DOI: 10.22034/KJM.2023.390830.2818



# Khayyam Journal of Mathematics

emis.de/journals/KJM kjm-math.org

# APPLICATIONS OF NON-HOMOGENEOUS CAUCHY-EULER FRACTIONAL q-DIFFERENTIAL EQUATION TO A NEW CLASS OF ANALYTIC FUNCTIONS

#### SERAP BULUT

Communicated by H.R. Ebrahimi Vishki

ABSTRACT. We define a new general fractional q-differential operator, and by means of this operator, we introduce a new subclass of analytic functions that are the solutions of the non-homogeneous Cauchy–Euler fractional q-differential equations. Our aim is to determine upper bounds of Taylor–Maclaurin coefficients for functions belong to this class.

#### 1. Introduction and preliminaries

The sets of real numbers, complex numbers, and positive integers will be denoted by

$$\mathbb{R} = (-\infty, \infty), \quad \mathbb{C} = \mathbb{C}^* \cup \{0\} \quad \text{and} \quad \mathbb{N} = \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\}.$$

Also, we need the following basic definitions of the q-calculus, which are used in this paper (see, for details, [10, 11] and also [4]).

For 0 < q < 1, the q-number and the q-factorial are defined by

$$[n]_q = \begin{cases} \frac{1-q^n}{1-q}, & n \in \mathbb{C}, \\ \frac{1-q^n}{1-q} = 1 + q + q^2 + \dots + q^{n-1}, & n \in \mathbb{N}, \end{cases}$$

Date: Received: 24 March 2023; Revised: 23 June 2023; Accepted: 27 June 2023. 2020 Mathematics Subject Classification. 30C45.

 $Key\ words\ and\ phrases.$  Analytic function, q-starlike function, q-convex function, fractional q-derivative, Cauchy-Euler differential equation.

and

$$[n]_q! = \begin{cases} 1, & n = 0, \\ \prod_{r=1}^n [r]_q, & n \in \mathbb{N}, \end{cases}$$

respectively. As  $q \to 1^-$ ,  $[n]_q \to n$ , and  $[n]_q! \to n!$ .

For  $\tau, \sigma \in \mathbb{C}$ , the q-shifted factorial  $(\tau; q)_{\sigma}$  is defined by (see [3])

$$(\tau;q)_{\sigma} = \prod_{r=0}^{\infty} \left( \frac{1 - \tau q^r}{1 - \tau q^{\sigma+r}} \right)$$

so that

$$(\tau;q)_{n} = \begin{cases} 1, & n = 0, \\ \prod_{r=0}^{n-1} (1 - \tau q^{r}), & n \in \mathbb{N}, \end{cases}$$
 (1.1)

and

$$(\tau;q)_{\infty} = \prod_{r=0}^{\infty} (1 - \tau q^r).$$

Furthermore, the q-Gamma function  $\Gamma_q$  is defined by

$$\Gamma_q(z) = \frac{(q;q)_{\infty}}{(q^z;q)_{\infty}} (1-q)^{1-z} \qquad (z \in \mathbb{C}).$$

From (1.1), we obtain that

$$(q^{z};q)_{n} = \frac{\Gamma_{q}(z+n)}{\Gamma_{q}(z)} (1-q)^{n}.$$

Thus for n = 1, the above equality implies that

$$\Gamma_q(z+1) = [z]_q \Gamma_q(z)$$
 and  $\Gamma_q(1) = 1$ .

For a function f defined on a subset of  $\mathbb{C}$ , Jackson's q-derivative  $\partial_q f$  is defined by (see [10,11])

$$\partial_{q} f(z) = \begin{cases} \frac{f(z) - f(qz)}{(1-q)z}, & z \neq 0, \\ f'(0), & z = 0, \end{cases}$$

$$(1.2)$$

provided that f'(0) exists. Then for a function  $g(z) = z^k$ , we have

$$\partial_{q}\left(z^{k}\right) = \left[k\right]_{q} z^{k-1},$$

$$\lim_{q \to 1^{-}} \left(\partial_{q}\left(z^{k}\right)\right) = kz^{k-1} = g'\left(z\right),$$

where g' is the ordinary derivative.

Jackson [10] introduced the q-integral by

$$\int_0^z f(t)d_q t = z (1 - q) \sum_{k=0}^\infty q^k f(zq^k),$$

as long as the series converges. Then for a function  $g(z) = z^k$ , we obtain

$$\int_0^z g(t) d_q t = \int_0^z t^k d_q t = \frac{1}{[k+1]_q} z^{k+1} \qquad (k \neq -1)$$

and

$$\lim_{q \to 1^{-}} \int_{0}^{z} g\left(t\right) d_{q}t = \int_{0}^{z} g\left(t\right) dt,$$

where  $\int_0^z g(t) dt$  is the ordinary integral.

The fractional q-derivative operator of order  $\rho$  is defined, for a function f, by (see [13, 14, 18])

$$D_{q,z}^{\rho}f(z) = \frac{1}{\Gamma_{q}(1-\rho)}\partial_{q}\int_{0}^{z} (z-tq)_{q}^{-\rho}f(t)d_{q}t \qquad (0 \le \rho < 1), \qquad (1.3)$$

where the function f is analytic in a simply connected region of the complex z-plane containing the origin, and the multiplicity of the q-binomial  $(z-tq)_q^{-\rho}$  is single-valued when

$$\left| \arg \left( -\frac{tq^{\rho}}{z} \right) \right| < \pi, \quad \left| \frac{tq^{\rho}}{z} \right| < 1, \quad \text{and} \quad \left| \arg \left( z \right) \right| < \pi.$$

It readily follows from (1.3) that

$$D_{q,z}^{\rho} z^{k} = \frac{\Gamma_{q}(k+1)}{\Gamma_{q}(k-\rho+1)} z^{k-\rho} \qquad (0 \le \rho < 1, \ k \in \mathbb{N}).$$

Let  $\mathcal{H}$  be the class of analytic functions in the open unit disk

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

For two functions  $\mathfrak{f}, \mathfrak{g} \in \mathcal{H}$ , we say that the function  $\mathfrak{f}$  is subordinate to  $\mathfrak{g}$  in  $\mathbb{D}$ , and write

$$f(z) \prec g(z) \qquad (z \in \mathbb{D})$$

if there exists a Schwarz function  $\Theta \in \mathcal{H}$  with

$$\Theta(0) = 0$$
 and  $|\Theta(z)| < 1$   $(z \in \mathbb{D})$ 

such that

$$\mathfrak{f}(z) = \mathfrak{g}(\Theta(z)) \qquad (z \in \mathbb{D}).$$

It is known that

$$f(z) \prec g(z) \quad (z \in \mathbb{D}) \Rightarrow f(0) = g(0) \quad \text{and} \quad f(\mathbb{D}) \subset g(\mathbb{D}).$$

**Lemma 1.1.** [15] Let the function  $\mathfrak{G}$  given by

$$\mathfrak{G}(z) = \sum_{k=1}^{\infty} \mathfrak{B}_k z^k \qquad (z \in \mathbb{D})$$

be convex in  $\mathbb{D}$ . Also, let the function  $\mathfrak{F} \in \mathcal{H}$  be given by

$$\mathfrak{F}(z) = \sum_{k=1}^{\infty} \mathfrak{A}_k z^k \qquad (z \in \mathbb{D}).$$

If

$$\mathfrak{F}(z) \prec \mathfrak{G}(z) \qquad (z \in \mathbb{D}),$$

then

$$|\mathfrak{A}_k| \leq |\mathfrak{B}_1| \qquad (k \in \mathbb{N}).$$

Let  $\mathcal{A}_{p}(n)$  denote the class of all functions of the form

$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k \qquad (p, n \in \mathbb{N}), \qquad (1.4)$$

which are analytic and p-valent in the open unit disk  $\mathbb{D}$ . In particular, we set

$$\mathcal{A}_{p}(1) := \mathcal{A}_{p}, \qquad \mathcal{A}_{1}(1) = \mathcal{A}_{1} := \mathcal{A}.$$

For a function  $f \in \mathcal{A}_p(n)$  given by (1.4), from (1.2), we deduce that

$$\begin{split} \partial_{q}^{(1)}f\left(z\right) &= \left[p\right]_{q}z^{p-1} + \sum_{k=p+n}^{\infty}\left[k\right]_{q}a_{k}z^{k-1} =: \partial_{q}f\left(z\right), \\ \partial_{q}^{(2)}f\left(z\right) &= \left[p\right]_{q}\left[p-1\right]_{q}z^{p-2} + \sum_{k=p+n}^{\infty}\left[k\right]_{q}\left[k-1\right]_{q}a_{k}z^{k-2}, \\ &\vdots \\ \partial_{q}^{(p)}f\left(z\right) &= \left[p\right]_{q}! + \sum_{k=p+n}^{\infty}\frac{\left[k\right]_{q}!}{\left[k-p\right]_{q}!}a_{k}z^{k-p}, \end{split}$$

where  $\partial_{q}^{(p)}f\left(z\right)$  is the pth q-derivative of  $f\left(z\right)$ .

Now, using the fractional q-derivative operator  $D_{q,z}^{\rho}f$ , we define the following q-derivative operator

$$\Omega_{q,p}^{\rho}: \mathcal{A}_{p}\left(n\right) \to \mathcal{A}_{p}\left(n\right)$$

as follows:

$$\Omega_{q,p}^{\rho} f(z) = \frac{\Gamma_q(p-\rho+1)}{\Gamma_q(p+1)} z^{\rho} D_{q,z}^{\rho} f(z) \qquad (\rho \neq p+1, p+2, p+3, \ldots) 
= z^p + \sum_{k=p+n}^{\infty} \frac{\Gamma_q(k+1)\Gamma_q(p-\rho+1)}{\Gamma_q(p+1)\Gamma_q(k-\rho+1)} a_k z^k,$$
(1.5)

where the function  $f \in \mathcal{A}_p(n)$  is given by (1.4). Note that  $\Omega_{q,p}^0 f(z) = f(z)$ .

Remark 1.2. (i) If we let  $q \to 1^-$ , then we have the operator  $\Omega_p^{\rho} : \mathcal{A}_p(n) \to \mathcal{A}_p(n)$  introduced by Bulut [5].

(ii) For n=1, we get the operator  $\Omega_{q,p}^{\rho}: \mathcal{A}_p \to \mathcal{A}_p$  introduced by Selvakumaran et al. [17].

(iii) For  $q \to 1^-$  and p = n = 1, we get the operator  $\Omega^{\rho} : \mathcal{A} \to \mathcal{A}$  introduced by Owa and Srivastava [12].

Now by considering the operator  $\Omega_{q,p}^{\rho}$  given by (1.5), we define the general fractional q-differential operator  $\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}$  as follows:

$$\mathfrak{D}_{q,\lambda,l,p}^{m,0}f(z) = f(z),$$

$$\mathfrak{D}_{q,\lambda,l,p}^{1,\rho}f(z) = \frac{[p]_q - \lambda [p]_q + l}{[p]_q + l} \Omega_{q,p}^{\rho} f(z) + \frac{\lambda}{[p]_q + l} z \partial_q \left(\Omega_{q,p}^{\rho} f(z)\right)$$

$$= \mathfrak{D}_{q,\lambda,l,p}^{\rho} f(z) \quad (\lambda, l \ge 0, \ 0 \le \rho < 1),$$

$$\mathfrak{D}_{q,\lambda,l,p}^{2,\rho} f(z) = \mathfrak{D}_{q,\lambda,l,p}^{\rho} \left(\mathfrak{D}_{q,\lambda,l,p}^{1,\rho} f(z)\right),$$

$$\vdots$$
(1.6)

 $\mathfrak{D}_{a,\lambda,l,p}^{m,\rho}f(z) = \mathfrak{D}_{a,\lambda,l,p}^{\rho}\left(\mathfrak{D}_{a,\lambda,l,p}^{m-1,\rho}f(z)\right) \qquad (m \in \mathbb{N}). \tag{1.7}$ 

If f is given by (1.4), then by (1.5), (1.6), and (1.7), we see that

$$\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}f(z) = z^p + \sum_{k=p+n}^{\infty} \Psi_{q,k,m}\left(\rho,\lambda,l,p\right) a_k z^k \qquad (m \in \mathbb{N}_0), \qquad (1.8)$$

where

$$\Psi_{q,k,m}(\rho,\lambda,l,p) = \left[ \frac{\Gamma_q(k+1)\Gamma_q(p-\rho+1)}{\Gamma_q(p+1)\Gamma_q(k-\rho+1)} \frac{[p]_q + \lambda ([k]_q - [p]_q) + l}{[p]_q + l} \right]^m. \quad (1.9)$$

Remark 1.3. (i) If we let  $q \to 1^-$ , then we obtain the operator  $\mathfrak{D}_{\lambda,l,p}^{m,\rho}$  introduced by Bulut [5]. The operator  $\mathfrak{D}_{\lambda,l,p}^{m,\rho}$  is a comprehensive generalization some known operators (see [1,2,16]).

(ii) For l = 0 and n = 1 in (1.8), we obtain the operator  $\mathfrak{D}_{q,\lambda,p}^{m,\rho}$  introduced by Selvakumaran et al. [17].

(iii) For l=0,  $\lambda=1$  and  $\alpha=0$  in (1.8), we obtain p-valent q-Sălăgean operator defined by El-Qadeem and Mamon [8]. In addition for p=1 and n=1, we get q-Sălăgean operator introduced by Govindaraj and Sivasubramanian [9].

By means of the fractional q-differential operator  $\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}$ , we introduce a new subclass of analytic and p-valent functions.

**Definition 1.4.** Let  $\varphi : \mathbb{D} \to \mathbb{C}$  be a convex function such that

$$\varphi(0) = 1$$
 and  $\Re(\varphi(z)) > 0$   $(z \in \mathbb{D})$ . (1.10)

We denote by  $\mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\varphi\right)$  the class of functions  $f\in\mathcal{A}_{p}\left(n\right)$  satisfying

$$1 + \frac{1}{\gamma} \left( \frac{1}{\left[p\right]_q} \frac{z \partial_q \left( \frac{1}{1 + \delta(\left[p\right]_q - 1)} \left[ \delta z \partial_q \left( \mathfrak{D}_{\lambda, l, p}^{m, \rho} f(z) \right) + (1 - \delta) \, \mathfrak{D}_{\lambda, l, p}^{m, \rho} f(z) \right] \right)}{\frac{1}{1 + \delta(\left[p\right]_q - 1)} \left[ \delta z \partial_q \left( \mathfrak{D}_{q, \lambda, l, p}^{m, \rho} f(z) \right) + (1 - \delta) \, \mathfrak{D}_{q, \lambda, l, p}^{m, \rho} f(z) \right]} - 1 \right) \in \varphi \left( \mathbb{D} \right),$$

where  $z \in \mathbb{D}$ ,  $\gamma \in \mathbb{C}^*$ ,  $0 \le \delta \le 1$ , and  $\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}$  is given by in (1.8).

Remark 1.5. If the function  $\varphi$  satisfying the condition (1.10) is chosen as

$$\varphi(z) = \frac{1 + (1 - (1 + q)\beta)z}{1 - qz} \qquad (0 \le \beta < 1; z \in \mathbb{D}),$$

then we obtain the class  $\mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\beta\right)$  that consists of functions  $f\in\mathcal{A}_{p}\left(n\right)$  satisfying

$$\Re\left\{1 + \frac{1}{\gamma} \left(\frac{1}{[p]_q} \frac{z \partial_q \left(\frac{1}{1 + \delta([p]_q - 1)} \left[\delta z \partial_q \left(\mathfrak{D}_{\lambda, l, p}^{m, \rho} f(z)\right) + (1 - \delta) \mathfrak{D}_{\lambda, l, p}^{m, \rho} f(z)\right]\right)}{\frac{1}{1 + \delta([p]_q - 1)} \left[\delta z \partial_q \left(\mathfrak{D}_{q, \lambda, l, p}^{m, \rho} f(z)\right) + (1 - \delta) \mathfrak{D}_{q, \lambda, l, p}^{m, \rho} f(z)\right]} - 1\right)\right\} > \beta.$$

$$(1.11)$$

The class

$$\lim_{q \to 1^{-}} \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\beta\right) = \mathcal{SK}_{\rho,\lambda,l}^{m}\left(\delta,\gamma,p,n;\beta\right)$$

is introduced by Bulut [5]. Furthermore the class

$$\mathcal{SK}_{0,1,0}^{m}(\delta,\gamma,1,1;\beta) = \mathcal{B}(m,\delta,\beta,\gamma)$$

is introduced by Deng [7].

Remark 1.6. For  $\delta = 0$ , the class  $\mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\beta)$  reduces to the class  $\mathcal{S}_{q,\rho,\lambda,l}^{m,p,n}(\gamma;\beta)$  that consists of functions  $f \in \mathcal{A}_p(n)$  satisfying

$$\Re\left\{1 + \frac{1}{\gamma} \left(\frac{1}{[p]_q} \frac{z \partial_q \left(\mathfrak{D}_{\lambda,l,p}^{m,\rho} f(z)\right)}{\mathfrak{D}_{q,\lambda,l,p}^{m,\rho} f(z)} - 1\right)\right\} > \beta$$

and for  $\delta = 1$ , the class  $\mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\beta)$  reduces to the class  $\mathcal{K}_{q,\rho,\lambda,l}^{m,p,n}(\gamma;\beta)$  that consists of functions  $f \in \mathcal{A}_p(n)$  satisfying

$$\Re\left\{1+\frac{1}{\gamma}\left(\frac{1}{[p]_q}\frac{\partial_q\left(z\partial_q\left(\mathfrak{D}_{\lambda,l,p}^{m,\rho}f(z)\right)\right)}{\partial_q\left(\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}f(z)\right)}-1\right)\right\}>\beta.$$

For m = 0, the classes  $\mathcal{S}_{q,\rho,\lambda,l}^{m,p,n}(\gamma;\beta)$  and  $\mathcal{K}_{q,\rho,\lambda,l}^{m,p,n}(\gamma;\beta)$  reduce to the classes

$$\mathcal{S}_{q}^{*}\left(\gamma,p,n;\beta\right)$$
 and  $\mathcal{K}_{q}\left(\gamma,p,n;\beta\right)$ 

of p-valently q-starlike function of complex order  $\gamma$  and type  $\beta$ , and p-valently q-convex function of complex order  $\gamma$  and type  $\beta$ , respectively. Furthermore, the classes

$$\lim_{q \to 1^{-}} \mathcal{S}_{q,\rho,\lambda,l}^{m}\left(\gamma,p,n;\beta\right) = \mathcal{S}_{\rho,\lambda,l}^{m}\left(\gamma,p,n;\beta\right)$$

and

$$\lim_{q \to 1^{-}} \mathcal{K}_{q,\rho,\lambda,l}^{m}\left(\gamma,p,n;\beta\right) = \mathcal{K}_{\rho,\lambda,l}^{m}\left(\gamma,p,n;\beta\right)$$

are introduced by Bulut [6].

The main purpose of this paper is to obtain some coefficient bounds for functions belong to the subclass  $\mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\varphi,u\right)$  that consists of functions  $f\in\mathcal{A}_{p}\left(n\right)$  satisfying the following nonhomogeneous Cauchy–Euler fractional q-differential equation:

$$z^{2}\partial_{q}^{(2)}f(z) + \left(1 + 2u + q^{p-1}\right)z\partial_{q}^{(1)}f(z) + u\left(1 + u\right)f(z)$$

$$= \left([p]_{q} + u\right)\left([p]_{q} + 1 + u\right)g(z)$$

$$\left(f \in \mathcal{A}_{p}(n); g \in \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\varphi\right); u > -[p]_{q} \left(u \in \mathbb{R}\right)\right).$$

Remark 1.7. For the function

$$\varphi(z) = \frac{1 + (1 - (1 + q)\beta)z}{1 - qz} \qquad (0 \le \beta < 1; z \in \mathbb{D}),$$

the class  $\mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\varphi,u)$  reduces to the class  $\mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\beta,u)$ . Also, the classes

$$\lim_{q \to 1^{-}} \mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\beta,u\right) = \mathcal{B}_{\rho,\lambda,l}^{m}\left(\beta,\gamma,p,n;\delta,u\right)$$

and

$$\mathcal{B}_{0,1,0}^{m}(\beta,\gamma,1,1;\delta,u) = \mathcal{T}(m,\delta,\beta,\gamma;u)$$

are introduced by Bulut [5] and Deng [7], respectively.

### 2. Coefficient bounds

Unless otherwise stated, throughout this paper, we assume that  $\varphi: \mathbb{D} \to \mathbb{C}$  is a convex function defined in (1.10), that  $\mathfrak{D}_{q,\lambda,l,p}^{m,\rho}$  is given by (1.8), that  $\Psi_{q,k,m}(\rho,\lambda,l,p) =: \Psi_k$  is given by (1.9), that

$$0 < q < 1, \quad 0 \leq \rho < 1, \quad \lambda, l \geq 0, \quad 0 \leq \delta, \eta \leq 1, \quad u > -\left[p\right]_q \quad \left(u \in \mathbb{R}\right),$$

and that

$$p, n \in \mathbb{N}, \quad m \in \mathbb{N}_0, \quad \gamma \in \mathbb{C}^*.$$

**Theorem 2.1.** Let the function  $f \in \mathcal{A}_p(n)$  be defined by (1.4). If

$$f \in \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\varphi\right),$$

then

$$|a_{p+n}| \le \chi_{p+n}$$

and

$$|a_k| \le \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + \left[ p \right]_q |\gamma| |\varphi'(0)| \right] \qquad (k \ge p+n+1),$$

where

$$\chi_{k} = \frac{\Gamma_{q}(n) \left[ 1 + \delta \left( [p]_{q} - 1 \right) \right] \left[ p \right]_{q} \left| \gamma \right| \left| \varphi' \left( 0 \right) \right|}{\Gamma_{q}(k - p + 1) \left[ 1 + \delta \left( [k]_{q} - 1 \right) \right] q^{(k - p - n + 1)p} \Psi_{k}} \qquad (k \ge p + n). \quad (2.1)$$

*Proof.* Let the function  $f \in \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\varphi)$  be of the form (1.4). Define a function

$$\mathfrak{h}(z) = \frac{1}{1 + \delta([p]_q - 1)} \left[ \delta z \partial_q \left( \mathfrak{D}_{q,\lambda,l,p}^{m,\rho} f(z) \right) + (1 - \delta) \mathfrak{D}_{q,\lambda,l,p}^{m,\rho} f(z) \right] \qquad (z \in \mathbb{D}).$$
(2.2)

We note that the function  $\mathfrak{h}$  is of the form

$$\mathfrak{h}(z) = z^p + \sum_{k=p+n}^{\infty} A_k z^k,$$

where

$$A_{k} = \Psi_{k} \frac{1 + \delta([k]_{q} - 1)}{1 + \delta([p]_{q} - 1)} a_{k}.$$
(2.3)

From (1.11) and (2.2), we obtain that

$$1 + \frac{1}{\gamma} \left( \frac{1}{\left[ p \right]_q} \frac{z \partial_q \mathfrak{h}(z)}{\mathfrak{h}(z)} - 1 \right) \in \varphi \left( \mathbb{D} \right) \qquad (z \in \mathbb{D})$$

Let us define the function  $\mathfrak{p}(z)$  by

$$\mathfrak{p}(z) = 1 + \frac{1}{\gamma} \left( \frac{1}{[p]_q} \frac{z \partial_q \mathfrak{h}(z)}{\mathfrak{h}(z)} - 1 \right) \qquad (z \in \mathbb{D}). \tag{2.4}$$

Therefore, we get

$$\mathfrak{p}(0) = \varphi(0) = 1$$
 and  $\mathfrak{p}(z) \in \varphi(\mathbb{D})$   $(z \in \mathbb{D}).$ 

By Lemma 1.1, we obtain

$$\left| \frac{\mathfrak{p}^{(j)}(0)}{j!} \right| = |c_j| \le |\varphi'(0)| \qquad (j \in \mathbb{N}), \tag{2.5}$$

where

$$\mathfrak{p}(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + \cdots$$
  $(z \in \mathbb{D}).$ 

Also, from (2.4), we find

$$z\partial_q\mathfrak{h}(z)-[p]_q\,\mathfrak{h}(z)=[p]_q\,\gamma(\mathfrak{p}(z)-1)\mathfrak{h}(z).$$

The last equality implies that

$$([k]_q - [p]_q) A_k = [p]_q \gamma \{c_{k-p} + c_{k-p-n} A_{p+n} + \dots + c_n A_{k-n}\}.$$

Let us set

$$k = p + n + r \quad (r \in \mathbb{N}_0).$$

Then we can write

$$([p+n+r]_q - [p]_q) A_{p+n+r} = [p]_q \gamma (c_{n+r} + c_r A_{p+n} + \dots + c_n A_{p+r}).$$

Applying (2.5), we get

$$|A_{p+n+r}| \le \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n+r]_q} (1 + |A_{p+n}| + \dots + |A_{p+r}|).$$

For r = 0, 1, 2, we have

$$|A_{p+n}| \leq \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n]_q},$$

$$|A_{p+n+1}| \leq \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n+1]_q} (1 + |A_{p+n}|)$$

$$\leq \frac{[p]_q |\gamma| |\varphi'(0)| [q^p [n]_q + [p]_q |\gamma| |\varphi'(0)|]}{q^{2p} [n+1]_q [n]_q},$$

and

$$|A_{p+n+2}| \leq \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n+2]_q} (1 + |A_{p+n}| + |A_{p+n+1}|)$$

$$\leq \frac{[p]_q |\gamma| |\varphi'(0)| [q^p [n]_q + [p]_q |\gamma| |\varphi'(0)|] [q^p [n+1]_q + [p]_q |\gamma| |\varphi'(0)|]}{q^{3p} [n+2]_q [n+1]_q [n]_q},$$

respectively. Using the mathematical induction, we get

$$|A_{p+n+r}| \le \frac{[p]_q |\gamma| |\varphi'(0)|}{q^{(r+1)p} [n+r]_q [n+r-1]_q [n]_q} \prod_{i=0}^{r-1} \left[ q^p [n+j]_q + [p]_q |\gamma| |\varphi'(0)| \right]$$

for  $r \in \mathbb{N}$ . Thus, we have

$$|A_{p+n}| \le \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n]_q}$$

and

$$|A_{k}| \leq \frac{\Gamma_{q}(n)}{\Gamma_{q}(k-p+1)} \frac{[p]_{q} |\gamma| |\varphi'(0)|}{q^{(k-p-n+1)p}} \prod_{j=0}^{k-p-n-1} \left[ q^{p} [n+j]_{q} + [p]_{q} |\gamma| |\varphi'(0)| \right]$$

for  $k \ge p + n + 1$ . By (2.3), it is clear that

$$a_k = \frac{1 + \delta\left([p]_q - 1\right)}{1 + \delta\left([k]_q - 1\right)} \frac{1}{\Psi_k} A_k.$$

Therefore we get

$$|a_{p+n}| \le \frac{1 + \delta([p]_q - 1)}{1 + \delta([p+n]_q - 1)} \frac{1}{\Psi_{p+n}} \frac{[p]_q |\gamma| |\varphi'(0)|}{q^p [n]_q},$$

$$|a_{k}| \leq \frac{1+\delta\left([p]_{q}-1\right)}{1+\delta\left([k]_{q}-1\right)} \frac{1}{\Psi_{k}} \frac{\Gamma_{q}(n)}{\Gamma_{q}(k-p+1)} \times \frac{[p]_{q} |\gamma| |\varphi'(0)|}{q^{(k-p-n+1)p}} \prod_{j=0}^{k-p-n-1} \left[q^{p} [n+j]_{q} + [p]_{q} |\gamma| |\varphi'(0)|\right]$$

for  $k \ge p + n + 1$ .

Setting

$$\varphi(z) = \frac{1 + (1 - (1 + q)\beta)z}{1 - az} \qquad (0 \le \beta < 1; z \in \mathbb{D}),$$

in Theorem 2.1, we get following consequence.

Corollary 2.2. Let the function  $f \in \mathcal{A}_p(n)$  be defined by (1.4). If

$$f \in \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\beta)$$
,

then

$$|a_{p+n}| \le \chi_{p+n},$$

$$|a_k| \le \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + (1+q) \left[ p \right]_q |\gamma| (1-\beta) \right] \qquad (k \ge p+n+1),$$

where

$$\chi_{k} = \frac{(1+q) \; \Gamma_{q}(n) \; \left[1+\delta \left([p]_{q}-1\right)\right] \; [p]_{q} \; |\gamma| \; (1-\beta)}{\Gamma_{q}(k-p+1) \; \left[1+\delta \left([k]_{q}-1\right)\right] \; q^{(k-p-n+1)p} \; \Psi_{k}} \qquad (k \ge p+n) \, . \quad (2.6)$$

If we set  $\delta = 0$  in Corollary 2.2, then we deduce the following result.

Corollary 2.3. Let the function  $f \in \mathcal{A}_p(n)$  be defined by (1.4). If

$$f \in \mathcal{S}_{q,\rho,\lambda,l}^{m,p,n}\left(\gamma;\beta\right),$$

then

$$|a_{p+n}| \le \chi_{p+n},$$

$$|a_k| \le \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + (1+q) \left[ p \right]_q |\gamma| (1-\beta) \right] \qquad (k \ge p+n+1),$$

where

$$\chi_k = \frac{(1+q) \; \Gamma_q(n) \; [p]_q \; |\gamma| \; (1-\beta)}{\Gamma_q(k-p+1) \; q^{(k-p-n+1)p} \; \Psi_k} \qquad (k \ge p+n) \; .$$

If we set  $\delta = 1$  in Corollary 2.2, then we deduce the following result.

Corollary 2.4. Let the function  $f \in \mathcal{A}_p(n)$  be defined by (1.4). If

$$f \in \mathcal{K}_{q,\rho,\lambda,l}^{m,p,n}\left(\gamma;\beta\right)$$

then

$$|a_{p+n}| \le \chi_{p+n}$$

$$|a_k| \le \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + (1+q) \left[ p \right]_q |\gamma| \left( 1-\beta \right) \right] \qquad (k \ge p+n+1),$$

where

$$\chi_k = \frac{(1+q) \; \Gamma_q(n) \; [p]_q^2 \; |\gamma| \; (1-\beta)}{\Gamma_q(k-p+1) \; [k]_q \; q^{(k-p-n+1)p} \; \Psi_k} \qquad (k \ge p+n) \, .$$

Remark 2.5. (i) If we let  $q \to 1^-$  in Corollary 2.2, then we get [5, Theorem 2.1]. (ii) If we let  $q \to 1^-$  with  $\rho = 0, \lambda = 1, l = 1$ , and p = n = 1 in Corollary 2.2, then we get [7, Theorem 1].

**Theorem 2.6.** Let the function  $f \in A_p(n)$  be defined by (1.4). If

$$f \in \mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\varphi,u\right),$$

then

$$|a_{p+n}| \le \Lambda_{p+n} \, \chi_{p+n}$$

and

$$|a_k| \le \Lambda_k \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + \left[ p \right]_q |\gamma| |\varphi'(0)| \right] \qquad (k \ge p+n+1),$$

where

$$\Lambda_k = \frac{([p]_q + u)([p]_q + 1 + u)}{([k]_q + u)([k]_q + 1 + u)} \qquad (k \ge p + n)$$
 (2.7)

and  $\chi_k$  is given by (2.1)

*Proof.* Let the function  $f \in \mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}(\delta,\gamma;\varphi,u)$  be given by (1.4). Also, let

$$g(z) = z^{p} + \sum_{k=n+n}^{\infty} G_{k} z^{k} \in \mathcal{SK}_{q,\rho,\lambda,l}^{m,p,n} \left(\delta, \gamma; \varphi\right),$$

so that

$$a_{k} = \frac{\left([p]_{q} + u\right)\left([p]_{q} + 1 + u\right)}{\left([k]_{q} + u\right)\left([k]_{q} + 1 + u\right)}G_{k} \qquad \left(k \ge p + n, \ u > -[p]_{q} \ (u \in \mathbb{R})\right).$$

Thus, by using Theorem 2.1, we obtain

$$|a_{p+n}| \le \frac{\left([p]_q + u\right)\left([p]_q + 1 + u\right)}{\left([k]_q + u\right)\left([k]_q + 1 + u\right)} \chi_{p+n}$$

and

$$|a_k| \le \frac{\left([p]_q + u\right)\left([p]_q + 1 + u\right)}{\left([k]_q + u\right)\left([k]_q + 1 + u\right)} \chi_k \prod_{j=0}^{k-p-n-1} \left[q^p \left[n + j\right]_q + \left[p\right]_q |\gamma| |\varphi'(0)|\right]$$

for  $k \ge p + n + 1$ . Here  $\chi_k$  is given by (2.1).

Setting

$$\varphi(z) = \frac{1 + (1 - (1 + q)\beta)z}{1 - qz} \qquad (0 \le \beta < 1; z \in \mathbb{D}),$$

in Theorem 2.6, we get following consequence.

Corollary 2.7. Let the function  $f \in A_p(n)$  be defined by (1.4). If

$$f \in \mathcal{B}_{q,\rho,\lambda,l}^{m,p,n}\left(\delta,\gamma;\beta,u\right),$$

then

$$|a_{p+n}| \le \Lambda_{p+n} \, \chi_{p+n}$$

and

$$|a_k| \le \Lambda_k \chi_k \prod_{j=0}^{k-p-n-1} \left[ q^p \left[ n+j \right]_q + (1+q) \left[ p \right]_q |\gamma| (1-\beta) \right] \qquad (k \ge p+n+1),$$

where  $\Lambda_k$  and  $\chi_k$  are given by (2.7) and (2.6), respectively.

Remark 2.8. (i) If we let  $q \to 1^-$  in Corollary 2.7, then we get [5, Theorem 3.1]. (ii) If we let  $q \to 1^-$  with  $\rho = 0, \lambda = 1, l = 1$ , and p = n = 1 in Corollary 2.7, then we get [7, Theorem 2].

## References

- F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004 (2004), no. 25-28, 1429-1436.
- 2. F.M. Al-Oboudi and K.A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. **339** (2008), no. 1, 655–667.
- 3. M.H. Annaby and Z.S. Mansour, q-Fractional Calculus and Equations, Springer, Berlin-Heidelberg, 2012.
- 4. A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013.
- S. Bulut, The generalization of the generalized Al-Oboudi differential operator, Appl. Math. Comput. 215 (2009), no. 4, 1448–1455.
- S. Bulut, Coefficient inequalities for certain subclasses of analytic functions defined by using a general derivative operator, Kyungpook Math. J. 51 (2011), no. 3, 241–250.
- Q. Deng, Certain subclass of analytic functions with complex order, Appl. Math. Comput. 208 (2009), no. 2, 359–362.
- 8. A.H. El-Qadeem and M.A. Mamon, Comprehensive subclasses of multivalent functions with negative coefficients defined by using a q-difference operator, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part B, 510–526.
- 9. M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43 (2017) 475–487.
- F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908) 253–281.
- 11. F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910) 193–203.
- S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), no. 5, 1057–1077.
- 13. S.D. Purohit and R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011) 55–70.
- 14. P.M. Rajkovic, S.D. Marinkovic and M.S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007) 311–323.
- 15. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. (2) 48 (1943) 48–82.
- G.Ş. Sălăgean, Subclasses of univalent functions, in: Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), pp. 362–372, Lecture Notes in Math. 1013, Springer, Berlin, 1983.
- 17. K.A. Selvakumaran, S.D. Purohit, A. Seçer and M. Bayram, Convexity of certain q-integral operators of p-valent functions, Abstr. Appl. Anal. **2014** (2014), Art. ID 925902, 7 pp.
- 18. H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam-London-New York, 2012.

Kocaeli University, Faculty of Aviation and Space Sciences, Arslanbey Campus, 41285 Kartepe-Kocaeli, Turkey.

Email address: serap.bulut@kocaeli.edu.tr