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FULLY S-IDEMPOTENT MODULES
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Communicated by B. Mashayekhy

Abstract. Let R be a commutative ring with identity, let S be a multiplica-
tively closed subset of R, and let M be an R-module. A submodule N of M
is said to be idempotent if N = (N :R M)2M . Also, M is said to be fully
idempotent if every submodule of M is idempotent. The aim of this paper
is to introduce the concept of fully S-idempotent modules as a generalization
of fully idempotent modules and investigate some properties of this class of
modules.

1. Introduction
Throughout this paper, R will denote a commutative ring with identity and

Z will denote the ring of integers. Also, S will denote a multiplicatively closed
subset of R.

Let M be an R-module. The module M is said to be a multiplication module if
for every submodule N of M , there exists an ideal I of R such that N = IM [5].
It is easy to see that M is a multiplication module if and only if N = (N :R M)M
for each submodule N of M . A submodule N of M is said to be idempotent if
N = (N :R M)2M . Also, M is said to be fully idempotent if every submodule of
M is idempotent [4].

In [1], the authors introduced and investigated the concept of S-multiplication
modules as a generalization of multiplication modules. An R-module M is said
to be an S-multiplication module if for each submodule N of M , there exist s ∈ S
and an ideal I of R such that sN ⊆ IM ⊆ N [1]. One can see that M is an
S-multiplication module if and only if for each submodule N of M there exists
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s ∈ S such that sN ⊆ (N :R M)M ⊆ N . The current studies on S-versions of
some important classes of modules/rings can be found in [9, 10].

In this paper, we introduce the concept of fully S-idempotent R-modules as
a generalization of fully idempotent modules and provide some useful informa-
tion concerning this new class of modules. We say that a submodule N of an
R-module M is an S-idempotent submodule if there exists s ∈ S such that
sN ⊆ (N :R M)2M ⊆ N (Definition 2.1(b)). We say that an R-module M
is a fully S-idempotent module if every submodule of M is an S-idempotent sub-
module (Definition 2.1(c)). Clearly every fully idempotent R-module is a fully
S-idempotent R-module (Remark 2.3(b)). Example 2.4 shows that the converse
is not true in general. In Theorem 2.8, we characterize the fully idempotent
R-modules. Also, we characterize the fully S-idempotent R-modules, where S
satisfying the maximal multiple condition (Proposition 2.9). Let Mi be an Ri-
module for i = 1, 2, . . . , n and let S1, . . . , Sn be multiplicatively closed subsets of
R1, . . . , Rn, respectively. Assume that M = M1 × · · · ×Mn, R = R1 × · · · × Rn,
and S = S1×· · ·×Sn. Then we show that the following statements are equivalent:

(a) M is a fully S-idempotent module;
(b) Mi is a fully Si-idempotent module for each i ∈ {1, 2, . . . , n}.

Also, among other results, it is shown that (Theorem 2.15) if M is an S-multiplication
R-module and N is a submodule of M , then the following statements are equiv-
alent:

(a) N is an S-pure submodule of M ;
(b) N is an S-multiplication R-module and N is an S-idempotent submodule

of M .
Finally, we prove that if M is a fully S-idempotent R-module, then M is a fully
S-pure R-module. The converse holds if M is an S-multiplication R-module
(Corollary 2.16).

2. Main results
Definition 2.1. (a) We say that an element x of an R-module M is an S-

idempotent element if there exist s ∈ S and a ∈ (Rx :R M) such that
sx = ax.

(b) We say that a submodule N of an R-module M is an S-idempotent sub-
module if there exists s ∈ S such that sN ⊆ (N :R M)2M ⊆ N .

(c) We say that an R-module M is a fully S-idempotent module if every
submodule of M is an S-idempotent submodule.

Example 2.2. Let M be an R-module with AnnR(M)∩S ̸= ∅. Then clearly, M
is a fully S-idempotent R-module.

The following remarks can be immediately followed from Definition 2.1.

Remark 2.3. Let M be an R-module. Then we have the following properties:
(a) The submodules zero and M are always S-idempotent submodules of M .

So each simple R-module is a fully S-idempotent R-module.
(b) Every fully idempotent R-module is a fully S-idempotent R-module.
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(c) Every fully S-idempotent R-module is an S-multiplication R-module.
(d) If S ⊆ U(R), then every fully S-idempotent R-module is a fully idempo-

tent R-module, where U(R) is the set of units in R.
(e) If S1 ⊆ S2 are multiplicatively closed subsets of R and M is a fully S1-

idempotent R-module, then M is a fully S2-idempotent R-module.
(f) If N is an S-idempotent submodule of M , then by a similar argument to

the proof of ((b) ⇒ (c)) in [4, Lemma 2.2], one can see that there is s ∈ S
such that

sN ⊆ HomR(M,N)N,

where HomR(M,N)N =
∑

{φ(N) : φ ∈ HomR(M,N)}.

The following examples show that the converse of Remark 2.3(b, c, f) is not
true in general.

Example 2.4. Take the Z-module M = Zp∞ for a prime number p. Then we
know that all proper submodules of M are of the form Gt = ⟨1/pt + Z⟩ for some
t ∈ N∪{0} and (Gt :Z M) = 0. Therefore, M is not a fully idempotent Z-module.
Now, take the multiplicatively closed subset S = {pn : n ∈ N ∪ {0}} of Z. Then
ptGt = 0 ⊆ (Gt :Z M)2M ⊆ Gt. Hence, Gt is an S-idempotent submodule of M
for each t ∈ N ∪ {0}. So, M is a fully S-idempotent Z-module.

Example 2.5. Take the multiplicatively closed subset S = Z\ 2Z of Z. Then Z4

is an S-multiplication Z-module. Indeed Z4 is not a fully S-idempotent Z-module,
because 2Z4 is not an S-idempotent submodule of Z4.

Example 2.6. Let p be a prime number. Take the multiplicatively closed subset
S = Z \ pZ of Z. Then one can see that the submodule N = Zp ⊕ 0 of the
Z-module M = Zp ⊕ Zp is not S-idempotent, but sN ⊆ HomZ(M,N)N = N for
each s ∈ S.

The saturation S∗ of S is defined as S∗ = {x ∈ R : x/1 is a unit of S−1R}. It
is obvious that S∗ is a multiplicatively closed subset of R containing S [8].

A submodule N of an R-module M is said to be S-copure if there exists s ∈ S
such that s(N :M I) ⊆ N + (0 :M I) for every ideal I of R [7].

Proposition 2.7. Let M be an R-module. Then we have the following properties:
(a) M is a fully S-idempotent R-module if and only if M is a fully S∗-

idempotent R-module.
(b) If M is a fully S-idempotent R-module, then every submodule of M is a

fully S-idempotent R-module.
(c) If M is an S-multiplication R-module and N is an S-copure submodule

of M , then N is S-idempotent.

Proof. (a) Let M be a fully S-idempotent R-module. Since S ⊆ S∗, by Remark
2.3(e), M is a fully S∗-idempotent R-module. For the converse, assume that M
is a fully S∗-idempotent module and that N is a submodule of M . Then there
exists x ∈ S∗ such that xN ⊆ (N :R M)2M . As x ∈ S∗, x/1 is a unit of S−1R
and so (x/1)(a/s) = 1 for some a ∈ R and s ∈ S. This yields that us = uxa for
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some u ∈ S. Thus we have usN = uxaN ⊆ xN ⊆ (N :R M)2M . Therefore, M
is a fully S-idempotent R-module.

(b) Let N be a submodule of M and let K be a submodule of N . Then there
exists s ∈ S such that sK ⊆ (K :R M)2M ⊆ K. This implies that
s2K ⊆ s(K :R M)2M ⊆ s(K :R M)K ⊆ (K :R M)(K :R M)2M ⊆ (K :R M)3M.

Thus
s2K ⊆ (K :R M)3M ⊆ (K :R N)2(N :R M)M ⊆ (K :R N)2N.

Therefore, N is fully S-idempotent.
(c) Let M be an S-multiplication R-module and let N be an S-copure sub-

module of M . Then there exists s ∈ S such that
s(N :M (N :R M)) ⊆ N + (0 :M (N :R M)).

This in turn implies that sM ⊆ N + (0 :M (N :R M)). It follows that
s(N :R M)M ⊆ (N :R M)N.

As M is an S-multiplication module, there is an element t ∈ S such that tN ⊆
(N :R M)M . Hence, we have

st2N ⊆ st(N :R M)M ⊆ (N :R M)tN ⊆ (N :R M)2M,

as needed. □
In the following theorem, we characterize the fully idempotent R-modules.

Theorem 2.8. Let M be an R-module. Then the following statements are equiv-
alent:

(a) M is a fully idempotent R-module;
(b) M is a fully (R \ p)-idempotent R-module for each prime ideal p of R;
(c) M is a fully (R \m)-idempotent R-module for each maximal ideal m of R;
(d) M is a fully (R \m)-idempotent R-module for each maximal ideal m of R

with Mm ̸= 0.

Proof. (a) ⇒ (b). This follows from Remark 2.3(b).
(b) ⇒ (c) and (c) ⇒ (d). These are clear.
(d) ⇒ (a). Let N be a submodule of M . Take a maximal ideal m of R with

Mm ̸= 0. As M is a fully (R \ m)-idempotent module, there exists s ̸∈ m such
that sN ⊆ (N :R M)2M ⊆ N . This implies that

Nm = (sN)m ⊆ ((N :R M)2M)m ⊆ Nm.

If Mm = 0, then clearly Nm = ((N :R M)2M)m. Thus we conclude that Nm =
((N :R M)2M)m for each maximal ideal m of R. It follows that N = (N :R M)2M ,
as needed. □

A multiplicatively closed subset S of R is said to satisfy the maximal multiple
condition if there exists s ∈ S such that t | s for each t ∈ S.

In the following theorem, we characterize the fully S-idempotent R-modules,
where S is a multiplicatively closed subset of R satisfying the maximal multiple
condition.
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Proposition 2.9. Let S be a multiplicatively closed subset of R satisfying the
maximal multiple condition (e.g., S is finite or S ⊆ U(R)) and let M be an
R-module. Then the following statements are equivalent:

(a) M is a fully S-idempotent module;
(b) Every cyclic submodule of M is S-idempotent;
(c) Every element of M is S-idempotent;
(d) For all submodules N and K of M , we have s(N ∩K) ⊆ (N :R M)(K :R

M)M for some s ∈ S.

Proof. (a) ⇒ (b) and (b) ⇒ (c) are clear.
(c) ⇒ (a). Let N be a submodule of M and let x ∈ N . Then by the hypothesis,

there exist sx ∈ S and a ∈ (Rx :R M) such that sxx = ax. Hence asxx = a2x,
and so s2xx = sxax = asxx = a2x. Thus s2xRx ⊆ (Rx :R M)2M . Now as S
satisfying the maximal multiple condition, there exists s ∈ S such that sRx ⊆
(Rx :R M)2M ⊆ (N :R M)2M . Therefore, sN ⊆ (N :R M)2M , as required.

(a) ⇒ (d). Let N and K be two submodules of M . Then for some s ∈ S, we
have

s(N ∩K) ⊆ (N ∩K :R M)2M ⊆ (N :R M)(K :R M)M.

(d) ⇒ (a). For a submodule N of M , we have
sN = s(N ∩N) ⊆ (N :R M)(N :R M)M = (N :R M)2M

for some s ∈ S. □

Let Ri be a commutative ring with identity, let Mi be an Ri-module for each
i = 1, 2, . . . , n, and let n ∈ N. Assume that M = M1 ×M2 × · · · ×Mn and that
R = R1 × R2 × · · · × Rn. Then M is clearly an R-module with componentwise
addition and scalar multiplication. Also, if Si is a multiplicatively closed subset
of Ri for each i = 1, 2, . . . , n, then S = S1 × S2 × · · · × Sn is a multiplicatively
closed subset of R. Furthermore, each submodule N of M is of the form N =
N1 ×N2 × · · · ×Nn, where Ni is a submodule of Mi.

Theorem 2.10. Let Mi be an Ri-module for i = 1, 2, . . . , n and let S1, . . . , Sn

be multiplicatively closed subsets of R1, . . . , Rn, respectively. Assume that M =
M1 × · · · ×Mn, R = R1 × · · · × Rn and S = S1 × · · · × Sn. Then M is a fully
S-idempotent module if and only if Mi is a fully Si-idempotent module for each
i ∈ {1, 2, . . . , n}.

Proof. We use mathematical induction. If n = 1, then the claim is trivial. Now
suppose that n = 2. For only if part, without loss of generality, we will show
that M1 is a fully S1-idempotent R1-module. Take a submodule N1 of M1. Then
N1×{0} is a submodule of M . Since M is a fully S-idempotent R-module, there
exists s = (s1, s2) ∈ S1 × S2 such that (s1, s2)(N1 × {0}) ⊆ (N1 × {0} :R M)2M .
By focusing on the first coordinate, we have s1N1 ⊆ (N1 :R1 M1)

2M1. So M1 is
a fully S1-idempotent R1-module. Now assume that M1 is a fully S1-idempotent
module and that M2 is a fully S2-idempotent module. Take a submodule N
of M . Then N must be in the form of N1 × N2, where N1 ⊆ M1, N2 ⊆ M2.
Since M1 is a fully S1-idempotent R1-module, there exists s1 ∈ S1 such that
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s1N1 ⊆ (N1 :R1 M1)
2M1. Similarly, there exists an element s2 ∈ S2 such that

s2N2 ⊆ (N2 :R2 M2)
2M2. Now, put s = (s1, s2) ∈ S. Then we get

(s1, s2)N ⊆ s1N1 × s2N2 ⊆ (N1 :R1 M1)
2M1 × (N2 :R2 M2)

2M2 ⊆ (N :R M)2M.

Hence, M is a fully S-idempotent R-module.
Next, assume that the claim is true for n < k, and we will show that it is also

true for n = k. Put M = (M1×· · ·×Mn−1)×Mn, R = (R1×R2×· · ·×Rn−1)×Rn,
and S = (S1×· · ·×Sn−1)×Sn. By the case when n = 2, M is a fully S-idempotent
module if and only if M1 × · · · × Mn−1 is a fully (S1 × · · · × Sn−1)-idempotent
(R1×R2×· · ·×Rn−1)-module and Mn is a fully Sn-idempotent Rn-module. Now
the rest follows from the induction hypothesis. □

Let M be an R-module. The idealization or trivial extension R ∝ M = R⊕M
of M is a commutative ring with componentwise addition and multiplication
(a,m)(b, ḿ) = (ab, aḿ + bm) for each a, b ∈ R, m, ḿ ∈ M [2]. If I is an ideal of
R and N is a submodule of M , then I ∝ N is an ideal of R ∝ M if and only if
IM ⊆ N . In that case, I ∝ N is called a homogeneous ideal of R ∝ M . Also, if
S ⊆ R is a multiplicatively closed subset, then S ∝ N is a multiplicatively closed
subset of R ∝ M [2, Theorem 3.8].

Let I be an ideal of R. If I is a fully S-idempotent R-module, then we say that
I is a fully S-idempotent ideal of R.
Theorem 2.11. Let N be a submodule of an R-module M . Then the following
statements are equivalent:

(a) N is a fully S-idempotent R-module;
(b) 0 ∝ N is a fully (S ∝ 0)-idempotent ideal of R ∝ M ;
(c) 0 ∝ N is a fully (S ∝ M)-idempotent ideal of R ∝ M .

Proof. (a) ⇒ (b). Suppose that N is a fully S-idempotent R-module. Take an
ideal J of R ∝ M contained in 0 ∝ N . Then J = 0 ∝ Ń for some submodule Ń of
M with Ń ⊆ N . Since N is a fully S-idempotent module, there exists s ∈ S with
sŃ ⊆ (Ń :R N)2N ⊆ Ń . First, note that (J :R∝M 0 ∝ N) = (Ń :R N) ∝ M . So
this gives (J :R∝M 0 ∝ N)2 = ((Ń :R N) ∝ M)2 = (Ń :R N)2 ∝ (Ń :R N)M .
Then we have (J :R∝M 0 ∝ N)2(0 ∝ N) = 0 ∝ (Ń :R N)2N . This implies that

(s, 0)J =0 ∝ sŃ ⊆ 0 ∝ (Ń :R N)2N

=(J :R∝M 0 ∝ N)2(0 ∝ N) ⊆ J.

It follows that 0 ∝ N is a fully (S ∝ 0)-idempotent ideal of R ∝ M .
(b) ⇒ (c). This follows from the fact that S ∝ 0 ⊆ S ∝ M and Remark 2.3(e).
(c) ⇒ (a). Suppose that 0 ∝ N is a fully (S ∝ M)-idempotent ideal of R ∝ M .

Let Ń be a submodule of N . Then 0 ∝ Ń ⊆ 0 ∝ N and 0 ∝ Ń is an ideal of
R ∝ M . Since 0 ∝ N is a fully (S ∝ M)-idempotent ideal of R ∝ M , there exists
(s,m) ∈ S ∝ M such that

(s,m)(0 ∝ Ń) ⊆ ((0 ∝ Ń) :R∝M (0 ∝ N))2(0 ∝ N) ⊆ 0 ∝ Ń .

One can easily check that
(0 ∝ Ń) :R∝M (0 ∝ N) = (Ń :R N) ∝ M,
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((Ń :R N) ∝ M)2(0 ∝ N) = 0 ∝ (Ń :R N)2N.

Thus
(s,m)(0 ∝ Ń) = 0 ∝ sŃ ⊆ ((Ń :R N) ∝ M)2(0 ∝ N)

= 0 ∝ (Ń :R N)2N ⊆ 0 ∝ Ń ,

and so sŃ ⊆ (Ń :R N)2N ⊆ Ń . Hence, N is a fully S-idempotent R-module. □

Proposition 2.12. Let M and Ḿ be R-modules. Assume that f : M → Ḿ
is an R-epimorphism. If M is a fully S-idempotent module, then Ḿ is a fully
S-idempotent module.

Proof. Let Ń be a submodule of Ḿ . Then N := f−1(Ń) is a submodule of M .
As M is a fully S-idempotent module, there exists s ∈ S such that sN ⊆ (N :R
M)2M ⊆ N . Hence, f(sN) ⊆ f((N :R M)2M) ⊆ f(N). This yields that

sŃ = sf(N) ⊆ (N :R M)2f(M) = (N :R M)2Ḿ ⊆ Ń .

Since f is an epimorphism, one can easily see that (N :R M) = (Ń :R Ḿ). Thus
sŃ ⊆ (Ń :R Ḿ)2Ḿ ⊆ Ń . Hence, Ḿ is a fully S-idempotent module. □
Corollary 2.13. Let M be a fully S-idempotent R-module and let N be a sub-
module of M . Then M/N is a fully S-idempotent R-module.
Theorem 2.14. Let M be an R-module and let S and T be multiplicatively closed
subsets of R. Put S̃ = {s/1 ∈ T−1R : s ∈ S}, a multiplicatively closed subset of
T−1R. Then we have the following properties:

(a) If M is a fully S-idempotent R-module, then T−1M is a fully S̃-idempotent
T−1R-module.

(b) If M is a fully S-idempotent R-module and S ⊆ T ∗, then T−1M is a fully
idempotent T−1R-module.

(c) If M is a fully S-idempotent R-module, then S−1M is a fully idempotent
S−1R-module.

(d) If M is a finitely generated R-module, S satisfies the maximal multiple
condition, and S−1M is a fully idempotent S−1R-module, then M is a
fully S-idempotent module.

Proof. (a) Let N be a T−1R-submodule of T−1M . Then N = T−1Ń for some
submodule Ń of M . Since M is a fully S-idempotent module, there exists s ∈ S
with sŃ ⊆ (Ń :R M)2M ⊆ Ń . Then

(s/1)N = T−1(sŃ) ⊆ (T−1(Ń :R M)2)(T−1M) ⊆ T−1Ń = N.

So T−1M is a fully S̃-idempotent T−1R-module.
(b) If S ⊆ T ∗, then S̃ ⊆ U(T−1R). Hence, T−1M is a fully idempotent T−1R-

module by Remark 2.3(d) and part (a).
(c) This follows from part (b).
(d) Let S−1M be a fully idempotent S−1R-module. Take a submodule N of

M . Since S−1M is a fully idempotent S−1R-module, we have
S−1N = (S−1N :S−1R S−1M)2(S−1M).
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As M is a finitely generated R-module, (S−1N :S−1R S−1M) = S−1(N :R M).
Thus S−1N = S−1((N :R M)2M). Choose s ∈ S with t | s for each t ∈ S.
Note that for each m ∈ N , we have m/1 ∈ S−1N = S−1((N :R M)2M) and so
there exists t ∈ S such that tm ∈ (N :R M)2M , and hence sm ∈ (N :R M)2M .
Therefore, we obtain

s2N ⊆ s(N :R M)2M ⊆ (N :R M)2M ⊆ N.

Hence, M is a fully S-idempotent module. □

Let M be an R-module. A submodule N of M is said to be pure if IN = N∩IM
for every ideal I of R [3]. Also, M is said to be fully pure if every submodule of
M is pure [4]. A submodule N of M is said to be S-pure if there exists s ∈ S
such that s(N ∩ IM) ⊆ IN for every ideal I of R [6]. Moreover, M is said to be
fully S-pure if every submodule of M is S-pure [6].

Theorem 2.15. Let M be an S-multiplication R-module and let N be a submodule
of M . Then the following statements are equivalent:

(a) N is an S-pure submodule of M ;
(b) N is an S-multiplication R-module and N is an S-idempotent submodule

of M ;
(c) N is an S-multiplication R-module and there exists s ∈ S such that sK ⊆

(N :R M)K, for all submodules K of N ;
(d) N is an S-multiplication R-module and there exists s ∈ S such that s(K :R

N)N ⊆ (K :R M)(N :R M)M , for all submodules K of M .

Proof. (a) ⇒ (b). Let K be a submodule of N . As M is an S-multiplication
module, there exists s ∈ S such that sK ⊆ (K :R M)M . Now since N is S-pure,
there is an element t ∈ S such that (K :R N)N ⊇ t(N ∩ (K :R N)M). Hence,

(K :R N)N ⊇ t(N ∩ (K :R N)M) ⊇ t(N ∩ (K :R M)M)

⊇ t(N ∩ sK) = tsK.

This implies that N is an S-multiplication R-module. Since M is an S-multiplication
module, there exists u ∈ S such that uN ⊆ (N :R M)M . Now as N is S-pure,
there is an element v ∈ S such that (N :R M)uN ⊇ v(N ∩ u(N :R M)M).
Therefore,

(N :R M)2M = (N :R M)(N :R M)M ⊇ (N :R M)uN

⊇ v(N ∩ u(N :R M)M) = vu(N :R M)M ⊇ vu2N.

So, N is an S-idempotent submodule.
(b) ⇒ (c). Let K be a submodule of N . Since N is an S-multiplication R-

module, there exists s ∈ S such that sK ⊆ (K :R N)N . As N is S-idempotent,
there is t ∈ S such that tN ⊆ (N :R M)2M . Therefore,

tsK ⊆ t(K :R N)N = (K :R N)tN

⊆ (K :R N)(N :R M)2M = (N :R M)(K :R N)(N :R M)M

⊆ (N :R M)(K :R N)N ⊆ (N :R M)K.
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(c) ⇒ (a). Let I be an ideal of R. Since N ∩ IM ⊆ N , by part (c), there is
s ∈ S such that s(N ∩ IM) ⊆ (N :R M)(N ∩ IM). Hence,

s(N ∩ IM) ⊆ (N ∩ IM)(N :R M) ⊆ IM(N :R M) = IN.

Thus N is an S-pure submodule of M .
(b) ⇒ (d). Let K be a submodule of M . Since N is S-idempotent, there is

s ∈ S such that sN ⊆ (N :R M)2M . So
s(K :R N)N ⊆ (K :R N)(N :R M)2M ⊆ (K :R M)(N :R M)M.

(d) ⇒ (b). Take K = N . □
Corollary 2.16. Let M be an R-module. Then we have the following results:

(a) If M is a fully S-idempotent R-module, then M is a fully S-pure R-
module.

(b) If M is an S-multiplication fully S-pure R-module, then M is a fully
S-idempotent R-module.

Proof. (a) By Proposition 2.7(b), every submodule of M is a fully S-idempotent
R-module. Hence, by Remark 2.3(c), every submodule of M is an S-multiplication
R-module. Now the result follows from Theorem 2.15 (b) ⇒ (a).

(b) This follows from Theorem 2.15 (a) ⇒ (b). □
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