown that (Theorem 2.15) if M is an S-multiplication R-module and N is a submodule of M, then the following statements are equivalent:
(a) N is an S-pure submodule of M;
(b) N is an S-multiplication R-module and N is an S-idempotent submodule of M.
Finally, we prove that if M is a fully S-idempotent R-module, then M is a fully S-pure R-module. The converse holds if M is an S-multiplication R-module (Corollary 2.16).

2. Main results

Definition 2.1. (a) We say that an element x of an R-module M is an S idempotent element if there exist $s \in S$ and $a \in\left(R x:_{R} M\right)$ such that $s x=a x$.
(b) We say that a submodule N of an R-module M is an S-idempotent submodule if there exists $s \in S$ such that $s N \subseteq\left(N:_{R} M\right)^{2} M \subseteq N$.
(c) We say that an R-module M is a fully S-idempotent module if every submodule of M is an S-idempotent submodule.

Example 2.2. Let M be an R-module with $\operatorname{Ann}_{\mathrm{R}}(M) \cap S \neq \emptyset$. Then clearly, M is a fully S-idempotent R-module.

The following remarks can be immediately followed from Definition 2.1.
Remark 2.3. Let M be an R-module. Then we have the following properties:
(a) The submodules zero and M are always S-idempotent submodules of M. So each simple R-module is a fully S-idempotent R-module.
(b) Every fully idempotent R-module is a fully S-idempotent R-module.
(c) Every fully S-idempotent R-module is an S-multiplication R-module.
(d) If $S \subseteq \mathrm{U}(\mathrm{R})$, then every fully S-idempotent R-module is a fully idempotent R-module, where $\mathrm{U}(\mathrm{R})$ is the set of units in R.
(e) If $S_{1} \subseteq S_{2}$ are multiplicatively closed subsets of R and M is a fully S_{1-} idempotent R-module, then M is a fully S_{2}-idempotent R-module.
(f) If N is an S-idempotent submodule of M, then by a similar argument to the proof of $((b) \Rightarrow(c))$ in [4, Lemma 2.2], one can see that there is $s \in S$ such that

$$
s N \subseteq \operatorname{Hom}_{R}(M, N) N
$$

where $\operatorname{Hom}_{R}(M, N) N=\sum\left\{\varphi(N): \varphi \in \operatorname{Hom}_{R}(M, N)\right\}$.
The following examples show that the converse of Remark 2.3(b, c, f) is not true in general.

Example 2.4. Take the \mathbb{Z}-module $M=\mathbb{Z}_{p^{\infty}}$ for a prime number p. Then we know that all proper submodules of M are of the form $G_{t}=\left\langle 1 / p^{t}+\mathbb{Z}\right\rangle$ for some $t \in \mathbb{N} \cup\{0\}$ and $\left(G_{t}: \mathbb{Z} M\right)=0$. Therefore, M is not a fully idempotent \mathbb{Z}-module. Now, take the multiplicatively closed subset $S=\left\{p^{n}: n \in \mathbb{N} \cup\{0\}\right\}$ of \mathbb{Z}. Then $p^{t} G_{t}=0 \subseteq\left(G_{t}:_{\mathbb{Z}} M\right)^{2} M \subseteq G_{t}$. Hence, G_{t} is an S-idempotent submodule of M for each $t \in \mathbb{N} \cup\{0\}$. So, M is a fully S-idempotent \mathbb{Z}-module.

Example 2.5. Take the multiplicatively closed subset $S=\mathbb{Z} \backslash 2 \mathbb{Z}$ of \mathbb{Z}. Then \mathbb{Z}_{4} is an S-multiplication \mathbb{Z}-module. Indeed \mathbb{Z}_{4} is not a fully S-idempotent \mathbb{Z}-module, because $2 \mathbb{Z}_{4}$ is not an S-idempotent submodule of \mathbb{Z}_{4}.

Example 2.6. Let p be a prime number. Take the multiplicatively closed subset $S=\mathbb{Z} \backslash p \mathbb{Z}$ of \mathbb{Z}. Then one can see that the submodule $N=\mathbb{Z}_{p} \oplus 0$ of the \mathbb{Z}-module $M=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ is not S-idempotent, but $s N \subseteq \operatorname{Hom}_{\mathbb{Z}}(M, N) N=N$ for each $s \in S$.

The saturation S^{*} of S is defined as $S^{*}=\left\{x \in R: x / 1\right.$ is a unit of $\left.S^{-1} R\right\}$. It is obvious that S^{*} is a multiplicatively closed subset of R containing S [8].

A submodule N of an R-module M is said to be S-copure if there exists $s \in S$ such that $s\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$ for every ideal I of $R[7]$.

Proposition 2.7. Let M be an R-module. Then we have the following properties:
(a) M is a fully S-idempotent R-module if and only if M is a fully S^{*} idempotent R-module.
(b) If M is a fully S-idempotent R-module, then every submodule of M is a fully S-idempotent R-module.
(c) If M is an S-multiplication R-module and N is an S-copure submodule of M, then N is S-idempotent.

Proof. (a) Let M be a fully S-idempotent R-module. Since $S \subseteq S^{*}$, by Remark 2.3(e), M is a fully S^{*}-idempotent R-module. For the converse, assume that M is a fully S^{*}-idempotent module and that N is a submodule of M. Then there exists $x \in S^{*}$ such that $x N \subseteq\left(N:_{R} M\right)^{2} M$. As $x \in S^{*}, x / 1$ is a unit of $S^{-1} R$ and so $(x / 1)(a / s)=1$ for some $a \in R$ and $s \in S$. This yields that $u s=u x a$ for
some $u \in S$. Thus we have $u s N=u x a N \subseteq x N \subseteq\left(N:_{R} M\right)^{2} M$. Therefore, M is a fully S-idempotent R-module.
(b) Let N be a submodule of M and let K be a submodule of N. Then there exists $s \in S$ such that $s K \subseteq\left(K:_{R} M\right)^{2} M \subseteq K$. This implies that

$$
s^{2} K \subseteq s\left(K:_{R} M\right)^{2} M \subseteq s\left(K:_{R} M\right) K \subseteq\left(K:_{R} M\right)\left(K:_{R} M\right)^{2} M \subseteq\left(K:_{R} M\right)^{3} M
$$

Thus

$$
s^{2} K \subseteq\left(K:_{R} M\right)^{3} M \subseteq\left(K:_{R} N\right)^{2}\left(N:_{R} M\right) M \subseteq\left(K:_{R} N\right)^{2} N .
$$

Therefore, N is fully S-idempotent.
(c) Let M be an S-multiplication R-module and let N be an S-copure submodule of M. Then there exists $s \in S$ such that

$$
s\left(N:_{M}\left(N:_{R} M\right)\right) \subseteq N+\left(0:_{M}\left(N:_{R} M\right)\right)
$$

This in turn implies that $s M \subseteq N+\left(0:_{M}\left(N:_{R} M\right)\right)$. It follows that

$$
s\left(N:_{R} M\right) M \subseteq\left(N:_{R} M\right) N .
$$

As M is an S-multiplication module, there is an element $t \in S$ such that $t N \subseteq$ $\left(N:_{R} M\right) M$. Hence, we have

$$
s t^{2} N \subseteq \operatorname{st}\left(N:_{R} M\right) M \subseteq\left(N:_{R} M\right) t N \subseteq\left(N:_{R} M\right)^{2} M,
$$

as needed.
In the following theorem, we characterize the fully idempotent R-modules.
Theorem 2.8. Let M be an R-module. Then the following statements are equivalent:
(a) M is a fully idempotent R-module;
(b) M is a fully $(R \backslash \mathfrak{p})$-idempotent R-module for each prime ideal \mathfrak{p} of R;
(c) M is a fully $(R \backslash \mathfrak{m})$-idempotent R-module for each maximal ideal \mathfrak{m} of R;
(d) M is a fully $(R \backslash \mathfrak{m})$-idempotent R-module for each maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0$.
Proof. $(a) \Rightarrow(b)$. This follows from Remark 2.3(b).
$(b) \Rightarrow(c)$ and $(c) \Rightarrow(d)$. These are clear.
$(d) \Rightarrow(a)$. Let N be a submodule of M. Take a maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0$. As M is a fully $(R \backslash \mathfrak{m})$-idempotent module, there exists $s \notin \mathfrak{m}$ such that $s N \subseteq\left(N:_{R} M\right)^{2} M \subseteq N$. This implies that

$$
N_{\mathfrak{m}}=(s N)_{\mathfrak{m}} \subseteq\left(\left(N:_{R} M\right)^{2} M\right)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}
$$

If $M_{\mathfrak{m}}=0$, then clearly $N_{\mathfrak{m}}=\left(\left(N:_{R} M\right)^{2} M\right)_{\mathfrak{m}}$. Thus we conclude that $N_{\mathfrak{m}}=$ $\left(\left(N:_{R} M\right)^{2} M\right)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of R. It follows that $N=\left(N:_{R} M\right)^{2} M$, as needed.

A multiplicatively closed subset S of R is said to satisfy the maximal multiple condition if there exists $s \in S$ such that $t \mid s$ for each $t \in S$.

In the following theorem, we characterize the fully S-idempotent R-modules, where S is a multiplicatively closed subset of R satisfying the maximal multiple condition.

Proposition 2.9. Let S be a multiplicatively closed subset of R satisfying the maximal multiple condition (e.g., S is finite or $S \subseteq \mathrm{U}(\mathrm{R})$) and let M be an R-module. Then the following statements are equivalent:
(a) M is a fully S-idempotent module;
(b) Every cyclic submodule of M is S-idempotent;
(c) Every element of M is S-idempotent;
(d) For all submodules N and K of M, we have $s(N \cap K) \subseteq\left(N:_{R} M\right)\left(K:_{R}\right.$ $M) M$ for some $s \in S$.

Proof. $(a) \Rightarrow(b)$ and $(b) \Rightarrow(c)$ are clear.
$(c) \Rightarrow(a)$. Let N be a submodule of M and let $x \in N$. Then by the hypothesis, there exist $s_{x} \in S$ and $a \in\left(R x:_{R} M\right)$ such that $s_{x} x=a x$. Hence $a s_{x} x=a^{2} x$, and so $s_{x}^{2} x=s_{x} a x=a s_{x} x=a^{2} x$. Thus $s_{x}^{2} R x \subseteq\left(R x:_{R} M\right)^{2} M$. Now as S satisfying the maximal multiple condition, there exists $s \in S$ such that $s R x \subseteq$ $\left(R x:_{R} M\right)^{2} M \subseteq\left(N:_{R} M\right)^{2} M$. Therefore, $s N \subseteq\left(N:_{R} M\right)^{2} M$, as required.
$(a) \Rightarrow(d)$. Let N and K be two submodules of M. Then for some $s \in S$, we have

$$
s(N \cap K) \subseteq\left(N \cap K:_{R} M\right)^{2} M \subseteq\left(N:_{R} M\right)\left(K:_{R} M\right) M
$$

$(d) \Rightarrow(a)$. For a submodule N of M, we have

$$
s N=s(N \cap N) \subseteq\left(N:_{R} M\right)\left(N:_{R} M\right) M=\left(N:_{R} M\right)^{2} M
$$

for some $s \in S$.
Let R_{i} be a commutative ring with identity, let M_{i} be an R_{i}-module for each $i=1,2, \ldots, n$, and let $n \in \mathbb{N}$. Assume that $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ and that $R=R_{1} \times R_{2} \times \cdots \times R_{n}$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2, \ldots, n$, then $S=S_{1} \times S_{2} \times \cdots \times S_{n}$ is a multiplicatively closed subset of R. Furthermore, each submodule N of M is of the form $N=$ $N_{1} \times N_{2} \times \cdots \times N_{n}$, where N_{i} is a submodule of M_{i}.

Theorem 2.10. Let M_{i} be an R_{i}-module for $i=1,2, \ldots, n$ and let S_{1}, \ldots, S_{n} be multiplicatively closed subsets of R_{1}, \ldots, R_{n}, respectively. Assume that $M=$ $M_{1} \times \cdots \times M_{n}, R=R_{1} \times \cdots \times R_{n}$ and $S=S_{1} \times \cdots \times S_{n}$. Then M is a fully S-idempotent module if and only if M_{i} is a fully S_{i}-idempotent module for each $i \in\{1,2, \ldots, n\}$.

Proof. We use mathematical induction. If $n=1$, then the claim is trivial. Now suppose that $n=2$. For only if part, without loss of generality, we will show that M_{1} is a fully S_{1}-idempotent R_{1}-module. Take a submodule N_{1} of M_{1}. Then $N_{1} \times\{0\}$ is a submodule of M. Since M is a fully S-idempotent R-module, there exists $s=\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2}$ such that $\left(s_{1}, s_{2}\right)\left(N_{1} \times\{0\}\right) \subseteq\left(N_{1} \times\{0\}:_{R} M\right)^{2} M$. By focusing on the first coordinate, we have $s_{1} N_{1} \subseteq\left(N_{1}:_{R_{1}} M_{1}\right)^{2} M_{1}$. So M_{1} is a fully S_{1}-idempotent R_{1}-module. Now assume that M_{1} is a fully S_{1}-idempotent module and that M_{2} is a fully S_{2}-idempotent module. Take a submodule N of M. Then N must be in the form of $N_{1} \times N_{2}$, where $N_{1} \subseteq M_{1}, N_{2} \subseteq M_{2}$. Since M_{1} is a fully S_{1}-idempotent R_{1}-module, there exists $s_{1} \in S_{1}$ such that
$s_{1} N_{1} \subseteq\left(N_{1}:_{R_{1}} M_{1}\right)^{2} M_{1}$. Similarly, there exists an element $s_{2} \in S_{2}$ such that $s_{2} N_{2} \subseteq\left(N_{2}:_{R_{2}} M_{2}\right)^{2} M_{2}$. Now, put $s=\left(s_{1}, s_{2}\right) \in S$. Then we get

$$
\left(s_{1}, s_{2}\right) N \subseteq s_{1} N_{1} \times s_{2} N_{2} \subseteq\left(N_{1}:_{R_{1}} M_{1}\right)^{2} M_{1} \times\left(N_{2}:_{R_{2}} M_{2}\right)^{2} M_{2} \subseteq\left(N:_{R} M\right)^{2} M
$$

Hence, M is a fully S-idempotent R-module.
Next, assume that the claim is true for $n<k$, and we will show that it is also true for $n=k$. Put $M=\left(M_{1} \times \cdots \times M_{n-1}\right) \times M_{n}, R=\left(R_{1} \times R_{2} \times \cdots \times R_{n-1}\right) \times R_{n}$, and $S=\left(S_{1} \times \cdots \times S_{n-1}\right) \times S_{n}$. By the case when $n=2, M$ is a fully S-idempotent module if and only if $M_{1} \times \cdots \times M_{n-1}$ is a fully ($S_{1} \times \cdots \times S_{n-1}$)-idempotent ($R_{1} \times R_{2} \times \cdots \times R_{n-1}$)-module and M_{n} is a fully S_{n}-idempotent R_{n}-module. Now the rest follows from the induction hypothesis.

Let M be an R-module. The idealization or trivial extension $R \propto M=R \oplus M$ of M is a commutative ring with componentwise addition and multiplication $(a, m)(b, \dot{m})=(a b, a \dot{m}+b m)$ for each $a, b \in R, m, \dot{m} \in M$ [2]. If I is an ideal of R and N is a submodule of M, then $I \propto N$ is an ideal of $R \propto M$ if and only if $I M \subseteq N$. In that case, $I \propto N$ is called a homogeneous ideal of $R \propto M$. Also, if $S \subseteq R$ is a multiplicatively closed subset, then $S \propto N$ is a multiplicatively closed subset of $R \propto M$ [2, Theorem 3.8].

Let I be an ideal of R. If I is a fully S-idempotent R-module, then we say that I is a fully S-idempotent ideal of R.
Theorem 2.11. Let N be a submodule of an R-module M. Then the following statements are equivalent:
(a) N is a fully S-idempotent R-module;
(b) $0 \propto N$ is a fully $(S \propto 0)$-idempotent ideal of $R \propto M$;
(c) $0 \propto N$ is a fully $(S \propto M)$-idempotent ideal of $R \propto M$.

Proof. $(a) \Rightarrow(b)$. Suppose that N is a fully S-idempotent R-module. Take an ideal J of $R \propto M$ contained in $0 \propto N$. Then $J=0 \propto N$ for some submodule N ' of M with $N \subseteq N$. Since N is a fully S-idempotent module, there exists $s \in S$ with $s N^{\prime} \subseteq\left(N^{\prime}:_{R} N\right)^{2} N \subseteq N$. First, note that $\left(J:_{R \propto M} 0 \propto N\right)=\left(N:_{R} N\right) \propto M$. So this gives $\left(J:_{R \propto M} 0 \propto N\right)^{2}=\left(\left(N:_{R} N\right) \propto M\right)^{2}=\left(N:_{R} N\right)^{2} \propto\left(\hat{N}:_{R} N\right) M$. Then we have $\left(J:_{R \propto M} 0 \propto N\right)^{2}(0 \propto N)=0 \propto\left(N:_{R} N\right)^{2} N$. This implies that

$$
\begin{aligned}
(s, 0) J & =0 \propto s N^{\prime} \subseteq 0 \propto\left(\dot{N}^{\prime}:_{R} N\right)^{2} N \\
& =\left(J:_{R \propto M} 0 \propto N\right)^{2}(0 \propto N) \subseteq J .
\end{aligned}
$$

It follows that $0 \propto N$ is a fully $(S \propto 0)$-idempotent ideal of $R \propto M$.
$(b) \Rightarrow(c)$. This follows from the fact that $S \propto 0 \subseteq S \propto M$ and Remark 2.3(e).
$(c) \Rightarrow(a)$. Suppose that $0 \propto N$ is a fully $(S \propto M)$-idempotent ideal of $R \propto M$. Let N be a submodule of N. Then $0 \propto N \subseteq 0 \propto N$ and $0 \propto N$ is an ideal of $R \propto M$. Since $0 \propto N$ is a fully $(S \propto M)$-idempotent ideal of $R \propto M$, there exists $(s, m) \in S \propto M$ such that

$$
(s, m)(0 \propto \hat{N}) \subseteq\left((0 \propto \hat{N}):_{R \propto M}(0 \propto N)\right)^{2}(0 \propto N) \subseteq 0 \propto \mathcal{N}^{\prime} .
$$

One can easily check that

$$
\left(0 \propto N^{\prime}\right):_{R \propto M}(0 \propto N)=\left(N^{\prime}:_{R} N\right) \propto M
$$

$$
\left(\left(N:_{R} N\right) \propto M\right)^{2}(0 \propto N)=0 \propto\left(N:_{R} N\right)^{2} N
$$

Thus

$$
\begin{aligned}
(s, m)\left(0 \propto \mathcal{N}^{\prime}\right) & =0 \propto s N^{\prime} \subseteq\left(\left(\mathcal{N}^{\prime}:_{R} N\right) \propto M\right)^{2}(0 \propto N) \\
& =0 \propto\left(\mathcal{N}^{\prime}:_{R} N\right)^{2} N \subseteq 0 \propto N^{\prime},
\end{aligned}
$$

and so $s N^{\prime} \subseteq\left(N^{\prime}:_{R} N\right)^{2} N \subseteq N$. Hence, N is a fully S-idempotent R-module.
Proposition 2.12. Let M and M^{\prime} be R-modules. Assume that $f: M \rightarrow M^{\prime}$ is an R-epimorphism. If M is a fully S-idempotent module, then M is a fully S-idempotent module.
Proof. Let N ' be a submodule of M^{\prime}. Then $N:=f^{-1}\left(N^{\prime}\right)$ is a submodule of M. As M is a fully S-idempotent module, there exists $s \in S$ such that $s N \subseteq\left(N:_{R}\right.$ $M)^{2} M \subseteq N$. Hence, $f(s N) \subseteq f\left(\left(N:_{R} M\right)^{2} M\right) \subseteq f(N)$. This yields that

$$
s \mathcal{N}^{\prime}=s f(N) \subseteq\left(N:_{R} M\right)^{2} f(M)=\left(N:_{R} M\right)^{2} \dot{M} \subseteq \mathcal{N}^{\prime}
$$

Since f is an epimorphism, one can easily see that $\left(N:_{R} M\right)=\left(\mathcal{N}^{\prime}:_{R} M^{\prime}\right)$. Thus $s N \subseteq\left(N^{\prime}:_{R} M^{\prime}\right)^{2} \dot{M} \subseteq N^{\prime}$. Hence, M^{\prime} is a fully S-idempotent module.

Corollary 2.13. Let M be a fully S-idempotent R-module and let N be a submodule of M. Then M / N is a fully S-idempotent R-module.
Theorem 2.14. Let M be an R-module and let S and T be multiplicatively closed subsets of R. Put $\tilde{S}=\left\{s / 1 \in T^{-1} R: s \in S\right\}$, a multiplicatively closed subset of $T^{-1} R$. Then we have the following properties:
(a) If M is a fully S-idempotent R-module, then $T^{-1} M$ is a fully \tilde{S}-idempotent $T^{-1} R$-module.
(b) If M is a fully S-idempotent R-module and $S \subseteq T^{*}$, then $T^{-1} M$ is a fully idempotent $T^{-1} R$-module.
(c) If M is a fully S-idempotent R-module, then $S^{-1} M$ is a fully idempotent $S^{-1} R$-module.
(d) If M is a finitely generated R-module, S satisfies the maximal multiple condition, and $S^{-1} M$ is a fully idempotent $S^{-1} R$-module, then M is a fully S-idempotent module.
Proof. (a) Let N be a $T^{-1} R$-submodule of $T^{-1} M$. Then $N=T^{-1} N$ for some submodule N of M. Since M is a fully S-idempotent module, there exists $s \in S$ with $s N^{\prime} \subseteq\left(N^{\prime}:_{R} M\right)^{2} M \subseteq N^{\prime}$. Then

$$
(s / 1) N=T^{-1}\left(s N^{\prime}\right) \subseteq\left(T^{-1}\left(N^{\prime}:_{R} M\right)^{2}\right)\left(T^{-1} M\right) \subseteq T^{-1} N=N
$$

So $T^{-1} M$ is a fully \tilde{S}-idempotent $T^{-1} R$-module.
(b) If $S \subseteq T^{*}$, then $\tilde{S} \subseteq U\left(T^{-1} R\right)$. Hence, $T^{-1} M$ is a fully idempotent $T^{-1} R$ module by Remark 2.3(d) and part (a).
(c) This follows from part (b).
(d) Let $S^{-1} M$ be a fully idempotent $S^{-1} R$-module. Take a submodule N of M. Since $S^{-1} M$ is a fully idempotent $S^{-1} R$-module, we have

$$
S^{-1} N=\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)^{2}\left(S^{-1} M\right)
$$

As M is a finitely generated R-module, $\left(S^{-1} N:{ }_{S^{-1} R} S^{-1} M\right)=S^{-1}\left(N:_{R} M\right)$. Thus $S^{-1} N=S^{-1}\left(\left(N:_{R} M\right)^{2} M\right)$. Choose $s \in S$ with $t \mid s$ for each $t \in S$. Note that for each $m \in N$, we have $m / 1 \in S^{-1} N=S^{-1}\left(\left(N:_{R} M\right)^{2} M\right)$ and so there exists $t \in S$ such that $t m \in\left(N:_{R} M\right)^{2} M$, and hence $s m \in\left(N:_{R} M\right)^{2} M$. Therefore, we obtain

$$
s^{2} N \subseteq s\left(N:_{R} M\right)^{2} M \subseteq\left(N:_{R} M\right)^{2} M \subseteq N
$$

Hence, M is a fully S-idempotent module.
Let M be an R-module. A submodule N of M is said to be pure if $I N=N \cap I M$ for every ideal I of $R[3]$. Also, M is said to be fully pure if every submodule of M is pure [4]. A submodule N of M is said to be S-pure if there exists $s \in S$ such that $s(N \cap I M) \subseteq I N$ for every ideal I of $R[6]$. Moreover, M is said to be fully S-pure if every submodule of M is S-pure [6].

Theorem 2.15. Let M be an S-multiplication R-module and let N be a submodule of M. Then the following statements are equivalent:
(a) N is an S-pure submodule of M;
(b) N is an S-multiplication R-module and N is an S-idempotent submodule of M;
(c) N is an S-multiplication R-module and there exists $s \in S$ such that $s K \subseteq$ $\left(N:_{R} M\right) K$, for all submodules K of N;
(d) N is an S-multiplication R-module and there exists $s \in S$ such that $s\left(K:_{R}\right.$ $N) N \subseteq\left(K:_{R} M\right)\left(N:_{R} M\right) M$, for all submodules K of M.

Proof. $(a) \Rightarrow(b)$. Let K be a submodule of N. As M is an S-multiplication module, there exists $s \in S$ such that $s K \subseteq\left(K:_{R} M\right) M$. Now since N is S-pure, there is an element $t \in S$ such that $\left(K:_{R} N\right) N \supseteq t\left(N \cap\left(K:_{R} N\right) M\right)$. Hence,

$$
\begin{aligned}
\left(K:_{R} N\right) N & \supseteq t\left(N \cap\left(K:_{R} N\right) M\right) \supseteq t\left(N \cap\left(K:_{R} M\right) M\right) \\
& \supseteq t(N \cap s K)=t s K .
\end{aligned}
$$

This implies that N is an S-multiplication R-module. Since M is an S-multiplication module, there exists $u \in S$ such that $u N \subseteq\left(N:_{R} M\right) M$. Now as N is S-pure, there is an element $v \in S$ such that $\left(N:_{R} M\right) u N \supseteq v\left(N \cap u\left(N:_{R} M\right) M\right)$. Therefore,

$$
\begin{aligned}
\left(N:_{R} M\right)^{2} M & =\left(N:_{R} M\right)\left(N:_{R} M\right) M \supseteq\left(N:_{R} M\right) u N \\
& \supseteq v\left(N \cap u\left(N:_{R} M\right) M\right)=v u\left(N:_{R} M\right) M \supseteq v u^{2} N .
\end{aligned}
$$

So, N is an S-idempotent submodule.
$(b) \Rightarrow(c)$. Let K be a submodule of N. Since N is an S-multiplication R module, there exists $s \in S$ such that $s K \subseteq\left(K:_{R} N\right) N$. As N is S-idempotent, there is $t \in S$ such that $t N \subseteq\left(N:_{R} M\right)^{2} M$. Therefore,

$$
\begin{aligned}
t s K & \subseteq t\left(K:_{R} N\right) N=\left(K:_{R} N\right) t N \\
& \subseteq\left(K:_{R} N\right)\left(N:_{R} M\right)^{2} M=\left(N:_{R} M\right)\left(K:_{R} N\right)\left(N:_{R} M\right) M \\
& \subseteq\left(N:_{R} M\right)\left(K:_{R} N\right) N \subseteq\left(N:_{R} M\right) K .
\end{aligned}
$$

$(c) \Rightarrow(a)$. Let I be an ideal of R. Since $N \cap I M \subseteq N$, by part (c), there is $s \in S$ such that $s(N \cap I M) \subseteq\left(N:_{R} M\right)(N \cap I M)$. Hence,

$$
s(N \cap I M) \subseteq(N \cap I M)\left(N:_{R} M\right) \subseteq I M\left(N:_{R} M\right)=I N
$$

Thus N is an S-pure submodule of M.
$(b) \Rightarrow(d)$. Let K be a submodule of M. Since N is S-idempotent, there is $s \in S$ such that $s N \subseteq\left(N:_{R} M\right)^{2} M$. So

$$
s\left(K:_{R} N\right) N \subseteq\left(K:_{R} N\right)\left(N:_{R} M\right)^{2} M \subseteq\left(K:_{R} M\right)\left(N:_{R} M\right) M
$$

$(d) \Rightarrow(b)$. Take $K=N$.
Corollary 2.16. Let M be an R-module. Then we have the following results:
(a) If M is a fully S-idempotent R-module, then M is a fully S-pure R module.
(b) If M is an S-multiplication fully S-pure R-module, then M is a fully S-idempotent R-module.
Proof. (a) By Proposition 2.7(b), every submodule of M is a fully S-idempotent R-module. Hence, by Remark 2.3(c), every submodule of M is an S-multiplication R-module. Now the result follows from Theorem $2.15(b) \Rightarrow(a)$.
(b) This follows from Theorem $2.15(a) \Rightarrow(b)$.

Acknowledgement. The author would like to thank the referees for careful reading of the manuscript and making valuable suggestions which improved this paper.

References

1. D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra 48 (2020), no. 8, 1-10.
2. D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56.
3. W. Anderson and K.R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974.
4. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (2012), no. 4, 987-1005.
5. A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.
6. F. Farshadifar, A generalization of pure submodules, J. Algebra Relat. Topics 8 (2020), no. 2, 1-8.
7. F. Farshadifar, S-copure submodules of a module, Miskolc Math. Notes, to appear.
8. R. Gilmer, Multiplicative Ideal Theory, Corrected reprint of the 1972 edition, Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston, ON, 1992.
9. E.S. Sevim, Ü. Tekir and S. Koç, S-Artinian rings and finitely S-cogenerated rings, J. Algebra Appl. 19 (2020), no. 3, 2050051, 16 pp.
10. G. Ulucak, Ü. Tekir and S. Koç, On S-2-absorbing submodules and vn-regular modules, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 28 (2020), no. 2, 239-257.
${ }^{1}$ Department of Mathematics, Farhangian University, Tehran, Iran.
Email address: f.farshadifar@cfu.ac.ir

[^0]: Date: Received: 17 September 2022; Accepted: 26 December 2022.
 2020 Mathematics Subject Classification. Primary 13C13, 13A15.
 Key words and phrases. Multiplicatively closed subset, fully idempotent module, S multiplication module, fully S-idempotent module.

