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Abstract. A weakly Berwald metric is called a conformally closed weakly
Berwald metric if for any conformal change, it remains a weakly Berwald met-
ric. In this paper, we study the conformally closed weakly Berwald metrics
and find the necessary and sufficient condition under which a weakly Berwald
metric be conformally closed. We show that a Randers metric is a conformally
closed weakly Berwald metric if and only if it is a Riemannian metric or the
conformal transformation is homothety.

1. Introduction.

A conformal map, also called a conformal change, is a transformation that
preserves local angles. The conformal theory has old history in mathematics.
In 1850, Joseph Liouville proved his well-known classical theorem that explains
any conformal map from an open subset of Euclidean space Rn into the same
Euclidean space Rn (n ≥ 3) can be composed of three types of transformations:
a homothety, an isometry, and a special conformal transformation. Conformal
transformations have important applications in cartography, general relativity,
Maxwell’s equations, and engineering.

The theory of conformal transformations (changes) of Finsler metrics, Rie-
mannian and non-Riemannian curvatures has been studied by many people (for
more details, see [1,3,4,6,7,9–11]). The Weyl theorem states that the conformal
and projective properties of a Finsler metric characterize the metric properties
uniquely. Therefore, studying the conformal transformation of a Finsler metric
needs extra consideration. Let F and F̃ be two Finsler metrics on a manifold M .
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Then F is called conformal to F̃ if there is a scalar function κ = κ(x) such that
F (x, y) = eκF̃ (x, y).

The scalar function κ is called the conformal factor of the conformal transforma-
tion. It is remarkable that, Knebelman [4] proved that κ = κ(x) is a function
of position only. Hashiguchi [3] studied the fundamental properties of Finsler
conformal transformations and obtained the relation between the Riemannian
curvature and some non-Riemannian curvatures of two conformal metrics. He
found some transformation formulas and obtained some conformal invariants.
Their investigations show that the conformal transformations do not preserve
the Riemannian and non-Riemannian curvatures in Finsler geometry.

In Finsler geometry, there are many non-Riemannian quantities, which have
important impact on each other and Riemannian curvature, also. Among them,
the Berwald curvature, the mean Berwald curvature, and the S-curvature have a
direct relation to each other. Let F = F (x, y) be a Finsler metric on a manifold
M . The geodesics of F are characterized locally by the ordinary differential
equation

ẍj(t) + 2Gj
(
x, ẋ(t)

)
= 0,

where Gj = Gj(x, y) are coefficients of a spray G defined on M . A Finsler metric
F is called a Berwald metric if its spray’s coefficients are quadratic in y ∈ TxM
for any x ∈ M , namely,

Gj =
1

2
Γj
ik(x)y

iyk.

In this case, the Berwald curvature of F is vanishing B = 0. Taking a trace of
Berwald curvature yields the mean Berwald curvature

E = trace(B).

A Finsler metric with vanishing mean Berwald curvature E = 0 is called a weakly
Berwald metric. Then, Berwald metrics are trivial weakly Berwald metrics. How-
ever, the converse is not true [2].

Let Fn be a set of a special kind of n-dimensional Finsler metrics. If F ∈ Fn

remains to belong to Fn by any conformal transformation of metric, then Fn

is called conformally closed. Matsumoto [5] studied conformally closed Berwald
metrics and found the necessary and sufficient conditions under which a Berwald
metric be conformally closed. Also, he considered conformally closed Douglas
metrics. Shen [8] studied S-closed conformal transformations in Finsler geometry.
He proved that such transformation must be a homothety unless the Finsler
manifold is Riemannian. In this paper, we study the conformally closed weakly
Berwald metrics and prove the following result.
Theorem 1.1. Let (M,F ) be a Finsler manifold. Then F is a conformally closed
weakly Berwald metric if and only if the following statement holds:

F 2Im,k,l + 2gklI
m + 2ylI

m
,k + 2ykI

m
,l = 0, (1.1)

where “,” denotes the vertical derivation, yi := FFyi, and g = gijdx
i ⊗ dxj

and I = Iidx
i are the fundamental form and the mean Cartan torsion of F ,

respectively.
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The class of Randers metrics forms the simplest non-Riemannian Finsler met-
rics, which are defined by

F = α + β,

where α =
√

aij(x)yiyj is a positive-definite Riemmanian metric and β = bi(x)y
i

is a 1-form on a manifold M . They were founded from the general relativity and
have been widely applied in many areas of natural science. Here, we study confor-
mally closed weakly Berwald Randers metrics and prove the following theorem.

Theorem 1.2. A Randers metric is a conformally closed weakly Berwald metric
if and only if it is a Riemannian metric or the conformal transformation is
homothety.

2. Preliminaries

A Finsler structure on a manifold M is a function F : TM → [0,∞) with
the following properties: (i) F is C∞ on TM0 := TM − {0}; (ii) F is positively
1-homogeneous on TxM , that is, F (x, λy) = λF (x, y), for all λ > 0; (iii) The
quadratic form gy : TxM × TxM → R is positive-definite on TxM , where

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then, the pair (M,F ) is called a Finsler manifold.
Let x ∈ M and let Fx := F |TxM . For y ∈ TxM0, one can define Cy : TxM ×

TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion.
Let (M,F ) be a Finsler manifold. For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . Every positive-definite Finsler metric
F is Riemannian if and only if I = 0.

For a Finsler manifold (M,F ), its induced spray on TM , denoted by G, which
in a standard coordinate (xi, yi) for TM0 is defined by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where
Gi :=

1

4
gil

[
∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
.

For a vector y ∈ TxM0, the Berwald curvature By : TxM×TxM×TxM → TxM
is defined by By(u, v, w) := Bm

jkl(y)u
jvkwl∂/∂xm|x, where

Bm
jkl :=

∂3Gm

∂yj∂yk∂yl
.

Then F is called a Berwald metric if B = 0.
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Taking a trace of Berwald curvature B give us the mean of Berwald curvature
E, which is defined by Ey : TxM × TxM → R, where

Ey(u, v) :=
1

2

n∑
i=1

gkl(y)gy

(
By(u, v, ek), el

)
.

In local coordinates, Ey(u, v) := Eij(y)u
ivj, where

Eij :=
1

2
Bm

mij.

Then F is called a weakly Berwald metric if E = 0.

3. Conformally Closed Weakly Berwald Metrics

A weakly Berwald metric F = F (x, y) on a manifold M is called a conformally
closed weakly Berwald metric if for any conformal change F̄ (x, y) = eκF (x, y)
remains a weakly Berwald metric, where κ = κ(x) is a scalar function on M .

Lemma 3.1. Let (M,F ) be a Finsler manifold. Then F is conformally closed
weakly Berwald metric if and only if Am

m := [F 2κm]ym is a 1-form on M .

Proof. Let F and F̄ be two Finsler metrics on a manifold M . By using the
Rapcsák’s identity, the following relationship between Gi and Ḡi holds:

Ḡi −Gi =
1

2F̄
F̄;my

myi +
ḡil

2

{
F̄;k,ly

k − F̄;l

}
F̄ , (3.1)

where “; ” and “, ” denote the horizontal and vertical derivations with respect
to the Berwald connection of F . Suppose that F is conformally related to a F̄ ,
namely, F̄ = eκF , where κ = κ(x) is a scalar function on M . Let us put

κm :=
∂κ

∂xm
.

Since F;m = 0, then the following conditions hold:

F̄;m = κme
κF, F̄,i = eκF,i, F̄;m,l = κme

κF,l, (3.2)
ḡij = e2κgij, ḡij = e−2κgij. (3.3)

By putting (3.2) and (3.3) in (3.1), we get

Ḡi = Gi + κ0y
i − 1

2
F 2κi, (3.4)

where
κ0 := κmy

m and κi := gimκm.

Equation (3.4) can be written as follows:

Ḡi = Gi + Pyi −Qi, (3.5)
where

P := κky
k, Qi :=

1

2
F 2κi. (3.6)
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Let us define

Gi
j :=

∂Gi

∂yj
, Gi

jk :=
∂Gi

j

∂yk
, Ḡi

j :=
∂Ḡi

∂yj
, Ḡi

jk :=
∂Ḡi

j

∂yk
,

Qi
j :=

∂Qi

∂yj
, Qi

jk :=
∂Qi

j

∂yk
, Qi

jkl :=
∂Qi

jk

∂yl
,

Pj :=
∂P

∂yj
, Pjk :=

∂Pj

∂yk
.

Taking vertical derivations of (3.5) implies that

Ḡi
j=Gi

j + Pjy
i + Pδij −Qi

j,

Ḡi
jk=Gi

jk + Pjky
i + Pjδ

i
k + Pkδ

i
j −Qi

jk,

and
B̄i

jkl = Bi
jkl + Pjkly

i + Pjkδ
i
l + Pjlδ

i
k + Pklδ

i
j −Qi

jkl. (3.7)
The following equalities hold:

Pi=κi, Pij = Pijk = 0. (3.8)

By (3.7) and (3.8), we get

B̄i
jkl = Bi

jkl −Qi
jkl. (3.9)

Taking a trace of (3.9) implies that

Ēij=Eij −
1

2
Qm

mij, (3.10)

where
Qm

mij := trace(Qk
lij).

By (3.10), we get the proof. □

Lemma 3.2. A Finsler metric F on a manifold M is conformally closed weakly
Berwald metric if and only if F 2κmI

m is a 1-form on M .

Proof. By (3.6), we have

Qi
j= yjκ

i − F 2Ci
kj κ

k. (3.11)

Taking a trace of (3.11) yields

Qm
m=(ym − F 2Im)κ

m.

It is easy to see that κmym = κmy
m is a 1-form on M . Also, we have

κmF 2Im = κm(x)F
2Im.

Then by Lemma 3.1, we get the proof. □
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Example 3.3. Let F be a scalar function on TM defined by F = m
√
A, where A

is given by A := ai1...im(x)y
i1yi2 . . . yim , with ai1...im symmetric in all its indices.

Then F is called an mth root Finsler metric. For an mth root metric F =
m
√

ai1...im(x)y
i1yi2 . . . yim , we have

det(gij) =
(−1

n

)n

.

Then we get

Ii =
∂

∂yi

[
ln
√

det(gjk)
]
= 0. (3.12)

By (3.12), it follows that every mth root Finsler metric is a trivial conformally
closed weakly Berwald metric.

Proof of Theorem 1.1. Equation (3.4) is equal to

Ḡi −Gi = κ0y
i − 1

2
F 2κi. (3.13)

We have
∂gij

∂yk
= −2Cij

k.

Then, we obtain
∂κi

∂yj
= −2κmC

mi
j . (3.14)

By (3.13) and (3.14), we get

Ḡi
j −Gi

j = κjy
i + κ0δ

i
j − κm

[
− F 2Cim

j + yjg
im
]
,

Ḡi
jk −Gi

jk = κjδ
i
k + κkδ

i
j − κm

[
gjkg

im − Cim
j,kF

2 − 2yjC
im
k − 2ykC

im
j

]
.

Then

B̄i
jkl −Bi

jkl = −κm

[
2gimCjkl − 2gjkC

im
l − Cim

j,k,lF
2 − 2ylC

im
j,k − 2gjlC

im
k

−2yjC
im
k,l − 2gklC

im
j − 2ykC

im
j,l

]
.(3.15)

Taking a trace i = j in (3.15) yields

Ēkl − Ekl = κm[F
2Im,k,l + 2gklI

m + 2ylI
m
,k + 2ykI

m
,l]. (3.16)

By (3.16), we get (1.1). □

4. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. Indeed, we show that a
Randers metric F = α + β is a conformally closed weakly Berwald metric if and
only if it is a Riemannian metric or the conformal transformation is homothety.
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Proof of Theorem 1.2. Let F = α + β be a conformally closed weakly Berwald
metric. For a Randers metric F = α + β on an n-dimensional manifold M , we
have

gij =
F

α

[
aij −

yi
α

yj
α

+
α

F

(
bi +

yi
α

)(
bj +

yj
α

)]
,

gij =
α

F
aij +

b2α + β

F 3
yiyj − α

F 2
(biyj + bjyi),

Ii =
1

2
(n+ 1)F−1α−2(α2bi − βyi),

which yields

Ij = gjiIi =
n+ 1

2Fα2

(
α

F
aij − α

F 2
(biyj + bjyi) +

1

F 3
(b2α + β)yiyj

)
(α2bi − βyi).

Then

F 2Ij =
n+ 1

2

[
αbj − b2α + β

α + β
yj
]
=

n+ 1

2

[
αbj +

(1− b2)α

α + β
yj − yj

]
,

where b := ∥β∥α =
√
bibi < 1. It follows that

F 2κjI
j =

n+ 1

2

[
ακjb

j +
(1− b2)α

α + β
κjy

j − κjy
j

]
.

By the assumption, F is conformally closed weakly Berwald metric. Then, by
Lemma 3.2, F 2κjI

j is a 1-form on M . Then, the following equality holds:

ακjb
j +

(1− b2)α

α + β
κjy

j = θ, (4.1)

where θ = θi(x)y
i is a 1-form on M . Simplifying (4.1) give us
κjb

jα2 +
[
κjb

jβ + (1− b2)κ0 − θ
]
α− θβ = 0. (4.2)

By (4.2), we get
κjb

jα2 = θβ, (4.3)
κjb

jβ + (1− b2)κ0 − θ = 0. (4.4)
It is easy to see that κjb

j is a function on M . By (4.3), we get β = 0 or θ = 0.
In the first case, F is Riemannian. Suppose that F is not a Riemannian metric.
Then, by putting θ = 0 in (4.4), we obtain

κjb
jβ + (1− b2)κ0 = 0. (4.5)

Taking a vertical derivation of (4.5) yields
κjb

jbm + (1− b2)κm = 0. (4.6)
Contracting (4.6) with bm implies

κmb
m = 0. (4.7)

Putting (4.7) in (4.6) and considering b < 1 give us
κm = 0.

Then κ = constant and the conformal transformation is homothety. □
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