

Khayyam Journal of Mathematics

emis.de/journals/KJM kjm-math.org

ZYGMUND-TYPE INEQUALITIES FOR AN OPERATOR PRESERVING INEQUALITIES BETWEEN POLYNOMIALS

NISAR AHMAD RATHER ${ }^{1}$, SUHAIL GULZAR ${ }^{2 *}$ AND KHURSHEED AHMAD THAKUR ${ }^{3}$

Communicated by J.M. Aldaz

Abstract. In this paper, we present certain new L_{p} inequalities for \mathcal{B}_{n} operators which include some known polynomial inequalities as special cases.

1. InTRODUCTION AND STATEMENT OF RESULTS

Let \mathscr{P}_{n} denote the space of all complex polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n. For $P \in \mathscr{P}_{n}$, define

$$
\begin{gathered}
\|P(z)\|_{0}:=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta\right\} \\
\|P(z)\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}, 0<p<\infty \\
\|P(z)\|_{\infty}:=\max _{|z|=1}|P(z)|, \quad m:=\min _{|z|=1}|P(z)|
\end{gathered}
$$

and denote for any complex function $\psi: \mathbb{C} \rightarrow \mathbb{C}$ the composite function of P and ψ, defined by $(P \circ \psi)(z):=P(\psi(z)) \quad(z \in \mathbb{C})$, as $P \circ \psi$.

If $P \in \mathscr{P}_{n}$, then

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n\|P(z)\|_{p}, \quad p \geq 1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq R^{n}\|P(z)\|_{p}, \quad R>1, \quad p>0 \tag{1.2}
\end{equation*}
$$

Inequality (1.1) was found out by Zygmund [20] whereas inequality (1.2) is a simple consequence of a result of Hardy [8]. Arestov [2] proved that (1.1) remains true for $0<p<1$ as well. For $p=\infty$, the inequality (1.1) is due to Bernstein

Date: Received: 20 September 2015; Accepted: 04 July 2016.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 30C10; Secondary 30A10, 41A17.
Key words and phrases. L^{p} inequalities, \mathcal{B}_{n}-operators, polynomials.
(for reference, see $[11,15,18]$) whereas the case $p=\infty$ of inequality (1.2) is a simple consequence of the maximum modulus principle (see [11, 12, 15]). Both the inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the class of polynomials having no zeros in $|z|<1$. In fact, if $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then inequalities (1.1) and (1.2) can be respectively replaced by

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, \quad p \geq 0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, \quad R>1, \quad p>0 \tag{1.4}
\end{equation*}
$$

Inequality (1.3) is due to De-Bruijn [7](see also [3]) for $p \geq 1$. Rahman and Schmeisser [1] extended it for $0<p<1$, whereas the inequality (1.4) was proved by Boas and Rahman [6] for $p \geq 1$ and later it was extended for $0<p<1$ by Rahman and Schmeisser [14]. For $p=\infty$, the inequality (1.3) was conjectured by Erdös and later verified by Lax [9] whereas inequality (1.4) was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1.3) and (1.4), Aziz and Rather [5] proved that if $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $p>0$,

$$
\begin{equation*}
\left\|P(R z)+\phi_{n}(R, r, \alpha, \beta) P(r z)\right\|_{p} \leq \frac{C_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{p}=\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right)\right\|_{p} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{n}(R, r, \alpha, \beta)=\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\}-\alpha \tag{1.7}
\end{equation*}
$$

If we take $\beta=0, \alpha=1$ and $r=1$ in (1.5) and divide two sides of (1.5) by $R-1$ then make $R \rightarrow 1$, we obtain inequality (1.3). Whereas inequality (1.4) is obtained from (1.5) by taking $\alpha=\beta=0$.

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class \mathcal{B}_{n} of operators B that maps $P \in \mathscr{P}_{n}$ into itself. That is, the operator B carries $P \in \mathscr{P}_{n}$ into a polynomial

$$
\begin{equation*}
B[P](z):=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{1.8}
\end{equation*}
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of

$$
u(z):=\lambda_{0}+C(n, 1) \lambda_{1} z+C(n, 2) \lambda_{2} z^{2}, C(n, r)=n!/ r!(n-r)!
$$

lie in the half plane

$$
\begin{equation*}
|z| \leq|z-n / 2| . \tag{1.9}
\end{equation*}
$$

While extending Bernstein type inequalities to \mathcal{B}_{n} operators, they [13] proved that if $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then

$$
\begin{equation*}
|B[P \circ \sigma](z)| \leq \frac{1}{2}\left\{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty} \quad \text { for } \quad|z|=1 \tag{1.10}
\end{equation*}
$$

(see [13, Inequalities (5.2) and (5.3)]) where $\sigma(z)=R z, R \geq 1$ and

$$
\begin{equation*}
\Lambda_{n}:=\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8} . \tag{1.11}
\end{equation*}
$$

As an extension of inequality (1.10) to L_{p}-norm, recently W.M. Shah and A. Liman [19] while seeking the desired extension, have made an incomplete attempt [19, Theorem 2] by claiming to have proved that if $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for each $R \geq 1$ and $p \geq 1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.12}
\end{equation*}
$$

where $B \in B_{n}$ and $\sigma(z)=R z$ and Λ_{n} is defined by (1.11).
Rather and Shah [17] pointed an error in the proof of (1.12), they not only provided a correct proof but also extended it for $0 \leq p<1$ as well. They proved:
Theorem A. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{\left\|R^{n} \Lambda_{n} z+\lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.13}
\end{equation*}
$$

$B \in \mathcal{B}_{n}, \sigma(z)=R z$ and Λ_{n} is defined by (1.11). The result is sharp as shown by $P(z)=a z^{n}+b,|a|=|b|=1$.

Recently, Rather and Suhail Gulzar [16] obtained the following result which is a generalization of Theorem A.
Theorem B. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish for $|z|<1$, then for $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1,0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)-\alpha B[P](z)\|_{p} \leq \frac{\left\|\left(R^{n}-\alpha\right) \Lambda_{n} z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.14}
\end{equation*}
$$

where $B \in \mathcal{B}_{n}, \sigma(z)=R z$ and Λ_{n} is defined by (1.11). The result is best possible and equality in (1.14) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

If we take $\alpha=0$ in Theorem B, we obtain Theorem A.
In this paper, we investigate the dependence of

$$
\left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p}
$$

on $\|P(z)\|_{p}$ for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1,0 \leq p<\infty$, $\sigma(z):=R z, \rho(z):=r z$ and $\phi_{n}(R, r, \alpha, \beta)$ is given by (1.7), and establish certain generalized L_{p}-mean extensions of the inequality (1.10) for $0 \leq p<\infty$ and also a generalization of (1.5). In this direction, we first present the following result which is a compact generalization of the inequalities (1.3), (1.4), (1.5) and (1.10) for $0 \leq p<1$ as well.
Theorem 1.1. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{align*}
& \left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p} \\
& \leq \frac{\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.15}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (1.7) and (1.11) respectively. The result is best possible and equality in (1.15) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$
Remark 1.2. If we take $\lambda_{1}=\lambda_{2}=0$ in (1.15), we obtain inequality (1.5).
For $\beta=0$, inequality (1.15) reduces the following result.
Corollary 1.3. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{align*}
&\|B[P \circ \sigma](z)-\alpha B[P \circ \rho](z)\|_{p} \\
& \leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) \Lambda_{n} z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.16}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \sigma(z):=R z, \rho(z):=r z$ and Λ_{n} is defined by (1.11). The result is best possible and equality in (1.16) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$.
Remark 1.4. For taking $\alpha=0$ in (1.16), we obtain Theorem A and for $r=1$ in (1.16), we get Theorem B.

Instead of proving Theorem 1.1, we prove the following more general result which includes Theorem 1.1 as a special case.
Theorem 1.5. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $\alpha, \beta, \delta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1,|\delta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{align*}
& \| B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z) \\
& \quad+\delta \frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2} \|_{p} \\
& \quad \leq \frac{\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.17}
\end{align*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, m=\min _{|z|=1}|P(z)|$ and $\phi_{n}(R, r, \alpha, \beta)$, Λ_{n} are defined by(1.7) and (1.11), respectively. The result is best possible and equality in (1.15) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$.
Remark 1.6. For $\delta=0$ in (1.17), we get Theorem 1.1.
The next corollary which is a generalization of (1.5) follows by taking $\lambda_{1}=\lambda_{2}=0$ in (1.17).

Corollary 1.7. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $\alpha, \beta, \delta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1,|\delta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{aligned}
& \| P(R z)+\phi_{n}(R, r, \alpha, \beta) P(r z) \\
& \quad+\delta \frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\right) m}{2} \|_{p}
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right)\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{1.18}
\end{equation*}
$$

where $m=\min _{|z|=1}|P(z)|$ and $\phi_{n}(R, r, \alpha, \beta)$ is defined by(1.7). The result is best possible and equality in (1.18) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$.

2. LEMMAS

For the proofs of these theorems, we need the following lemmas. The first Lemma is easy to prove.

Lemma 2.1. If $P \in \mathscr{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every $R \geq r \geq 1$ and $|z|=1$,

$$
|P(R z)| \geq\left(\frac{R+1}{r+1}\right)^{n}|P(r z)| .
$$

The following Lemma follows from [10, Corollary 18.3, p. 65].
Lemma 2.2. If all the zeros of polynomial $P \in \mathscr{P}_{n}$ lie in $|z| \leq 1$, then all the zeros of the polynomial $B[P](z)$ also lie in $|z| \leq 1$.
Lemma 2.3. If $F \in \mathscr{P}_{n}$ has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
|P(z)| \leq|F(z)| \text { for }|z|=1,
$$

then for every $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$, and $|z| \geq 1$,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)\right| \tag{2.1}
\end{align*}
$$

where $B \in \mathcal{B}_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (1.11) and (1.7) respectively.

Proof. Since the polynomial $F(z)$ of degree n has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
\begin{equation*}
|P(z)| \leq|F(z)| \text { for }|z|=1 \tag{2.2}
\end{equation*}
$$

therefore, if $F(z)$ has a zero of multiplicity s at $z=e^{i \theta_{0}}$, then $P(z)$ has a zero of multiplicity at least s at $z=e^{i \theta_{0}}$. If $P(z) / F(z)$ is a constant, then the inequality (2.1) is obvious. We now assume that $P(z) / F(z)$ is not a constant, so that by the maximum modulus principle, it follows that

$$
|P(z)|<|F(z)| \text { for }|z|<1 .
$$

Suppose $F(z)$ has m zeros on $|z|=1$ where $0 \leq m \leq n$, so that we can write

$$
F(z)=F_{1}(z) F_{2}(z)
$$

where $F_{1}(z)$ is a polynomial of degree m whose all zeros lie on $|z|=1$ and $F_{2}(z)$ is a polynomial of degree exactly $n-m$ having all its zeros in $|z|<1$. This implies with the help of inequality (2.2) that

$$
P(z)=P_{1}(z) F_{1}(z)
$$

where $P_{1}(z)$ is a polynomial of degree at most $n-m$. Now, from inequality (2.2), we get

$$
\left|P_{1}(z)\right| \leq\left|F_{2}(z)\right| \text { for }|z|=1
$$

where $F_{2}(z) \neq 0$ for $|z|=1$. Therefore for every $\lambda \in \mathbb{C}$ with $|\lambda|>1$, a direct application of Rouche's theorem shows that the zeros of the polynomial $P_{1}(z)-\lambda F_{2}(z)$ of degree $n-m \geq 1$ lie in $|z|<1$. Hence the polynomial

$$
f(z)=F_{1}(z)\left(P_{1}(z)-\lambda F_{2}(z)\right)=P(z)-\lambda F(z)
$$

has all its zeros in $|z| \leq 1$ with at least one zero in $|z|<1$, so that we can write

$$
f(z)=\left(z-t e^{i \delta}\right) H(z)
$$

where $t<1$ and $H(z)$ is a polynomial of degree $n-1$ having all its zeros in $|z| \leq 1$. Applying Lemma 2.1 to the polynomial $f(z)$ with $k=1$, we obtain for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
\left|f\left(R e^{i \theta}\right)\right| & =\left|R e^{i \theta}-t e^{i \delta}\right|\left|H\left(R e^{i \theta}\right)\right| \\
& \geq\left|R e^{i \theta}-t e^{i \delta}\right|\left(\frac{R+1}{r+1}\right)^{n-1}\left|H\left(r e^{i \theta}\right)\right| \\
& =\left(\frac{R+1}{r+1}\right)^{n-1} \frac{\left|R e^{i \theta}-t e^{i \delta}\right|}{\left|r e^{i \theta}-t e^{i \delta}\right|}\left|\left(r e^{i \theta}-t e^{i \delta}\right) H\left(r e^{i \theta}\right)\right| \\
& \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left(\frac{R+t}{r+t}\right)\left|f\left(r e^{i \theta}\right)\right| .
\end{aligned}
$$

This implies for $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left(\frac{r+t}{R+t}\right)\left|f\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left|f\left(r e^{i \theta}\right)\right| . \tag{2.3}
\end{equation*}
$$

Since $R>r \geq 1>t$ so that $f\left(R^{i \theta}\right) \neq 0$ for $0 \leq \theta<2 \pi$ and $\frac{1+r}{1+R}>\frac{r+t}{R+t}$, from inequality (2.3), we obtain $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left|f\left(R e^{i \theta}\right)\right|>\left(\frac{R+1}{r+1}\right)^{n}\left|f\left(r e^{i \theta}\right)\right| . \tag{2.4}
\end{equation*}
$$

Equivalently,

$$
|f(R z)|>\left(\frac{R+1}{r+1}\right)^{n}|f(r z)|
$$

for $|z|=1$ and $R>r \geq 1$. Hence for every $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$ and $R>r \geq 1$, we have

$$
\begin{aligned}
|f(R z)-\alpha f(r z)| & \geq|f(R z)|-|\alpha||f(r z)| \\
& >\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\}|f(r z)|, \quad|z|=1 .
\end{aligned}
$$

Also, inequality (2.4) can be written in the form

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right|<\left(\frac{r+1}{R+1}\right)^{n}\left|f\left(R e^{i \theta}\right)\right| \tag{2.5}
\end{equation*}
$$

for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$. Since $f\left(R e^{i \theta}\right) \neq 0$ and $\left(\frac{r+1}{R+1}\right)^{n}<1$, from inequality (2.5), we obtain for $0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\left|f\left(r e^{i \theta}\right)\right|<\left|f\left(R^{i \theta}\right)\right| .
$$

Equivalently,

$$
|f(r z)|<|f(R z)| \text { for }|z|=1 .
$$

Since all the zeros of $f(R z)$ lie in $|z| \leq(1 / R)<1$, a direct application of Rouche's theorem shows that the polynomial $f(R z)-\alpha f(r z)$ has all its zeros in $|z|<1$ for every $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$. Applying Rouche's theorem again, it follows from (2.4) that for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$, all the zeros of the polynomial

$$
\begin{aligned}
T(z)= & f(R z)-\alpha f(r z)+\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\} f(r z) \\
& =f(R z)+\phi_{n}(R, r, \alpha, \beta) f(r z) \\
& =(P(R z)-\lambda F(R z))+\phi_{n}(R, r, \alpha, \beta)(P(r z)-\lambda F(r z)) \\
& =\left(P(R z)+\phi_{n}(R, r, \alpha, \beta) P(r z)\right)-\lambda\left(F(R z)+\phi_{n}(R, r, \alpha, \beta) F(r z)\right)
\end{aligned}
$$

lie in $|z|<1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|>1$. Using Lemma 2.2 and the fact that B is a linear operator, we conclude that all the zeros of polynomial

$$
\begin{aligned}
W(z)= & B[T](z) \\
= & \left(B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right) \\
& \quad-\lambda\left(B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)\right)
\end{aligned}
$$

also lie in $|z|<1$ for every λ with $|\lambda|>1$. This implies

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)\right| \tag{2.6}
\end{align*}
$$

for $|z| \geq 1$ and $R>r \geq 1$. If inequality (2.6) is not true, then there exists a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$ such that
$\left|B[P \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)\right|>\left|B[F \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right)\right|$.
But all the zeros of $F(R z)$ lie in $|z|<1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $F(R z)+\phi_{n}(R, r, \alpha, \beta) F(r z)$ lie in $|z|<1$. Hence by Lemma 2.2, all the zeros of $B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)$ also lie in $|z|<1$, which shows that

$$
B[F \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right) \neq 0
$$

We take

$$
\lambda=\frac{B[P \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)}{B[F \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right)},
$$

then λ is a well defined real or complex number with $|\lambda|>1$ and with this choice of λ, we obtain $W\left(z_{0}\right)=0$. This contradicts the fact that all the zeros of $W(z)$ lie in $|z|<1$. Thus (2.6) holds and this completes the proof of Lemma 2.3.

Lemma 2.4. If $P \in \mathscr{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $|z| \geq 1$,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \geq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||z|^{n} m \tag{2.7}
\end{align*}
$$

where $m=\min _{|z|=1}|P(z)|, B \in \mathcal{B}_{n}, \sigma(z)=R z, \rho(z)=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (1.11) and (1.7), respectively.

Proof. By hypothesis, all the zeros of $P(z)$ lie in $|z| \leq 1$ and

$$
m|z|^{n} \leq|P(z)| \text { for }|z|=1
$$

We first show that the polynomial $g(z)=P(z)-\lambda m z^{n}$ has all its zeros in $|z| \leq 1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$. This is obvious if $m=0$, that is if $P(z)$ has a zero on $|z|=1$. Henceforth, we assume $P(z)$ has all its zeros in $|z|<1$, then $m>0$ and it follows by Rouche's theorem that the polynomial $g(z)$ has all its zeros in $|z|<1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$. Proceeding similarly as in the proof of Lemma 2.3, we obtain that for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$, all the zeros of the polynomial

$$
\begin{aligned}
H(z)= & g(R z)-\alpha g(r z)+\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\} g(r z) \\
& =g(R z)+\phi_{n}(R, r, \alpha, \beta) g(r z) \\
& =\left(P(R z)-\lambda R^{n} z^{n} m\right)+\phi_{n}(R, r, \alpha, \beta)\left(P(r z)-\lambda r^{n} z^{n} m\right) \\
& =\left(P(R z)+\phi_{n}(R, r, \alpha, \beta) P(r z)\right)-\lambda\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) m z^{n}
\end{aligned}
$$

lie in $|z|<1$. Applying Lemma 2.1 to $H(z)$ and noting that B is a linear operator, it follows that all the zeros of polynomial

$$
\begin{align*}
B[H](z)=\left\{B[P \circ \sigma](z)+\phi_{n}\right. & (R, r, \alpha, \beta) B[P \circ \rho](z)\} \\
& -\lambda\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) m B\left[z^{n}\right] \tag{2.8}
\end{align*}
$$

lie in $|z|<1$. This gives

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \geq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||z|^{n} m \quad \text { for } \quad|z| \geq 1 \tag{2.9}
\end{align*}
$$

If (2.9) is not true, then there is point w with $|w| \geq 1$ such that

$$
\left|B[P \circ \sigma](w)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](w)\right|<\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||w|^{n} m .
$$

We choose

$$
\lambda=\frac{B[P \circ \sigma](w)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](w)}{R^{n}+\left.\phi_{n}(R, r, \alpha, \beta) r^{n}| | \Lambda_{n}| | w\right|^{n} m}
$$

then clearly $|\lambda|<1$ and with this choice of λ, from (2.8), we get $B[H](w)=0$ with $|w| \geq 1$. This is clearly a contradiction to the fact that all the zeros of $H(z)$ lie in $|z|<1$. Thus for every $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$,

$$
\left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \geq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||z|^{n} m
$$

for $|z| \geq 1$ and $R>r \geq 1$.

Lemma 2.5. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
\mid B[P \circ \sigma](z)+ & \phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right|
\end{aligned}
$$

where $P^{*}(z):=z^{n} \overline{P(1 / \bar{z})}, B \in \mathcal{B}_{n}, \sigma(z):=R z, \rho(z):=r z$, and $\phi_{n}(R, r, \alpha, \beta)$ is defined by (1.7).

Proof. By hypothesis the polynomial $P(z)$ of degree n does not vanish in $|z|<1$, therefore, all the zeros of the polynomial $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$ of degree n lie in $|z| \leq 1$. Applying Lemma 2.3 with $F(z)$ replaced by $P^{*}(z)$, it follows that

$$
\begin{aligned}
& \left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \\
& \quad \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right|
\end{aligned}
$$

for $|z| \geq 1,|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$. This proves the Lemma 2.5.
Lemma 2.6. If $P \in \mathscr{P}_{n}$ and $P(z)$ has no zeros in $|z|<1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& \left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \\
& \quad \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \\
& \quad-\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m \tag{2.10}
\end{align*}
$$

where $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}, m=\min _{|z|=1}|P(z)|, B \in \mathcal{B}_{n}, \sigma(z)=R z, \rho(z)=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are given by (1.11) and (1.7), respectively.

Proof. By hypothesis $P(z)$ has all its zeros in $|z| \geq 1$ and

$$
\begin{equation*}
m \leq|P(z)| \text { for }|z|=1 \tag{2.11}
\end{equation*}
$$

We show $F(z)=P(z)+\lambda m$ does not vanish in $|z|<1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$. This is obvious if $m=0$ that is, if $P(z)$ has a zero on $|z|=1$. So we assume all the zeros of $P(z)$ lie in $|z|>1$, then $m>0$ and by the maximum modulus principle, it follows from (2.11) that

$$
\begin{equation*}
m<|P(z)| \text { for }|z|<1 \tag{2.12}
\end{equation*}
$$

Now if $F(z)=P(z)+\lambda m=0$ for some z_{0} with $\left|z_{0}\right|<1$, then

$$
P\left(z_{0}\right)+\lambda m=0
$$

This implies

$$
\left|P\left(z_{0}\right)\right|=|\lambda| m \leq m, \text { for }\left|z_{0}\right|<1
$$

which is clearly contradiction to (2.12). Thus the polynomial $F(z)$ does not vanish in $|z|<1$ for every λ with $|\lambda|<1$. Applying Lemma 2.3 to the polynomial $F(z)$, we get

$$
\begin{aligned}
\mid B[F \circ \sigma](z)+ & \phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z) \mid \\
& \leq\left|B\left[F^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[F^{*} \circ \rho\right](z)\right|
\end{aligned}
$$

for $|z|=1$ and $R>r \geq 1$. Replacing $F(z)$ by $P(z)+\lambda m$, we obtain

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) & B[P \circ \rho](z)+\lambda\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0} m \mid \\
& \leq \mid B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \\
& +\bar{\lambda}\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z^{n} m \mid \tag{2.13}
\end{align*}
$$

Now choosing the argument of λ in the right hand side of (2.13) such that

$$
\begin{gathered}
\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)+\bar{\lambda}\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z^{n} m\right| \\
=\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \\
-|\bar{\lambda}|\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||z|^{n} m .
\end{gathered}
$$

for $|z|=1$,which is possible by Lemma 2.4, we get

$$
\begin{aligned}
& \left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right|-|\lambda|\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right| m \\
& \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \\
& \quad-|\lambda|\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right||z|^{n} m .
\end{aligned}
$$

Equivalently,

$$
\begin{align*}
& \left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \\
& \quad \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \\
& \quad-|\lambda|\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m . \tag{2.14}
\end{align*}
$$

Letting $|\lambda| \rightarrow 1$ in (2.14) we obtain inequality (2.10) and this completes the proof of Lemma 2.6.

Next we describe a result of Arestov [2].
For $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{n}\right) \in \mathbb{C}^{n+1}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, we define

$$
C_{\gamma} P(z)=\sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}
$$

The operator C_{γ} is said to be admissible if it preserves one of the following properties:
(i) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \leq 1\}$,
(ii) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \geq 1\}$.

The result of Arestov may now be stated as follows.
Lemma 2.7. [2, Theorem 2] Let $\phi(x)=\psi(\log x)$ where ψ is a convex nondecreasing function on \mathbb{R}. Then for all $P \in \mathscr{P}_{n}$ and each admissible operator C_{γ},

$$
\int_{0}^{2 \pi} \phi\left(\left|C_{\gamma} P\left(e^{i \theta}\right)\right|\right) d \theta \leq \int_{0}^{2 \pi} \phi\left(c(\gamma, n)\left|P\left(e^{i \theta}\right)\right|\right) d \theta
$$

where $c(\gamma, n)=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)$.

In particular Lemma 2.7 applies with $\phi: x \rightarrow x^{p}$ for every $p \in(0, \infty)$ and $\phi: x \rightarrow \log x$ as well. Therefore, we have for $0 \leq p<\infty$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi} \phi\left(\left|C_{\gamma} P\left(e^{i \theta}\right)\right|^{p}\right) d \theta\right\}^{1 / p} \leq c(\gamma, n)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \tag{2.15}
\end{equation*}
$$

From Lemma 2.7, we deduce the following result.
Lemma 2.8. If $P \in \mathscr{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for each $p>0, R>1$ and η real, $0 \leq \eta<2 \pi$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right)\right|^{p} d \theta
\end{aligned} \quad \begin{aligned}
& \leq\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

where $B \in \mathcal{B}_{n}, \sigma(z):=R z, \rho(z):=r z, B\left[P^{*} \circ \sigma\right]^{*}(z):=\left(B\left[P^{*} \circ \sigma\right](z)\right)^{*}, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (1.11) and (1.7), respectively.
Proof. Since $P(z)$ does not vanish in $|z|<1$ and $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$, by Lemma 2.5, we have for $R>r \geq 1$,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \tag{2.16}
\end{align*}
$$

Also, since
$P^{*}(R z)+\phi_{n}(R, r, \alpha, \beta) P^{*}(r z)=R^{n} z^{n} \overline{P(1 / R \bar{z})}+\phi_{n}(R, r, \alpha, \beta) r^{n} z^{n} \overline{P(1 / r \bar{z})}$, therefore,

$$
\begin{aligned}
& B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \\
& = \\
& \lambda_{0}\left(R^{n} z^{n} \overline{P(1 / R \bar{z})}+\phi_{n}(R, r, \alpha, \beta) r^{n} z^{n} \overline{P(1 / r \bar{z})}\right)+\lambda_{1}\left(\frac{n z}{2}\right)\left(n R^{n} z^{n-1} \overline{P(1 / R \bar{z})}\right. \\
& \left.\quad-R^{n-1} z^{n-2} \overline{P^{\prime}(1 / R \bar{z})}+\phi_{n}(R, r, \alpha, \beta)\left(n r^{n} z^{n-1} \overline{P(1 / r \bar{z})}-r^{n-1} z^{n-2} \overline{P^{\prime}(1 / r \bar{z})}\right)\right) \\
& \quad+\frac{\lambda_{2}}{2!}\left(\frac{n z}{2}\right)^{2}\left(n(n-1) R^{n} z^{n-2} \overline{P(1 / R \bar{z})}-2(n-1) R^{n-1} z^{n-3} \overline{P^{\prime}(1 / R \bar{z})}\right. \\
& \quad+R^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / R \bar{z})}+\phi_{n}(R, r, \alpha, \beta)\left(n(n-1) r^{n} z^{n-2} \overline{P(1 / r \bar{z})}\right. \\
& \left.\left.\quad-2(n-1) r^{n-1} z^{n-3} \overline{P^{\prime}(1 / r \bar{z})}+r^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / r \bar{z})}\right)\right),
\end{aligned}
$$

and hence

$$
\begin{align*}
& B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z) \\
&=\left(B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right)^{*} \\
&=\left(\overline{\lambda_{0}}+\overline{\lambda_{1}} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left(R^{n} P(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P(z / r)\right) \\
&-\left(\overline{\lambda_{1}} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left(R^{n-1} z P^{\prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-1} z P^{\prime}(z / r)\right) \\
&+\overline{\lambda_{2}} \frac{n^{2}}{8}\left(R^{n-2} z^{2} P^{\prime \prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-2} z^{2} P^{\prime \prime}(z / r)\right) \tag{2.17}
\end{align*}
$$

Also, for $|z|=1$

$$
\begin{aligned}
\mid B\left[P^{*} \circ \sigma\right](z)+\phi_{n} & (R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \mid \\
& =\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right|
\end{aligned}
$$

Using this in (2.16), we get for $|z|=1$ and $R>r \geq 1$,

$$
\begin{aligned}
\mid B[P \circ \sigma](z)+ & \phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right|
\end{aligned}
$$

Since all the zeros of $P^{*}(z)$ lie in $|z| \leq 1$, as before, all the zeros of $P^{*}(R z)+$ $\phi_{n}(R, r, \alpha, \beta) P^{*}(r z)$ lie in $|z|<1$ for all real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$. Hence by Lemma 2.2, all the zeros of $B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)$ lie in $|z|<1$, therefore, all the zeros of $B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \beta) B\left[P^{*} \circ \rho\right]^{*}(z)$ lie in $|z|>1$. Hence by the maximum modulus principle,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+\phi_{n} & (R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \mid \\
& <\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right| \tag{2.18}
\end{align*}
$$

for $|z|<1$. A direct application of Rouche's theorem shows that

$$
\begin{aligned}
C_{\gamma} P(z)= & \left(B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right) e^{i \eta} \\
& +\left(B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right) \\
= & \left\{\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \overline{\lambda_{0}}\right\} a_{n} z^{n} \\
& +\cdots+\left\{\left(R^{n}+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) r^{n}\right) \overline{\Lambda_{n}}+e^{i \eta}\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\} a_{0}
\end{aligned}
$$

does not vanish in $|z|<1$. Therefore, C_{γ} is an admissible operator. Applying (2.15) of Lemma 2.7, the desired result follows immediately for each $p>0$.

We also need the following lemma [4].
Lemma 2.9. If A, B, C are non-negative real numbers such that $B+C \leq A$, then for each real number γ,

$$
\left|(A-C) e^{i \gamma}+(B+C)\right| \leq\left|A e^{i \gamma}+B\right| .
$$

3. Proof of the Theorems

Proof of Theorem 1.5. By hypothesis $P(z)$ does not vanish in $|z|<1$, therefore by Lemma 2.6, we have

$$
\begin{align*}
& \left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \\
& \quad \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \\
& \quad-\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m, \tag{3.1}
\end{align*}
$$

for $|z|=1,|\alpha| \leq 1$ and $R>r \geq 1$ where $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$. Since $B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)$ is the conjugate of $B\left[P^{*} \circ \sigma\right](z)+$ $\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)$ and

$$
\begin{aligned}
\mid B\left[P^{*} \circ \sigma\right]^{*}(z) & +\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z) \mid \\
& =\left|B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right|
\end{aligned}
$$

Thus (3.1) can be written as

$$
\begin{align*}
& \mid B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
&+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2} \\
& \leq\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right| \\
&-\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2} \tag{3.2}
\end{align*}
$$

for $|z|=1$. Taking

$$
\begin{gathered}
A=\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right| \\
B=\left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right|,
\end{gathered}
$$

and

$$
C=\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}
$$

in Lemma 2.9 and noting by (3.2) that

$$
B+C \leq A-C \leq A
$$

we get for every real γ,

This implies for each $p>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left\{\left|B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|\right. \\
& \left.\quad-\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right\} e^{i \gamma}
\end{aligned}
$$

$$
\begin{align*}
& +\left\{\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|\right. \\
& \left.+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right\}\left.\right|^{p} d \theta \\
& \leq \int_{0}^{2 \pi}| | B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right) \mid e^{i \gamma} \\
& \quad+\left.\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|\right|^{p} d \theta \tag{3.3}
\end{align*}
$$

Integrating both sides of (3.3) with respect to γ from 0 to 2π, we get with the help of Lemma 2.8 for each $p>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left\{\left|B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|\right. \\
&\left.-\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right\} e^{i \gamma} \\
&+\left\{\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|\right. \\
&\left.+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right\}\left.\right|^{p} d \theta d \gamma \\
& \leq \int_{0}^{2 \pi} \int_{0}^{2 \pi}| | B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right) \mid e^{i \gamma} \\
& \leq \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}| | B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)| |^{p} d \theta d \gamma\right. \\
&+\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right| e^{i \gamma} \\
& \leq \int_{0}^{2 \pi}\left\{\left.\int_{0}^{2 \pi}\left|(B, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|\right|^{p} d \gamma\right\} d \theta \\
&\left.\left.\leq \int_{0}^{2 \pi} \mid P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right) e^{i \gamma} \\
& \leq \int_{0}^{2 \pi} \int^{2 \pi} \mid\left(B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right) e^{i \gamma}
\end{aligned}
$$

$$
\begin{gather*}
\left.+\left.\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right)\right|^{p} d \theta\right\} d \gamma \\
\leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \gamma}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \overline{\lambda_{0}}\right|^{p} d \gamma \\
\times \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{3.4}
\end{gather*}
$$

Now it can be easily verified that for every real number γ and $s \geq 1$,

$$
\left|s+e^{i \alpha}\right| \geq\left|1+e^{i \alpha}\right|
$$

This implies for each $p>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|s+e^{i \gamma}\right|^{p} d \gamma \geq \int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma \tag{3.5}
\end{equation*}
$$

If

$$
\begin{aligned}
& \left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right| \\
& \quad+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2} \neq 0,
\end{aligned}
$$

we take

$$
\begin{aligned}
& \left|B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right| \\
s= & +\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|} \\
& \quad+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}
\end{aligned}
$$

then by (3.2), $s \geq 1$ and we get with the help of (3.5),

For

$$
\begin{aligned}
& \left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right| \\
& \quad+\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2} \neq 0,
\end{aligned}
$$

then (3.6) is trivially true. Using this in (3.4), we conclude that for every $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1 R>r \geq 1$ and $p>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi}| | B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \mid \\
& \quad+\left.\frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right|^{p} d \theta \int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma
\end{aligned}
$$

$$
\leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \gamma}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \overline{\lambda_{0}}\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
$$

This gives for every δ, α, β with $|\delta| \leq 1,|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and γ real

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \\
& +\left.\delta \frac{\left(\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|-\left|1+\phi_{n}(R, r, \alpha, \beta)\right|\left|\lambda_{0}\right|\right) m}{2}\right|^{p} d \theta \int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma \\
& \leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \gamma}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{3.7}
\end{align*}
$$

Since

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \gamma}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \overline{\lambda_{0}}\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \\
& =\int_{0}^{2 \pi}| |\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n}\left|e^{i \gamma}+\left|\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \\
& =\int_{0}^{2 \pi}| |\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n}\left|e^{i \gamma}+\left|\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \\
& =\int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \gamma}+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{3.8}
\end{align*}
$$

the desired result follows immediately by combining (3.7) and (3.8). This completes the proof of Theorem 1.5 for $p>0$. To establish this result for $p=0$, we simply let $p \rightarrow 0+$.

Acknowledgment The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments.

References

1. N.C. Ankeny and T.J. Rivlin, On a theorm of S. Bernstein, Pacific J. Math., 5 (1955), 849-852.
2. V.V. Arestov, On integral inequalities for trigonometric polynimials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3-22, (in Russian). English translation: Math. USSR-Izv. 18 (1982), 1-17.
3. A. Aziz, A new proof and a generalization of a theorem of De Bruijn, Proc. Amer. Math. Soc., 106(1989), 345-350.
4. A. Aziz and N.A. Rather, L_{p} inequalities for polynomials, Glas. Mat. Ser. III, 32 (1997), 39-43.
5. A. Aziz and N.A. Rather, Some new generalizations of Zygmund-type inequalities for polynomials, Math. Ineq. Appl. 15 (2012), 469-486.
6. R.P. Boas Jr. and Q.I. Rahman, L^{p} inequalities for polynomials and entire functions, Arch. Ration. Mech. Anal. 11(1962), 34-39.
7. N.G. Bruijn, Inequalities concerning polynomials in the complex domain, Nederal. Akad. Wetensch. Proc. 50 (1947), 1265-1272.
8. G.H. Hardy, The mean value of the modulus of an analytic functions, Proc. Lond. Math. Soc. 14 (1915), 269-277.
9. P.D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
10. M. Marden, Geometry of Polynomials, Math. Surveys Monogr. 3, Amer. Math. Soc. Providence, RI, 1949.
11. G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore, 1994.
12. G. Polya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1925.
13. Q.I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969), 295-309.
14. Q.I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
15. Q.I. Rahman and G. Schmisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
16. N.A. Rather and S. Gulzar, Integral mean estimates for an operator preserving inequalities between polynomials, J. Inequal. Spec. Funct. 3(2012), 24-41.
17. N.A. Rather and M.A. Shah, On an operator preserving L_{p} inequalities between polynomials, J. Math. Anal. Appl. 399 (2013), 422-432.
18. A.C. Schaffer, Inequalities of A. Markov and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
19. W.M. Shah and A. Liman, Integral estimates for the family of B-operators, Oper. Matrices, 5 (2011), 79-87.
20. A. Zygmund, A remark on conjugate series, Proc. Lond. Math. Soc. 34 (1932), 292-400.
[^0]
[^0]: 1 Department of Mathematics, University of Kashmir, Hazratbal, Sringar, India.

 E-mail address: dr.narather@gmail.com
 2 Department of Mathematics,
 Islamic University of Science \& Technology Awantipora, Kashmir, India.
 E-mail address: sgmattoo@gmail.com
 ${ }^{3}$ Department of Mathematics, S. P. College, Sringar, India.
 E-mail address: thakurkhursheed@gmail.com

