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Abstract. Let R be a prime ring and let L be a noncentral Lie ideal of R. The
main purpose of this paper is to describe generalized derivations of R satisfying
some algebraic identities on L. Moreover, using a topological approach based
on Baire’s category theorem and some properties of functional analysis, our
results have been extended to Banach algebras.

1. Introduction

Rings considered in this paper are associative and not necessarily unitary. For
a ring R, we shall use Z(R) to stand for the center of R. An ideal P of R is a
prime ideal if xRy ⊆ P yields x ∈ P or y ∈ P. In particular, if the zero ideal of
R is prime, then R is said to be a prime ring. For any x, y ∈ R, we will write
[x, y] = xy − yx and x ◦ y = xy + yx for the Lie product and Jordan product,
respectively. An additive subgroup L of R is said to be a Lie ideal of R if [x, r] ∈ L
for all x ∈ L and r ∈ R. An additive mapping d : R −→ R is a derivation if
d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping F : R −→ R is a
generalized derivation associated to a derivation d if F (xy) = F (x)y + xd(y) for
all x, y ∈ R. A Banach algebra is a normed algebra whose underlying vector space
is a Banach space. The closure of a subset X of a Banach algebra A, denoted by
X, is the intersection of all closed subsets of A containing X. The interior of a
subset X of a Banach algebra A, denoted by

◦
X, is the largest open set contained

in X. Equivalently,
◦
X is the union of all open subsets of A contained in X.
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Numerous results in literature show how the global structure of a ring R is
often tightly linked to the behavior of some special additive mappings defined on
R. A popular result in this area is due to Posner [11] who proved that a prime ring
equipped with a nonzero centralizing derivation is a commutative integral domain.
This remarkable theorem of Posner has been influential, and it has played a
key role in the development of various notions. This result was subsequently
refined and extended by a number of algebraists. More specifically, they studied
the commutativity of rings admitting suitably constrained generalized derivation
verifying specific identities.

In [7, Theorem 2.7], it is demonstrated that if R is a prime ring of characteris-
tic different from two, admitting two generalized derivations F1 and F2 such that
F1(x)F2(x)+F2(x)F1(x) = 0 for all x ∈ R, then F1 = 0 or F2 = 0. An interesting
result proved in [9, Theorem 2] by Hvala states that if F1 and F2 are two general-
ized derivations on a prime ring R of characteristic different from two, verifying
[F1(x), F2(x)] = 0 for all x ∈ R, then there exists λ ∈ C such that F1(x) = λF2(x)
for all x ∈ R. Later, Demir, De Filippis, and Argaç [6] managed to get the same
classification by only considering the main identity on a noncentral Lie ideal of a
prime ring R, except possibly when R satisfies the standard identity s4 of degree
4.

In [1, Theorem 3.1], it was shown that if A is a unital prime Banach algebra, F
is a nonzero continuous generalized derivation with associated derivation d, and
G1 and G2 are two nonvoid open subsets of A satisfying F ((xy)m)−xmym ∈ Z(A)
or F ((xy)m)− ymxm ∈ Z(A) for all (x, y) ∈ G1 ×G2 and m = m(x, y) > 1, then
A is commutative under the additional assumption that d(Z(A)) ̸= 0.

Motivated by the previous results, we here continue this line of investigation by
describing generalized derivations satisfying some specific identities on a noncen-
tral Lie ideal of a prime ring. Moreover, as an application, we study continuous
generalized derivations satisfying similar algebraic identities locally on nonvoid
open subsets of a prime Banach algebra A. Our topological approach is based on
Baire’s category theorem and some properties of functional analysis.

2. Generalized derivations acting on Lie ideals

Before starting our results, we collect some well-known facts, which will be
used frequently.

Fact 2.1. ([4, Main Theorem]). Let R be a prime ring of characteristic different
from 2, let L be a noncentral Lie ideal of R, and let F be a generalized derivation
of R such that F (x) ∈ Z(R) for any x ∈ L. Then either F = 0 or R embeds in a
2× 2 matrix ring over a field.

Fact 2.2. Let R be a noncommutative prime ring of characteristic different from
2 and let F be a generalized derivation of R such that F (x) ∈ Z(R) for any
x ∈ R. Then F = 0.

Fact 2.3. ([2, Lemma 2]). Let R be a prime ring of characteristic different from
2, let L be a Lie ideal of R, and let CR(L) = {a ∈ R : [a, x] = 0 ∀x ∈ L}. If L is
not central, then CR(L) = Z(R).
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Fact 2.4. ([6]). Let R be a prime ring of characteristic different from 2, let U
be its right Utumi quotient ring, let C be its extended centroid, and let L be a
noncentral Lie ideal of R. Let F : R → R and G : R → R be nonzero generalized
derivations on R. If [F (u), G(u)] = 0 for all u ∈ L, then one of the following
conditions holds:

(1) There exists λ ∈ C such that, for any x ∈ R, G(x) = λF (x);
(2) R satisfies s4, the standard identity of degree 4.

Lemma 2.5. Let R be a prime ring of characteristic different from 2, let L be a
noncentral Lie ideal of R, and let F and G be generalized derivations of R such
that F (x)y + yG(x) = 0 for all x, y ∈ L. Then either F = G = 0 or R embeds in
a 2× 2 matrix ring over a field.

Proof. Suppose that R does not embed in a 2 × 2 matrix ring over a field and
that

F (x)y + yG(x) = 0 for all x, y ∈ L. (2.1)
By [2, Lemma 1], there exists a nonzero ideal I of R such that [I, R] ⊆ L.
Replacing y by [u, r] in (2.1) with u ∈ I, r ∈ R, we have

F (x)[u, r] + [u, r]G(x) = 0 for all u ∈ I, x ∈ L, r ∈ R. (2.2)
Substituting u by ur, we get

F (x)[u, r]r + [u, r]rG(x) = 0 for all u ∈ I, x ∈ L, r ∈ R. (2.3)
Right multiplying (2.2) by r and subtracting it from (2.3), we get [u, r][G(x), r] =
0 for all u ∈ I, x ∈ L, r ∈ R. Taking ut instead of u with t ∈ I, we get

[u, r]I[G(x), r] = 0 for all u ∈ I, x ∈ L, r ∈ R.

Using the primeness of R, we obtain [G(x), r] = 0 for all x ∈ L, r ∈ R, that
is, G(L) ⊆ Z(R). Applying Fact 2.1, we get G = 0, in which case, (2.1) yields
F = 0. □
Theorem 2.6. Let R be a prime ring of characteristic different from 2 and let
L be a noncentral Lie ideal of R. If F1, F2, and F3 are generalized derivations of
R such that

[F1(x), y] = F2(x)y + yF3(x) for all x, y ∈ L,

then one of the following conditions holds:
(1) There exist λ, µ ∈ C such that F2(x) = λF1(x), F3(x) = µF1(x) for any

x ∈ R;
(2) R embeds in a 2× 2 matrix ring over a field.

Proof. We are given that
[F1(x), y] = F2(x)y + yF3(x) for all x, y ∈ L. (2.4)

Assume that R does not embed in a 2× 2 matrix ring over a field.
Firstly we point out that, if F1(L) ⊆ Z(R), then Fact 2.1 implies F1 = 0 and

relation (2.4) reduces to
F2(x)y + yF3(x) = 0 for all x, y ∈ L.
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Invoking Lemma 2.5, it follows that F2 = F3 = 0.
Thus we may assume that F1(L) ̸⊆ Z(R) and consider u0 ∈ L such that

F1(u0) /∈ Z(R). Setting a = F1(u0), b = F2(u0) and c = F3(u0), then relation
(2.4) yields

[a, y] = by + yc for all y ∈ L.

In particular,
[a, [l, r]] = b[l, r] + [l, r]c for all l ∈ L, r ∈ R. (2.5)

Substituting r by rl, we get
[a, [l, r]]l + [l, r][a, l] = b[l, r]l + [l, r]lc for all l ∈ L, r ∈ R. (2.6)

Right multiplying (2.5) by l and comparing with (2.6), we find that [l, r][a, l] =
[l, r][l, c] in such a way that

[l, r][a+ c, l] = 0 for all l ∈ L, r ∈ R.

Accordingly, a+ c ∈ Z(R). In particular, this implies that [F1(u0), F3(u0)] = 0.
Furthermore, setting lr instead of r in (2.5), we get

[a, l][l, r] + l[a, [l, r]] = bl[l, r] + l[l, r]c for all l ∈ L, r ∈ R. (2.7)
Left multiplying (2.5) by l and subtracting it from (2.7), we obtain [a−b, l][l, r] =
0, which assures that a− b ∈ Z(R), and therefore [F1(u0), F2(u0)] = 0. Hence, in
all cases, we have

[F1(u), F2(u)] = 0 and [F1(u), F3(u)] = 0 for any u ∈ L.

Applying Fact 2.4, there exist λ, µ ∈ C such that F2(x) = λF1(x) and F3(x) =
µF1(x) for any x ∈ R. □
Remark 2.7. In the case where [F1(x), y] = F2(x)y + yF3(x) for all x, y ∈ R, one
might expect R to be commutative. Instead, this would be false, as the following
example proves:

For K a field, let R = M2(K), and let F be a generalized derivation of R. It is
obvious that F1 = F2 = F and F3 = −F verify the above relation although the
ring is not commutative.

Proposition 2.8. Let R be a noncommutative prime ring of characteristic dif-
ferent from 2. If F1, F2, and F3 are generalized derivations of R such that

[F1(x), y] = F2(x)y + yF3(x), for all x, y ∈ R,

then F2 = F1 and F3 = −F1.

Proof. Assume that
[F1(x), y] = F2(x)y + yF3(x) for all x, y ∈ R. (2.8)

Taking yz instead of y in (2.8), we get
[F1(x), y]z + y[F1(x), z] = F2(x)yz + yzF3(x) for all x, y, z ∈ R. (2.9)

Right multiplying relation (2.8) by z and subtracting it from (2.9), we obtain
y[F1(x) + F3(x), z] = 0, for all x, y, z ∈ R,
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which assures that (F1 + F3)(R) ⊂ Z(R). Hence, Fact 2.2 forces F1 = −F3.
Therefore, (2.8) becomes (F1(x) − F2(x))y = 0 for all x, y ∈ R, which forces
F1 = F2. □
Theorem 2.9. Let R be a prime ring of characteristic different from 2 and let
L be a noncentral Lie ideal of R. If F1, F2, and F3 are generalized derivations of
R satisfying

F1(x) ◦ y = F2(x)y + yF3(x), for all x, y ∈ L,

then one of the following conditions holds:
(1) There exist λ, µ ∈ C such that F2(x) = λF1(x), F3(x) = µF1(x) for any

x ∈ R;
(2) R embeds in a 2× 2 matrix ring over a field.

Proof. Assume that R does not embed in a 2×2 matrix ring over a field and that
F1(x) ◦ y = F2(x)y + yF3(x) for all x, y ∈ L. (2.10)

If F1(L) ⊆ Z(R), then Fact 2.1 forces F1 = 0, in which case, (2.10) reduces to
F2(x)y + yF3(x) = 0 for all x, y ∈ L.

Invoking Lemma 2.5, we conclude that F2 = F3 = 0.
Now, let us fix an element u0 ∈ L such that F1(u0) /∈ Z(R) and set a = F1(u0),

b = F2(u0), and c = F3(u0). In light of relation (2.10), we have
a ◦ y = by + yc for all y ∈ L.

Therefore
a ◦ [l, r] = b[l, r] + [l, r]c for all l ∈ L, r ∈ R. (2.11)

Replacing r by rl, we get
(a ◦ [l, r])l − [l, r][a, l] = b[l, r]l + [l, r]lc for all l ∈ L, r ∈ R. (2.12)

Right multiplying (2.11) by l and subtracting it from (2.12), we arrive at [l, r][a, l] =
[l, r][l, c], which yields that

[l, r][a+ c, l] = 0 for all l ∈ L, r ∈ R.

Accordingly, a+ c ∈ Z(R), and therefore [F1(u0), F3(u0)] = 0.
On the other hand, taking lr instead of r in (2.11), we get

l(a ◦ [l, r]) + [a, l][l, r] = bl[l, r] + l[l, r]c for all l ∈ L, r ∈ R. (2.13)
Left multiplying (2.11) by l and subtracting it from (2.13), we obtain [a −
b, l][l, r] = 0, which assures that a − b ∈ Z(R), and thus [F1(u0), F2(u0)] = 0.
Hence, in all cases we find that

[F1(u), F2(u)] = 0 and [F1(u), F3(u)] = 0 for any u ∈ L.

Using Fact 2.4, there exist λ, µ ∈ C such that F2(x) = λF1(x) and F3(x) = µF1(x)
for any x ∈ R. □

Using similar arguments as in the proof of Proposition 2.8, we get the following
result.
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Proposition 2.10. Let R be a noncommutative prime ring of characteristic
different from 2. If F1, F2, and F3 are generalized derivations of R satisfying

F1(x) ◦ y = F2(x)y + yF3(x), for all x, y ∈ R,

then F1 = F2 = F3.

3. Applications on prime Banach Algebras

Throughout this section, A denotes a real or complex Banach algebra. To
prove our main results we need the following lemma.

Lemma 3.1 ([3]). Let A be a Banach algebra, if P (t) =
n∑

k=0

bkt
k is a polynomial

in the real variable t with coefficients in A, and if for an infinite set of real values
of t, P (t) ∈ M, where M is a closed linear subspace of A, then every bk lies in
M.

Theorem 3.2. Let A be a prime Banach algebra, let O1 and O2 be nonvoid open
subsets of A, let F1, F2, and F3 be nonzero continuous generalized derivations of
A, and let n be a fixed positive integer. If

[F1(x), y]
n = F2(x)y + yF3(x), for all (x, y) ∈ O1 ×O2,

then A is commutative.

Proof. Assume that
[F1(x), y]

n − F2(x)y − yF3(x) = 0 for all (x, y) ∈ O1 ×O2. (3.1)
Let u ∈ A and let x ∈ O1. Then x+ tu ∈ O1 for a sufficiently small real t.

Since F1, F2, and F3 being continuous, one can obviously see that Fi(ru) =
rFi(u) for all u ∈ A, r ∈ R, i ∈ {1, 2, 3}. Replacing x by x+ tu in (3.1), we get(

[F1(x), y] + [F1(u), y]t
)n − (

F2(x)y + yF3(x) + (F2(u)y + yF3(u))t
)
= 0. (3.2)

Let Pn,m(u, x, y) denote the sum of all monic monomials with n occurrences of
[F1(x), y] and m occurrences of [F1(u), y]. It follows from (3.2) that

Q(t) =
n∑

k=0

Pn−k,k(u, x, y)t
k −

(
F2(x)y + yF3(x) + (F2(u)y + yF3(u))t

)
= 0.

Set Q(t) =
n∑

k=0

qk(u, x, y)t
k with q0(u, x, y) = [F1(x), y]

n − F2(x)y − yF3(x),

q1(u, x, y) = Pn−1,1(u, x, y) − F2(u)y − yF3(u), and qk(u, x, y) = Pn−k,k(u, x, y)
for all k ∈ {2, . . . , n}. Since (0) is a closed linear subspace of A, then Lemma 3.1
yields qk(u, x, y) = 0 for all k ∈ {0, . . . , n}. In particular, qn(u, x, y) = 0, that is,

[F1(u), y]
n = 0 for all (u, y) ∈ A×O2.

Similarly, one can show that
[F1(u), v]

n = 0 for all u, v ∈ A. (3.3)
By view of (3.3), equation (3.1) reduces to F2(x)y + yF3(x) = 0 for all (x, y) ∈
O1 ×O2.
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Using the same techniques as above, we obviously get
F2(x)y + yF3(x) = 0 for all x, y ∈ A.

Therefore
[F2(x), r]y = 0 and y[r, F3(x)] = 0, for all r, x, y ∈ A,

proving that F2(x) ∈ Z(R) and F3(x) ∈ Z(R) for all x ∈ A. Since F2 and F3

being nonzero, it follows from Fact 2.2 that A is commutative. □

Arguing in a similar manner with slight modifications, we get the following
theorem.

Theorem 3.3. Let A be a prime Banach algebra, let O1 and O2 be nonvoid open
subsets of A,let F1, F2, and F3 be nonzero continuous generalized derivations of
A, and let n be a fixed positive integer. If

(F1(x) ◦ y)n = F2(x)y + yF3(x), for all (x, y) ∈ O1 ×O2,

then A is commutative.

Theorem 3.4. Let A be a noncommutative prime Banach algebra, O1, O2 nonvoid
open subsets of A, F1, F2 and F3 continuous generalized derivations of A. If

[F1(x
r), ys] = F2(x

r)ys + ysF3(x
r), for all (x, y) ∈ O1 ×O2,

where r and s are nonzero integers depending on the pair of elements x and y,
then one of the following conditions holds:

(1) There exist λ, µ ∈ C such that F2(x) = λF1(x), F3(x) = µF1(x) for any
x ∈ A;

(2) A embeds in a 2× 2 matrix ring over a field.

Proof. Assume that A does not embed in a 2× 2 matrix ring over a field. Let us
fix x ∈ O1 and set

Kr,s = {y ∈ A | [F1(x
r), ys]− F2(x

r)ys − ysF3(x
r) ̸= 0}.

We claim that each Kr,s is open in A or equivalently its complement Kc
r,s is closed.

For this, we consider a sequence (yk)k≥1 ⊂ Kc
r,s converging to y and prove that

y ∈ Kc
r,s.

As (yk)k≥1 ⊂ Kc
r,s then [F1(x

r), ysk]− F2(x
r)ysk + yskF3(x

r) = 0 for all k ≥ 1.
Hence

lim
k→∞

[F1(x
r), ysk]− F2(x

r)ysk − yskF3(x
r) = [F1(x

r), ( lim
k→∞

yk)
s]− F2(x

r)( lim
k→∞

yk)
s

−( lim
k→∞

yk)
sF3(x

r)

= [F1(x
r), ys]− F2(x

r)ys − ysF3(x
r)

= 0.

Therefore y ∈ Kc
r,s; thus Kr,s is open. Suppose now that all the Kr,s are dense

in A; then the intersection of Kr,s is also dense by Baire category theorem, a
contradiction with the fact that O2 ̸= ∅. Hence there exist some positive integers
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p, q depending on x such that Kp,q is not dense. Accordingly, there exists a
nonvoid open subset O3 in Kc

p,q. Therefore
[F1(x

p), yq]− F2(x
p)yq − yqF3(x

p) = 0 for all y ∈ O3. (3.4)
Let us consider z ∈ O3 and v ∈ A, z + tv ∈ O3 for all sufficiently small real t.

Replacing y by z + tv in (3.4), we obtain
[F1(x

p), (z + tv)q]− F2(x
p)(z + tv)q − (z + tv)qF3(x

p) = 0. (3.5)
Let Pi,j(x, v) denote the sum of all monic monomials with i occurrences of x and
j occurrences of u. Using the fact that

(z + tv)q = Pq,0(z, v) + Pq−1,1(z, v)t+ · · ·+ P1,q−1(z, v)t
q−1 + P0,q(z, v)t

q,

(3.5) yields that

[F1(x
p),

q∑
i=0

Pq−i,i(z, v)t
i]− F2(x

p)

( q∑
i=0

Pq−i,i(z, v)t
i

)
−
( q∑

i=0

Pq−i,i(z, v)t
i

)
F3(x

p) = 0,

which implies that

Q(t) :=

q∑
i=0

(
[F1(x

p), Pq−i,i(z, v)]− F2(x
p)Pq−i,i(z, v)− Pq−i,i(z, v)F3(x

p)
)
ti = 0.

Hence Q(t) =
q∑

i=0

ai(v, x, z)t
i = 0 with

ai(v, x, z) = [F1(x
p), Pq−i,i(z, v)]− F2(x

p)Pq−i,i(z, v)− Pq−i,i(z, v)F3(x
p).

By virtue of Lemma 3.1, we get ai(v, x, z) = 0 for all i ∈ {0, . . . , q}. In particular,
aq(v, x, z) = 0 so that [F1(x

p), vq] − F2(x
p)vq − vqF3(x

p) = 0. In conclusion, we
have proved that for a given x ∈ O1, there exist some positive integers p and q
depending on x, such that

[F1(x
p), vq]− F2(x

p)vq − vqF3(x
p) = 0 for all v ∈ A.

Let us fix v ∈ A. Using a similar approach, we arrive at
[F1(u

p), vq] = F2(u
p)vq + vqF3(u

p) for all u, v ∈ A.

Now let H1 and H2 be the additive subgroups generated by {ap | a ∈ A} and
{aq | a ∈ A}, respectively. We have

[F1(x), y] = F2(x)y + yF3(x) for all (x, y) ∈ H1 ×H2. (3.6)
According to [5], (3.6) yields that either H1 contains a noncentral Lie ideal J1 or
ap ∈ Z(A) for all a ∈ A, in which case, A is commutative by [12], a contradiction.
Consequently, H1 contains a noncentral Lie ideal J1. Similarly, H2 contains also
a noncentral Lie ideal J2. Now let

Ik = {x ∈ A | [x,A] ⊂ Jk}
with k = 1, 2. It follows from [8, Lemma 1.4] that I1 and I2 are both subrings
and Lie ideals of A. Therefore (3.6) becomes

[F1(x), y] = F2(x)y + yF3(x) for all (x, y) ∈ [I1,A]× [I2,A]. (3.7)



254 K. BOUCHANNAFA, A. HERMAS, L. OUKHTITE

As [I1,A] and [I2,A] are dense submodules of [A,A] then by [10, Theorem 2],
[A,A] satisfies the same identity as [I1,A] and [I2,A]. Hence (3.7) implies that

[F1(x), y]− F2(x)y − yF3(x) = 0 for all x, y ∈ [A,A]. (3.8)
Since [A,A] is a noncentral Lie ideal, applying Theorem 2.6, we get the required
result. □

Using the same arguments with slight modifications, an application of Theorem
2.9 yields the following result.

Theorem 3.5. Let A be a noncommutative prime Banach algebra, let O1 and
O2 be nonvoid open subsets of A, and let F1, F2 and F3 be continuous generalized
derivations of A. If

F1(x
r) ◦ ys = F2(x

r)ys + ysF3(x
r), for all (x, y) ∈ O1 ×O2,

where r and s are nonzero integers depending on the pair of elements x and y,
then one of the following conditions holds:

(1) There exist λ, µ ∈ C such that F2(x) = λF1(x), F3(x) = µF1(x) for any
x ∈ A;

(2) A embeds in a 2× 2 matrix ring over a field.

The following example shows that the primeness hypothesis in Theorems 2.6
and 2.9 is not superfluous.

Example 3.6. Let us consider the ring R = M2(R) × R with operations co-
ordinatewise addition and multiplication. It is obvious that R is a nonprime
ring.

Consider the generalized derivation
FM((A, a)) = (MA+ AM, 0), whereM ∈ [M2(R),M2(R)],

with associated derivation dM defined by dM((A, a)) = (AM −MA, 0).
Set L = [M2(R),M2(R)]× R along with F1 = 0, F2 = FM , and F3 = −FM . A

simple computation shows that
[F1((A, a)), (B, b)] = F1((A, a)) ◦ (B, b) = F2((A, a))(B, b) + (B, b)F3((A, a)) = 0

for all (A, a), (B, b) ∈ L. However, none of the assertions of Theorems 2.6 and
2.9 are satisfied.
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