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APPLICATIONS OF NON-HOMOGENEOUS CAUCHY-EULER
FRACTIONAL ¢-DIFFERENTIAL EQUATION
TO A NEW CLASS OF ANALYTIC FUNCTIONS

SERAP BULUT

Communicated by H.R. Ebrahimi Vishki

ABSTRACT. We define a new general fractional ¢-differential operator, and by
means of this operator, we introduce a new subclass of analytic functions that
are the solutions of the non-homogeneous Cauchy—FEuler fractional g-differential
equations. Our aim is to determine upper bounds of Taylor—Maclaurin coeffi-
cients for functions belong to this class.

1. INTRODUCTION AND PRELIMINARIES

The sets of real numbers, complex numbers, and positive integers will be de-
noted by
R = (—-00,00), C=C'U{0} and N={1,2,3,...} =N\ {0}.
Also, we need the following basic definitions of the g-calculus, which are used in
this paper (see, for details, [10,11] and also [4]).
For 0 < ¢ < 1, the ¢g-number and the g¢-factorial are defined by

n € C,

n g
[ ]q 1-¢" _ 2, ... n1
=14q+q¢+---q¢" 7, n €N,
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and
1, n =20,
[n]q‘ = n
H [T]q7 n 6 N7
r=1

respectively. As ¢ — 17, [n], — n, and [n] ! = nl.
For 7,0 € C, the ¢-shifted factorial (7;¢)_ is defined by (see [3])

(e

d 1—17q
711) (1 Tqm)

so that

1, n =20,

(730),, = § w1 (1.1)

[T (1—=7q"), n €N,

r=0
and

(759), = H (1—-7q").
r=0

Furthermore, the ¢-Gamma function I'y is defined by

(qa q) 1-2
Iy(z) = —5=(1—- z€C).
From (1.1), we obtain that

(7% q), = %(;n) (1—q)".

Thus for n = 1, the above equality implies that
Iy(z+1) =[2], Ty (2) and r,(1)=1.
For a function f defined on a subset of C, Jackson’s g-derivative 9, f is defined
by (see [10,11])
=5, 240,
Ouf (2) = (1.2)
), =2=0

provided that f’(0) exists. Then for a function g (z) = 2*, we have

0y (%) = [K], =",

q
lim (9, (2%)) = kz""' =4 (2),
q—1-
where ¢ is the ordinary derivative.
Jackson [10] introduced the g-integral by

/OZ Ft)dgt =2 (1= )Y ¢"f (2¢")
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k

as long as the series converges. Then for a function g (z) = 2", we obtain

’ I S 1 k+1 .
/Og(t)dqt—/otdqt—[k+1]z+ (k # —1)

and
z

lim g(t)dqt:/ g (t)dt,
0

q—1— 0
where [ g (t)dt is the ordinary integral.
The fractional g-derivative operator of order p is defined, for a function f, by
(see [13,14,18])

Dr. <z>=ﬁaq /Oz<z—tq>;pf<t>dqt O<p<1), (13

where the function f is analytic in a simply connected region of the complex
z-plane containing the origin, and the multiplicity of the ¢-binomial (z — tq)q_p is
single-valued when

tgP tg”
arg(_i)\q, | _
z zZ

It readily follows from (1.3) that
Fk+1)
DP k= L L ke 0<p<l1, keN).
q,z’z Fq(k—p—i—l)z ( >p ) )
Let H be the class of analytic functions in the open unit disk
D={zeC:|z| <1}.

For two functions f,g € H, we say that the function § is subordinate to g in D,
and write

1, and larg (2)] < 7.

f(2) <g(2) (z € D)
if there exists a Schwarz function © € H with

©(0)=0 and O (2)] <1 (z € D)

such that
f(z) =0(0(2)) (z€D).
It is known that

f(z) <g(2) (€D)=f(0)=g(0) and §(D)Cg(D).
Lemma 1.1. [15] Let the function & given by

6(z)=> Bz*  (z€D)
k=1
be conver in D. Also, let the function § € H be given by
5(z) = Zﬁkzk (z e D).
k=1

If
§(2) <6(z) (2eD),
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then
2| <[By|  (keN).
Let A, (n) denote the class of all functions of the form
=2+ Y @  (pneN), (1.4)
k=p+n
which are analytic and p-valent in the open unit disk ID. In particular, we set
A, (1) = A, A (1) = A = A

For a function f € A, (n) given by (1.4), from (1.2), we deduce that

8;1)f(z) = 2 T4 Z akz =:0,f (#),
k=p+n
0f(2) = -1, + Z 1], ax2""?,
k=p+n
OV f(z) = [+ j;i By ay2*P
’ Bl Ll I

where aép ¥ (z) is the pth g-derivative of f (2).
Now, using the fractional g-derivative operator D! _f, we define the following
g-derivative operator

QA (n) = Ay (n)

as follows:
Lyp—p+1)
Qr = 27 rpe 1 2 o
b of(2) H@+1)Z rf(2) (p#p+1,p+2,p+3,...)
— P4 - Fq(k + 1)Fq(p —p+ 1)akzk (1'5)
Wt Ta@+ D (k= p+1) 7

where the function f € A, (n) is given by (1.4). Note that Q) f(z) = f(=).

Remark 1.2. (i) If we let ¢ — 17, then we have the operator Q5 : A, (n) — A, (n)
introduced by Bulut [5].

(43) For n = 1, we get the operator 2 : A, — A, introduced by Selvakumaran
et al. [17].

(17i) For ¢ — 17 and p = n = 1, we get the operator * : A — A introduced by
Owa and Srivastava [12].
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Now by considering the operator Qp given by (1.5), we define the general

fractional g-differential operator D" 0 )\l » as follows:
Dl (2) = f(2),
[pl, — Alpl, +1
DAl = — —7,f(2) + 20, (2 ,.f(2))

[pl, +1 [pl, +1
= QZ)\lpf( ) (AalZOv 0§P< 1)7 (16)

©§:§\,l,pf<z) = D\ (gcl,:i,l,pf(z)) )
DN, f(2) = D0y, (® Y llsz( ) (m e N). (1.7)
If f is given by (1.4), then by (1.5), (1.6), and (1.7), we see that
’/D:]n)\pl pf(Z) = 2P + Z ‘Ilq,k,m (p7 )‘7 lap) akzk (m S NO) ) (18)
k=p+n

where
m

Dk + DTy (p — p+ 1) Pl + A (8, — ), ) +1
Lo(p+ 1Tk —p+1) [pl, +1

\I]%kym (p? >\7 lap) = (19)

Remark 1.3. (i) If we let ¢ — 17, then we obtain the operator @ngf; introduced
by Bulut [5]. The operator @T’if; is a comprehensive generalization some known
operators (see [1,2,10]).

(47) For | = 0 and n = 1 in (1.8), we obtain the operator D'y’
Selvakumaran et al. [17].

(73i) For [ =0, A =1 and o = 0 in (1.8), we obtain p-valent g-Salagean operator
defined by El-Qadeem and Mamon [8]. In addition for p = 1 and n = 1, we get
g-Salagean operator introduced by Govindaraj and Sivasubramanian [9].

introduced by

By means of the fractional g-differential operator 7"}, |, we introduce a new
subclass of analytic and p-valent functions.

Definition 1.4. Let ¢ : D — C be a convex function such that

0(0) =1 and R(p(z)) >0 (z e D). (1.10)
We denote by SKV" (0,7; ¢) the class of functions f € A, (n) satisfying
200 ( T [528 (DY f(2) + (1= 8) DV f(2)]
NI <”5(“’ M 1/ C)]) —1| e (),

v [p]q W [628 (gq/\lpf(z)) +(1-9) ggfi[:lmf(Z)}
where z €D, y € C*, 0 <0 < 1, and ®},  is given by in (1.8).
Remark 1.5. If the function ¢ satisfying the condition (1.10) is chosen as

o (2) = 1+(1;£1q—i;q)ﬂ)z

(0<p<1; zeD),
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then we obtain the class SKCJ'3" (d,7; 8) that consists of functions f € A, (n)
satisfying

ol )

Pl b [5204 <®q“pf( ) + (1—5)©qupf(z)}

14 =
5

The class
hm L SKP (8, v; 8) = SKI' (8,7, p. s B)

is introduced by Bulut [5]. Furthermore the class

SIC(TLO (& e ]-a ]-a B) - B (ma 67 ﬂa 7)
is introduced by Deng [7].

Remark 1.6. For 6 = 0, the class S/ (9, 7; 8) reduces to the class S (v; B)

that consists of functions f € A, (n) satisfying

0y (DY
w14 1 [ 1 204 (m7p,\,z7pf(z)) 1) bs g
v [p]q qulpf(z)
and for 6 = 1, the class SK"", (0,7; 8) reduces to the class """ (v; 3) that

q,p,\,1
consists of functlons f € A, (n) satisfying

11 0,(20, (D5151(2)
R {1 = S ([p]q XCRME) 1) } > f3.

For m = 0, the classes 5,7} (v; B) and K"'5; (v; ) reduce to the classes

S, (v,pym; B)  and Ky (v, p,n; B)

of p-valently g¢-starlike function of complex order v and type [, and p-valently
g-convex function of complex order v and type (3, respectively. Furthermore, the
classes

qlinSZ‘p,A,z (v,p,m; B) = S;Y,L,\,l (v,p,m; B)
and

ql_iH{’CZLp,AJ (v,p,m; B) = ’CZ,L,\J (v,p,m; B)
are introduced by Bulut [6].

The main purpose of this paper is to obtain some coefficient bounds for func-
m,p,n

tions belong to the subclass B, %" (6, 7; ¢, u) that consists of functions f € A, (n)
satisfying the following nonhomogeneous Cauchy—FEuler fractional ¢-differential
equation:

228(52)f(z)+ (1+2u+¢" ) z@él)f(z) +u(l+u) f(2)
= (1), + ) (], + 1+ ) g(2)
(fedym)i geSKT2L0,7:0): u> =D, (ueR)).
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Remark 1.7. For the function
1+(1—=(1+q)p)z
S lt=(+0)

1—gqz
the class B,"""} (,7; ¢, u) reduces to the class B\ (6,7; 8,u). Also, the classes

0<p<1; zeD),

Jim BER (6,73 8,0) = By (8,7, 9,15 8, )

and

‘8(7)7?1,0 (ﬁa’% ]-7 1a5a U) = T(ma&ﬁv’y)u)
7

are introduced by Bulut [5] and Deng [7], respectively.

2. COEFFICIENT BOUNDS

Unless otherwise stated, throughout this paper, we assume that ¢ : D —
C is a convex function defined in (1.10), that ©7, is given by (1.8), that
U, km (p, AL p) =: Wy is given by (1.9), that

0<g<l, 0<p<l, ANI>0, 0<46n<1, u>-[p, (ueR),

and that
p,neN, meN, ~eC.

Theorem 2.1. Let the function f € A, (n) be defined by (1.4). If
feSKLR(0,7:90),

q,ps\,1
then
|apin| < Xpin
and
k—p—n—1
< [T |@ il + Wl 9 O] (k2p+n+1),
=0
where
Dy(n) (148 (Ip], = 1) ], 11 I (0)

T,(k—p+1) [1 ) ([k]q _ 1)] gk—p=n+1p @,

Proof. Let the function f € SK7%" (6,7;¢) be of the form (1.4). Define a
function

() !

R

0620, (D)5, f(2)) + (1 —0) D, f(2)] (z € D).

qa,\lp aM\lLp

(2.2)
We note that the function b is of the form

[e.o]

h(z) ="+ > A,

k=p+n
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where
1+6<
(2.3)
Y +6 <[p )
From (1.11) and (2.2), we obtain that
+1<1zah 1>e<p (2 € D).
v\ [Pl
Let us define the function p(z) by
1 1 z0.b(2)
p(z) =1+~ —=2 —1 z € D). 2.4
) v(mqu ) =) 24
Therefore, we get
pO)=¢(0)=1 and  p(z) cpD)  (z€D).
By Lemma 1.1, we obtain
@ (o , .
== e, (25)
where
p(z) =14 cp2" +cppr 2" 41 (z e D).

Also, from (2.4), we find
204b(2) — [pl, b(2) = [pl, v (p(2) — )b(2).
The last equality implies that
(1K1, = [P),) A = )y 7 ko + ChpnApin + -+ + cndicn}

Let us set
k=p+n+r (reNy).
Then we can write

([p +n+ T]q - [p]q> Apinir = [p]q Y (Cnsr + CrApyn + -+ Crlpir) -
Applying (2.5), we get

pl, 7] 1" (0)]

1+ [Apin| +- -+ [A)]) -
i (L Al )

’Ap+n+r‘ =

For r =0, 1, 2, we have

ALl < [pl, 171 1" (0)]
p+n = qp [n]q )
o], 7] 1" (0)]

|Apini1] < W (14 [Apinl)

[pl, 7] 1 O) | In], + [pl, Iyl ¥ (O)I]

= & [n+1], [n)

)
q
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and

[plg 11 1¢' (0)]
¢ [n+2],

vl 171 & O)] [ 0], + Il 171 1 O] @ [+ 1], + ], 121 1/ (0)]]
- ¢ [n+2], [n+1], [n]

|Apinta] < (14 [Apyn| + [Aprntal)

)

q

respectively. Using the mathematical induction, we get

pininl < o E O TT [0 bl + 8, bl o O]

Pin+r], [n+r—1], [n]qj:()

for r € N. Thus, we have

o Bahl 2O
¢ [n],
and
4 < ot D EDLU T (i el + bl )

for k> p+n+1. By (2.3), it is clear that

1—|—(5<[p]q—1>iA

1+5<[k]q - 1) Uy

Qp =

Therefore we get

148 (I, -1) 1 [,k ¢ O)
1+90 ([p +n, — 1) Vpin ¢ [n],

‘aern‘ < )

_ (-1 1w
lax] < I+ <[k]q_ 1) U Tk —p+1)

k—p—n—
><[P]q|7| ' (0)] * 2
q(k—P—n‘H)P

@ [+ 5], + o], 171 1 )]

fork>p+n+1. O

Setting

1+(1—-(1+q)p)=
1—gqz

p(z) = (0<B<1; zeD),

in Theorem 2.1, we get following consequence.



A GENERAL ¢-DIFFERENTIAL OPERATOR 297

Corollary 2.2. Let the function f € A, (n) be defined by (1.4). If
feSKN (6,7 8),

then -
|apin| < Xprn,
k—p—n—1
al<xe T] |0 bti,+ (Ot bl =8)]  (k=ptnt1),
where
(1+q) Tyfn) [1+(Ip],—1)] I, bl (1= )
e = (k>p+mn). (2.6)

Dok =p+1) [146 (K], — 1)| g=r-rsirw,
If we set 6 = 0 in Corollary 2.2, then we deduce the following result.

Corollary 2.3. Let the function f € A, (n) be defined by (1.4). If

f eS8 (B),

then
|apnl < Xpns
k—p—n—1
<o I |+, +Q+a bl,hl -8  kzprn+1),
=0
where

(1+4q) Ty(n) [pl, 7] (1 = 5)
M Tk —p ot 1) g, (k>p+n).

If we set 6 = 1 in Corollary 2.2, then we deduce the following result.
Corollary 2.4. Let the function f € A, (n) be defined by (1.4). If
fe Ky (vb),

then
’@p-q—n’ < Xp4ns
k—p—n—1
<o I @i+ 0+a) Bl,hl0=8]  kzprn+1),
j=0
where ,
F —
R RO I L B

T Ty(k—p+1) k], et Dr g,

Remark 2.5. (i) If we let ¢ — 17 in Corollary 2.2, then we get [5, Theorem 2.1].
(17) If we let ¢ — 1~ with p = 0,\ = 1,l = 1, and p = n = 1 in Corollary 2.2,
then we get [7, Theorem 1].
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Theorem 2.6. Let the function f € A, (n) be defined by (1.4). If
feBN(6,7:0,u),

P\l
then
|ap+n| S Ap—l—n Xp—l—n
and
k—p—n—1
al <M T[T [0 o+l + Bl I O] R=prn+),
§=0

where

Ak:(Mq+@<@L+1+@ P .

(%h+u>(mq+1+u>

and xx s given by (2.1).

Proof. Let the function f € B\ (6,7; »,u) be given by (1.4). Also, let

gl2) ="+ Y Gut e S (6,7 9)

q,p s\l
k=p+n
so that

(ip), + ) (bl +1+u)
(%L+u)(mq+l+u)

Thus, by using Theorem 2.1, we obtain
([p]q + u) ([p]q +1+ u)
|a’p+n’ S Xp+n
<%L+u><mq+1+u)

ay = G, (k2p+n,u>—[p]q (uG]R)).

and

B e

for k > p+n+ 1. Here i is given by (2.1) . O

lag| <

Setting

1+(1-(1+q)B)=

< 1; D

v (2) =
in Theorem 2.6, we get following consequence.
Corollary 2.7. Let the function f € A, (n) be defined by (1.4). If
fe B (6,7 8,u),

then
|ap+n| S Ap+n Xp—l—n
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and
k—p—n—1

al <M [] | ntdl,+ 0+ Bl 1=8)]  (kzp+n+1),
j=0

where A and xy are given by (2.7) and (2.6), respectively.

Remark 2.8. (i) If we let ¢ — 1~ in Corollary 2.7, then we get [5, Theorem 3.1].
(17) If we let ¢ — 1~ with p = 0,\ = 1,{ = 1, and p = n = 1 in Corollary 2.7,
then we get [7, Theorem 2].
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