Khayyam J. Math. 9 (2023), no. 1, 153-161 DOI: 10.22034/KJM.2022.362523.2664

FULLY S-IDEMPOTENT MODULES

FARANAK FARSHADIFAR¹

Communicated by B. Mashayekhy

ABSTRACT. Let R be a commutative ring with identity, let S be a multiplicatively closed subset of R, and let M be an R-module. A submodule N of Mis said to be *idempotent* if $N = (N :_R M)^2 M$. Also, M is said to be *fully idempotent* if every submodule of M is idempotent. The aim of this paper is to introduce the concept of fully S-idempotent modules as a generalization of fully idempotent modules and investigate some properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. Also, S will denote a multiplicatively closed subset of R.

Let M be an R-module. The module M is said to be a multiplication module if for every submodule N of M, there exists an ideal I of R such that N = IM [5]. It is easy to see that M is a multiplication module if and only if $N = (N :_R M)M$ for each submodule N of M. A submodule N of M is said to be *idempotent* if $N = (N :_R M)^2 M$. Also, M is said to be *fully idempotent* if every submodule of M is idempotent [4].

In [1], the authors introduced and investigated the concept of S-multiplication modules as a generalization of multiplication modules. An R-module M is said to be an S-multiplication module if for each submodule N of M, there exist $s \in S$ and an ideal I of R such that $sN \subseteq IM \subseteq N$ [1]. One can see that M is an S-multiplication module if and only if for each submodule N of M there exists

Date: Received: 17 September 2022; Accepted: 26 December 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 13C13, 13A15.

Key words and phrases. Multiplicatively closed subset, fully idempotent module, Smultiplication module, fully S-idempotent module.

 $s \in S$ such that $sN \subseteq (N :_R M)M \subseteq N$. The current studies on S-versions of some important classes of modules/rings can be found in [9, 10].

In this paper, we introduce the concept of fully S-idempotent R-modules as a generalization of fully idempotent modules and provide some useful information concerning this new class of modules. We say that a submodule N of an R-module M is an S-idempotent submodule if there exists $s \in S$ such that $sN \subseteq (N :_R M)^2 M \subseteq N$ (Definition 2.1(b)). We say that an R-module M is a fully S-idempotent module if every submodule of M is an S-idempotent submodule (Definition 2.1(c)). Clearly every fully idempotent R-module is a fully S-idempotent R-module (Remark 2.3(b)). Example 2.4 shows that the converse is not true in general. In Theorem 2.8, we characterize the fully idempotent R-modules. Also, we characterize the fully S-idempotent R-modules, where S satisfying the maximal multiple condition (Proposition 2.9). Let M_i be an R_i module for $i = 1, 2, \ldots, n$ and let S_1, \ldots, S_n be multiplicatively closed subsets of R_1, \ldots, R_n , respectively. Assume that $M = M_1 \times \cdots \times M_n$, $R = R_1 \times \cdots \times R_n$, and $S = S_1 \times \cdots \times S_n$. Then we show that the following statements are equivalent:

- (a) M is a fully S-idempotent module;
- (b) M_i is a fully S_i -idempotent module for each $i \in \{1, 2, ..., n\}$.

Also, among other results, it is shown that (Theorem 2.15) if M is an S-multiplication R-module and N is a submodule of M, then the following statements are equivalent:

- (a) N is an S-pure submodule of M;
- (b) N is an S-multiplication R-module and N is an S-idempotent submodule of M.

Finally, we prove that if M is a fully S-idempotent R-module, then M is a fully S-pure R-module. The converse holds if M is an S-multiplication R-module (Corollary 2.16).

2. Main results

- **Definition 2.1.** (a) We say that an element x of an R-module M is an S-*idempotent element* if there exist $s \in S$ and $a \in (Rx :_R M)$ such that sx = ax.
 - (b) We say that a submodule N of an R-module M is an S-idempotent submodule if there exists $s \in S$ such that $sN \subseteq (N :_R M)^2 M \subseteq N$.
 - (c) We say that an R-module M is a fully S-idempotent module if every submodule of M is an S-idempotent submodule.

Example 2.2. Let M be an R-module with $\operatorname{Ann}_{\mathbb{R}}(M) \cap S \neq \emptyset$. Then clearly, M is a fully S-idempotent R-module.

The following remarks can be immediately followed from Definition 2.1.

Remark 2.3. Let M be an R-module. Then we have the following properties:

- (a) The submodules zero and M are always S-idempotent submodules of M. So each simple R-module is a fully S-idempotent R-module.
- (b) Every fully idempotent *R*-module is a fully *S*-idempotent *R*-module.

- (c) Every fully S-idempotent R-module is an S-multiplication R-module.
- (d) If $S \subseteq U(R)$, then every fully S-idempotent R-module is a fully idempotent R-module, where U(R) is the set of units in R.
- (e) If $S_1 \subseteq S_2$ are multiplicatively closed subsets of R and M is a fully S_1 -idempotent R-module, then M is a fully S_2 -idempotent R-module.
- (f) If N is an S-idempotent submodule of M, then by a similar argument to the proof of $((b) \Rightarrow (c))$ in [4, Lemma 2.2], one can see that there is $s \in S$ such that

$$sN \subseteq \operatorname{Hom}_R(M, N)N,$$

where $\operatorname{Hom}_R(M, N)N = \sum \{\varphi(N) : \varphi \in \operatorname{Hom}_R(M, N)\}.$

The following examples show that the converse of Remark 2.3(b, c, f) is not true in general.

Example 2.4. Take the \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}}$ for a prime number p. Then we know that all proper submodules of M are of the form $G_t = \langle 1/p^t + \mathbb{Z} \rangle$ for some $t \in \mathbb{N} \cup \{0\}$ and $(G_t :_{\mathbb{Z}} M) = 0$. Therefore, M is not a fully idempotent \mathbb{Z} -module. Now, take the multiplicatively closed subset $S = \{p^n : n \in \mathbb{N} \cup \{0\}\}$ of \mathbb{Z} . Then $p^t G_t = 0 \subseteq (G_t :_{\mathbb{Z}} M)^2 M \subseteq G_t$. Hence, G_t is an S-idempotent submodule of M for each $t \in \mathbb{N} \cup \{0\}$. So, M is a fully S-idempotent \mathbb{Z} -module.

Example 2.5. Take the multiplicatively closed subset $S = \mathbb{Z} \setminus 2\mathbb{Z}$ of \mathbb{Z} . Then \mathbb{Z}_4 is an *S*-multiplication \mathbb{Z} -module. Indeed \mathbb{Z}_4 is not a fully *S*-idempotent \mathbb{Z} -module, because $2\mathbb{Z}_4$ is not an *S*-idempotent submodule of \mathbb{Z}_4 .

Example 2.6. Let p be a prime number. Take the multiplicatively closed subset $S = \mathbb{Z} \setminus p\mathbb{Z}$ of \mathbb{Z} . Then one can see that the submodule $N = \mathbb{Z}_p \oplus 0$ of the \mathbb{Z} -module $M = \mathbb{Z}_p \oplus \mathbb{Z}_p$ is not S-idempotent, but $sN \subseteq \text{Hom}_{\mathbb{Z}}(M, N)N = N$ for each $s \in S$.

The saturation S^* of S is defined as $S^* = \{x \in R : x/1 \text{ is a unit of } S^{-1}R\}$. It is obvious that S^* is a multiplicatively closed subset of R containing S [8].

A submodule N of an R-module M is said to be S-copure if there exists $s \in S$ such that $s(N:_M I) \subseteq N + (0:_M I)$ for every ideal I of R [7].

Proposition 2.7. Let *M* be an R-module. Then we have the following properties:

- (a) M is a fully S-idempotent R-module if and only if M is a fully S^* -idempotent R-module.
- (b) If M is a fully S-idempotent R-module, then every submodule of M is a fully S-idempotent R-module.
- (c) If M is an S-multiplication R-module and N is an S-copure submodule of M, then N is S-idempotent.

Proof. (a) Let M be a fully S-idempotent R-module. Since $S \subseteq S^*$, by Remark 2.3(e), M is a fully S^* -idempotent R-module. For the converse, assume that M is a fully S^* -idempotent module and that N is a submodule of M. Then there exists $x \in S^*$ such that $xN \subseteq (N :_R M)^2 M$. As $x \in S^*$, x/1 is a unit of $S^{-1}R$ and so (x/1)(a/s) = 1 for some $a \in R$ and $s \in S$. This yields that us = uxa for

some $u \in S$. Thus we have $usN = uxaN \subseteq xN \subseteq (N :_R M)^2 M$. Therefore, M is a fully S-idempotent R-module.

(b) Let N be a submodule of M and let K be a submodule of N. Then there exists $s \in S$ such that $sK \subseteq (K :_R M)^2 M \subseteq K$. This implies that

 $s^{2}K \subseteq s(K:_{R} M)^{2}M \subseteq s(K:_{R} M)K \subseteq (K:_{R} M)(K:_{R} M)^{2}M \subseteq (K:_{R} M)^{3}M.$ Thus

$$s^{2}K \subseteq (K:_{R} M)^{3}M \subseteq (K:_{R} N)^{2}(N:_{R} M)M \subseteq (K:_{R} N)^{2}N.$$

Therefore, N is fully S-idempotent.

(c) Let M be an S-multiplication R-module and let N be an S-copure submodule of M. Then there exists $s \in S$ such that

$$s(N:_M (N:_R M)) \subseteq N + (0:_M (N:_R M)).$$

This in turn implies that $sM \subseteq N + (0:_M (N:_R M))$. It follows that

$$s(N:_R M)M \subseteq (N:_R M)N$$

As M is an S-multiplication module, there is an element $t \in S$ such that $tN \subseteq$ $(N:_R M)M$. Hence, we have

$$st^2N \subseteq st(N:_R M)M \subseteq (N:_R M)tN \subseteq (N:_R M)^2M,$$

as needed.

In the following theorem, we characterize the fully idempotent R-modules.

Theorem 2.8. Let M be an R-module. Then the following statements are equivalent:

- (a) M is a fully idempotent R-module;
- (b) M is a fully $(R \setminus \mathfrak{p})$ -idempotent R-module for each prime ideal \mathfrak{p} of R:
- (c) M is a fully $(R \setminus \mathfrak{m})$ -idempotent R-module for each maximal ideal \mathfrak{m} of R;
- (d) M is a fully $(R \setminus \mathfrak{m})$ -idempotent R-module for each maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0$.

Proof. $(a) \Rightarrow (b)$. This follows from Remark 2.3(b).

 $(b) \Rightarrow (c)$ and $(c) \Rightarrow (d)$. These are clear.

 $(d) \Rightarrow (a)$. Let N be a submodule of M. Take a maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0$. As M is a fully $(R \setminus \mathfrak{m})$ -idempotent module, there exists $s \notin \mathfrak{m}$ such that $sN \subseteq (N:_R M)^2 M \subseteq N$. This implies that

$$N_{\mathfrak{m}} = (sN)_{\mathfrak{m}} \subseteq ((N:_R M)^2 M)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}.$$

If $M_{\mathfrak{m}} = 0$, then clearly $N_{\mathfrak{m}} = ((N :_R M)^2 M)_{\mathfrak{m}}$. Thus we conclude that $N_{\mathfrak{m}} =$ $((N:_R M)^2 M)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of R. It follows that $N = (N:_R M)^2 M$, as needed.

A multiplicatively closed subset S of R is said to satisfy the maximal multiple condition if there exists $s \in S$ such that $t \mid s$ for each $t \in S$.

In the following theorem, we characterize the fully S-idempotent R-modules, where S is a multiplicatively closed subset of R satisfying the maximal multiple condition.

156

Proposition 2.9. Let S be a multiplicatively closed subset of R satisfying the maximal multiple condition (e.g., S is finite or $S \subseteq U(R)$) and let M be an R-module. Then the following statements are equivalent:

- (a) M is a fully S-idempotent module;
- (b) Every cyclic submodule of M is S-idempotent;
- (c) Every element of M is S-idempotent;
- (d) For all submodules N and K of M, we have $s(N \cap K) \subseteq (N :_R M)(K :_R M)M$ for some $s \in S$.

Proof. $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$ are clear.

 $(c) \Rightarrow (a)$. Let N be a submodule of M and let $x \in N$. Then by the hypothesis, there exist $s_x \in S$ and $a \in (Rx :_R M)$ such that $s_x x = ax$. Hence $as_x x = a^2 x$, and so $s_x^2 x = s_x ax = as_x x = a^2 x$. Thus $s_x^2 Rx \subseteq (Rx :_R M)^2 M$. Now as S satisfying the maximal multiple condition, there exists $s \in S$ such that $sRx \subseteq (Rx :_R M)^2 M \subseteq (N :_R M)^2 M$. Therefore, $sN \subseteq (N :_R M)^2 M$, as required.

 $(a) \Rightarrow (d)$. Let N and K be two submodules of M. Then for some $s \in S$, we have

$$s(N \cap K) \subseteq (N \cap K :_R M)^2 M \subseteq (N :_R M)(K :_R M)M.$$

 $(d) \Rightarrow (a)$. For a submodule N of M, we have

$$sN = s(N \cap N) \subseteq (N :_R M)(N :_R M)M = (N :_R M)^2M$$

for some $s \in S$.

Let R_i be a commutative ring with identity, let M_i be an R_i -module for each i = 1, 2, ..., n, and let $n \in \mathbb{N}$. Assume that $M = M_1 \times M_2 \times \cdots \times M_n$ and that $R = R_1 \times R_2 \times \cdots \times R_n$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_i is a multiplicatively closed subset of R_i for each i = 1, 2, ..., n, then $S = S_1 \times S_2 \times \cdots \times S_n$ is a multiplicatively closed subset of R. Furthermore, each submodule N of M is of the form $N = N_1 \times N_2 \times \cdots \times N_n$, where N_i is a submodule of M_i .

Theorem 2.10. Let M_i be an R_i -module for i = 1, 2, ..., n and let $S_1, ..., S_n$ be multiplicatively closed subsets of $R_1, ..., R_n$, respectively. Assume that $M = M_1 \times \cdots \times M_n$, $R = R_1 \times \cdots \times R_n$ and $S = S_1 \times \cdots \times S_n$. Then M is a fully S-idempotent module if and only if M_i is a fully S_i -idempotent module for each $i \in \{1, 2, ..., n\}$.

Proof. We use mathematical induction. If n = 1, then the claim is trivial. Now suppose that n = 2. For only if part, without loss of generality, we will show that M_1 is a fully S_1 -idempotent R_1 -module. Take a submodule N_1 of M_1 . Then $N_1 \times \{0\}$ is a submodule of M. Since M is a fully S-idempotent R-module, there exists $s = (s_1, s_2) \in S_1 \times S_2$ such that $(s_1, s_2)(N_1 \times \{0\}) \subseteq (N_1 \times \{0\} :_R M)^2 M$. By focusing on the first coordinate, we have $s_1N_1 \subseteq (N_1 :_{R_1} M_1)^2 M_1$. So M_1 is a fully S_1 -idempotent R_1 -module. Now assume that M_1 is a fully S_1 -idempotent module and that M_2 is a fully S_2 -idempotent module. Take a submodule Nof M. Then N must be in the form of $N_1 \times N_2$, where $N_1 \subseteq M_1, N_2 \subseteq M_2$. Since M_1 is a fully S_1 -idempotent R_1 -module, there exists $s_1 \in S_1$ such that

 $s_1N_1 \subseteq (N_1:_{R_1} M_1)^2 M_1$. Similarly, there exists an element $s_2 \in S_2$ such that $s_2N_2 \subseteq (N_2:_{R_2} M_2)^2 M_2$. Now, put $s = (s_1, s_2) \in S$. Then we get

 $(s_1, s_2)N \subseteq s_1N_1 \times s_2N_2 \subseteq (N_1:_{R_1} M_1)^2 M_1 \times (N_2:_{R_2} M_2)^2 M_2 \subseteq (N:_R M)^2 M.$ Hence, M is a fully S-idempotent R-module.

Next, assume that the claim is true for n < k, and we will show that it is also true for n = k. Put $M = (M_1 \times \cdots \times M_{n-1}) \times M_n$, $R = (R_1 \times R_2 \times \cdots \times R_{n-1}) \times R_n$, and $S = (S_1 \times \cdots \times S_{n-1}) \times S_n$. By the case when n = 2, M is a fully S-idempotent module if and only if $M_1 \times \cdots \times M_{n-1}$ is a fully $(S_1 \times \cdots \times S_{n-1})$ -idempotent $(R_1 \times R_2 \times \cdots \times R_{n-1})$ -module and M_n is a fully S_n -idempotent R_n -module. Now the rest follows from the induction hypothesis.

Let M be an R-module. The *idealization* or *trivial extension* $R \propto M = R \oplus M$ of M is a commutative ring with componentwise addition and multiplication $(a,m)(b,\acute{m}) = (ab, a\acute{m} + bm)$ for each $a, b \in R, m, \acute{m} \in M$ [2]. If I is an ideal of R and N is a submodule of M, then $I \propto N$ is an ideal of $R \propto M$ if and only if $IM \subseteq N$. In that case, $I \propto N$ is called a *homogeneous ideal* of $R \propto M$. Also, if $S \subseteq R$ is a multiplicatively closed subset, then $S \propto N$ is a multiplicatively closed subset of $R \propto M$ [2, Theorem 3.8].

Let I be an ideal of R. If I is a fully S-idempotent R-module, then we say that I is a fully S-idempotent ideal of R.

Theorem 2.11. Let N be a submodule of an R-module M. Then the following statements are equivalent:

- (a) N is a fully S-idempotent R-module;
- (b) $0 \propto N$ is a fully $(S \propto 0)$ -idempotent ideal of $R \propto M$;
- (c) $0 \propto N$ is a fully $(S \propto M)$ -idempotent ideal of $R \propto M$.

Proof. (a) \Rightarrow (b). Suppose that N is a fully S-idempotent R-module. Take an ideal J of $R \propto M$ contained in $0 \propto N$. Then $J = 0 \propto \dot{N}$ for some submodule \dot{N} of M with $\dot{N} \subseteq N$. Since N is a fully S-idempotent module, there exists $s \in S$ with $s\dot{N} \subseteq (\dot{N}:_R N)^2 N \subseteq \dot{N}$. First, note that $(J:_{R \propto M} 0 \propto N) = (\dot{N}:_R N) \propto M$. So this gives $(J:_{R \propto M} 0 \propto N)^2 = ((\dot{N}:_R N) \propto M)^2 = (\dot{N}:_R N)^2 \propto (\dot{N}:_R N)M$. Then we have $(J:_{R \propto M} 0 \propto N)^2 (0 \propto N) = 0 \propto (\dot{N}:_R N)^2 N$. This implies that

$$(s,0)J = 0 \propto s\dot{N} \subseteq 0 \propto (\dot{N}:_R N)^2 N$$
$$= (J:_{R \propto M} 0 \propto N)^2 (0 \propto N) \subseteq J.$$

It follows that $0 \propto N$ is a fully $(S \propto 0)$ -idempotent ideal of $R \propto M$.

 $(b) \Rightarrow (c)$. This follows from the fact that $S \propto 0 \subseteq S \propto M$ and Remark 2.3(e).

 $(c) \Rightarrow (a)$. Suppose that $0 \propto N$ is a fully $(S \propto M)$ -idempotent ideal of $R \propto M$. Let \hat{N} be a submodule of N. Then $0 \propto \hat{N} \subseteq 0 \propto N$ and $0 \propto \hat{N}$ is an ideal of $R \propto M$. Since $0 \propto N$ is a fully $(S \propto M)$ -idempotent ideal of $R \propto M$, there exists $(s,m) \in S \propto M$ such that

$$(s,m)(0\propto \acute{N}) \subseteq ((0\propto \acute{N}):_{R\propto M} (0\propto N))^2(0\propto N) \subseteq 0\propto \acute{N}.$$

One can easily check that

$$(0 \propto N) :_{R \propto M} (0 \propto N) = (N :_R N) \propto M_2$$

$$((\dot{N}:_R N) \propto M)^2 (0 \propto N) = 0 \propto (\dot{N}:_R N)^2 N.$$

Thus

$$(s,m)(0 \propto \acute{N}) = 0 \propto s\acute{N} \subseteq ((\acute{N}:_R N) \propto M)^2 (0 \propto N)$$
$$= 0 \propto (\acute{N}:_R N)^2 N \subseteq 0 \propto \acute{N},$$

and so $s\hat{N} \subseteq (\hat{N}:_R N)^2 N \subseteq \hat{N}$. Hence, N is a fully S-idempotent R-module. \Box

Proposition 2.12. Let M and M be R-modules. Assume that $f: M \to M$ is an R-epimorphism. If M is a fully S-idempotent module, then M is a fully S-idempotent module.

Proof. Let \hat{N} be a submodule of \hat{M} . Then $N := f^{-1}(\hat{N})$ is a submodule of M. As M is a fully S-idempotent module, there exists $s \in S$ such that $sN \subseteq (N :_R M)^2 M \subseteq N$. Hence, $f(sN) \subseteq f((N :_R M)^2 M) \subseteq f(N)$. This yields that

$$s\dot{N} = sf(N) \subseteq (N:_R M)^2 f(M) = (N:_R M)^2 \dot{M} \subseteq \dot{N}.$$

Since f is an epimorphism, one can easily see that $(N :_R M) = (\hat{N} :_R \hat{M})$. Thus $s\hat{N} \subseteq (\hat{N} :_R \hat{M})^2 \hat{M} \subseteq \hat{N}$. Hence, \hat{M} is a fully S-idempotent module. \Box

Corollary 2.13. Let M be a fully S-idempotent R-module and let N be a submodule of M. Then M/N is a fully S-idempotent R-module.

Theorem 2.14. Let M be an R-module and let S and T be multiplicatively closed subsets of R. Put $\tilde{S} = \{s/1 \in T^{-1}R : s \in S\}$, a multiplicatively closed subset of $T^{-1}R$. Then we have the following properties:

- (a) If M is a fully S-idempotent R-module, then $T^{-1}M$ is a fully \tilde{S} -idempotent $T^{-1}R$ -module.
- (b) If M is a fully S-idempotent R-module and $S \subseteq T^*$, then $T^{-1}M$ is a fully idempotent $T^{-1}R$ -module.
- (c) If M is a fully S-idempotent R-module, then $S^{-1}M$ is a fully idempotent $S^{-1}R$ -module.
- (d) If M is a finitely generated R-module, S satisfies the maximal multiple condition, and S⁻¹M is a fully idempotent S⁻¹R-module, then M is a fully S-idempotent module.

Proof. (a) Let N be a $T^{-1}R$ -submodule of $T^{-1}M$. Then $N = T^{-1}\dot{N}$ for some submodule \dot{N} of M. Since M is a fully S-idempotent module, there exists $s \in S$ with $s\dot{N} \subseteq (\dot{N}:_R M)^2 M \subseteq \dot{N}$. Then

$$(s/1)N = T^{-1}(s\hat{N}) \subseteq (T^{-1}(\hat{N}:_R M)^2)(T^{-1}M) \subseteq T^{-1}\hat{N} = N.$$

So $T^{-1}M$ is a fully \tilde{S} -idempotent $T^{-1}R$ -module.

(b) If $S \subseteq T^*$, then $\tilde{S} \subseteq U(T^{-1}R)$. Hence, $T^{-1}M$ is a fully idempotent $T^{-1}R$ -module by Remark 2.3(d) and part (a).

(c) This follows from part (b).

(d) Let $S^{-1}M$ be a fully idempotent $S^{-1}R$ -module. Take a submodule N of M. Since $S^{-1}M$ is a fully idempotent $S^{-1}R$ -module, we have

$$S^{-1}N = (S^{-1}N :_{S^{-1}R} S^{-1}M)^2 (S^{-1}M).$$

As M is a finitely generated R-module, $(S^{-1}N :_{S^{-1}R} S^{-1}M) = S^{-1}(N :_R M)$. Thus $S^{-1}N = S^{-1}((N :_R M)^2M)$. Choose $s \in S$ with $t \mid s$ for each $t \in S$. Note that for each $m \in N$, we have $m/1 \in S^{-1}N = S^{-1}((N :_R M)^2M)$ and so there exists $t \in S$ such that $tm \in (N :_R M)^2M$, and hence $sm \in (N :_R M)^2M$. Therefore, we obtain

$$s^2 N \subseteq s(N:_R M)^2 M \subseteq (N:_R M)^2 M \subseteq N.$$

Hence, M is a fully S-idempotent module.

Let M be an R-module. A submodule N of M is said to be *pure* if $IN = N \cap IM$ for every ideal I of R [3]. Also, M is said to be *fully pure* if every submodule of M is pure [4]. A submodule N of M is said to be S-pure if there exists $s \in S$ such that $s(N \cap IM) \subseteq IN$ for every ideal I of R [6]. Moreover, M is said to be *fully S*-pure if every submodule of M is S-pure [6].

Theorem 2.15. Let M be an S-multiplication R-module and let N be a submodule of M. Then the following statements are equivalent:

- (a) N is an S-pure submodule of M;
- (b) N is an S-multiplication R-module and N is an S-idempotent submodule of M;
- (c) N is an S-multiplication R-module and there exists $s \in S$ such that $sK \subseteq (N :_R M)K$, for all submodules K of N;
- (d) N is an S-multiplication R-module and there exists $s \in S$ such that $s(K :_R N)N \subseteq (K :_R M)(N :_R M)M$, for all submodules K of M.

Proof. $(a) \Rightarrow (b)$. Let K be a submodule of N. As M is an S-multiplication module, there exists $s \in S$ such that $sK \subseteq (K:_R M)M$. Now since N is S-pure, there is an element $t \in S$ such that $(K:_R N)N \supseteq t(N \cap (K:_R N)M)$. Hence,

$$(K:_R N)N \supseteq t(N \cap (K:_R N)M) \supseteq t(N \cap (K:_R M)M)$$
$$\supseteq t(N \cap sK) = tsK.$$

This implies that N is an S-multiplication R-module. Since M is an S-multiplication module, there exists $u \in S$ such that $uN \subseteq (N :_R M)M$. Now as N is S-pure, there is an element $v \in S$ such that $(N :_R M)uN \supseteq v(N \cap u(N :_R M)M)$. Therefore,

$$(N:_R M)^2 M = (N:_R M)(N:_R M)M \supseteq (N:_R M)uN$$
$$\supseteq v(N \cap u(N:_R M)M) = vu(N:_R M)M \supseteq vu^2N.$$

So, N is an S-idempotent submodule.

 $(b) \Rightarrow (c)$. Let K be a submodule of N. Since N is an S-multiplication R-module, there exists $s \in S$ such that $sK \subseteq (K :_R N)N$. As N is S-idempotent, there is $t \in S$ such that $tN \subseteq (N :_R M)^2 M$. Therefore,

$$tsK \subseteq t(K:_R N)N = (K:_R N)tN$$
$$\subseteq (K:_R N)(N:_R M)^2 M = (N:_R M)(K:_R N)(N:_R M)M$$
$$\subseteq (N:_R M)(K:_R N)N \subseteq (N:_R M)K.$$

 $(c) \Rightarrow (a)$. Let I be an ideal of R. Since $N \cap IM \subseteq N$, by part (c), there is $s \in S$ such that $s(N \cap IM) \subseteq (N :_R M)(N \cap IM)$. Hence,

$$s(N \cap IM) \subseteq (N \cap IM)(N :_R M) \subseteq IM(N :_R M) = IN.$$

Thus N is an S-pure submodule of M.

 $(b) \Rightarrow (d)$. Let K be a submodule of M. Since N is S-idempotent, there is $s \in S$ such that $sN \subseteq (N :_R M)^2 M$. So

$$s(K:_R N)N \subseteq (K:_R N)(N:_R M)^2 M \subseteq (K:_R M)(N:_R M)M.$$

(d) \Rightarrow (b). Take $K = N.$

Corollary 2.16. Let *M* be an *R*-module. Then we have the following results:

- (a) If M is a fully S-idempotent R-module, then M is a fully S-pure R-module.
- (b) If M is an S-multiplication fully S-pure R-module, then M is a fully S-idempotent R-module.

Proof. (a) By Proposition 2.7(b), every submodule of M is a fully S-idempotent R-module. Hence, by Remark 2.3(c), every submodule of M is an S-multiplication R-module. Now the result follows from Theorem 2.15 (b) \Rightarrow (a).

(b) This follows from Theorem 2.15 $(a) \Rightarrow (b)$.

Acknowledgement. The author would like to thank the referees for careful reading of the manuscript and making valuable suggestions which improved this paper.

References

- D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S-multiplication modules, Comm. Algebra 48 (2020), no. 8, 1–10.
- D.D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), no. 1, 3–56.
- W. Anderson and K.R. Fuller, *Rings and categories of modules*, Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974.
- H. Ansari-Toroghy and F. Farshadifar, *Fully idempotent and coidempotent modules*, Bull. Iranian Math. Soc. **38** (2012), no. 4, 987–1005.
- 5. A. Barnard, *Multiplication modules*, J. Algebra **71** (1981), no. 1, 174–178.
- F. Farshadifar, A generalization of pure submodules, J. Algebra Relat. Topics 8 (2020), no. 2, 1–8.
- 7. F. Farshadifar, S-copure submodules of a module, Miskolc Math. Notes, to appear.
- R. Gilmer, *Multiplicative Ideal Theory*, Corrected reprint of the 1972 edition, Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston, ON, 1992.
- E.S. Sevim, Ü. Tekir and S. Koç, S-Artinian rings and finitely S-cogenerated rings, J. Algebra Appl. 19 (2020), no. 3, 2050051, 16 pp.
- G. Ulucak, Ü. Tekir and S. Koç, On S-2-absorbing submodules and vn-regular modules, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 28 (2020), no. 2, 239–257.

¹DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, TEHRAN, IRAN. Email address: f.farshadifar@cfu.ac.ir