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ON PARA-SASAKIAN MANIFOLDS SATISFYING CERTAIN
CURVATURE CONDITIONS WITH CANONICAL

PARACONTACT CONNECTION

SELCEN YÜKSEL PERKTAŞ

Communicated by B. Mashayekhy

Abstract. In this article, the aim is to introduce a para-Sasakian manifold
with a canonical paracontact connection. It is shown that ϕ−conharmonically
flat , ϕ−W2 flat and ϕ−pseudo projectively flat para-Sasakian manifolds with
respect to canonical paracontact connection are all η−Einstein manifolds. Also,
we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of
constant scalar curvatures.

1. Introduction

The notion of the almost paracontact structure on a differentiable manifold de-
fined by I. Sato [11] (see also [12]). The structure is an analogue of the almost
contact structure [5, 10], and is closely related to almost product structure (in
contrast to almost contact structure, which is related to almost complex struc-
ture). Every differentiable manifold with almost paracontact structure defined
by I. Sato has a compatible Riemannian metric.

An almost paracontact structure on a pseudo-Riemannian manifold M of di-
mension (2n+1) defined by S. Kaneyuki and M. Konzai [7] and they constructed
the almost paracomplex structure on M2n+1×R. Recently, S. Zamkovoy [16] has
associated the almost paracontact structure given in [7] to a pseudo-Riemannian
metric of signature (n+ 1, n) and showed that any almost paracontact structure
admits such a pseudo-Riemannian metric.
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As a generalization of the well-known connection defined by N. Tanaka [13]
and, independently, by S. M. Webster [15], in context of CR-geometry, Tanaka-
Webster connection was introduced by S. Tanno [14]. In a paracontact metric
manifold S. Zamkovoy [16] defined a canonical connection which plays the same
role of the (generalized) Tanaka-Webster connection [14] in paracontact geometry
(see also [1–3]). In this article, we study a canonical paracontact connection on
a para-Sasakian manifold which seems to be the paracontact analogue of the
(generalized) Tanaka-Webster connection.

The present paper is organized as follows. Section 2 is devoted to preliminaries.
In Section 3, we give some relations between curvature tensor (resp. Ricci tensor)
with respect to canonical paracontact connection and curvature tensor (resp.
Ricci tensor) with respect to Levi-Civita connection. In Section 4, it is given
that a ϕ−conharmonically flat para-Sasakian manifold with respect to canonical
paracontact connection is an η−Einstein manifold. In Section 5, the goal is to
examine ϕ −W2 flat para-Sasakian manifolds. In the last section, we obtain a
characterization for ϕ−pseudo projectively flat para-Sasakian manifolds.

2. Preliminaries

Let M be a differentiable manifold of dimension 2n + 1. If there exists a triple
(ϕ, ξ, η) of a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η on M2n+1

which satisfies the relations [7]:

ϕ2 = I − η ⊗ ξ, (2.1)

η(ξ) = 1, ϕξ = 0, (2.2)

η ◦ ϕ = 0, rank(ϕ) = 2n, (2.3)
where I denotes the identity transformation, then we say the triple (ϕ, ξ, η) is an
almost paracontact structure and the manifold is an almost paracontact manifold.

Moreover, the tensor field ϕ induces an almost paracomplex structure on the
paracontact distribution D = ker η, i.e. the eigendistributions D± corresponding
to the eigenvalues ±1 of ϕ are both n-dimensional.

If an almost paracontact manifold M with an almost paracontact structure
(ϕ, ξ, η) admits a pseudo-Riemannian metric g such that [16]

g(ϕX,ϕY ) = −g(X, Y ) + η(X)η(Y ), X, Y ∈ Γ(TM), (2.4)

then we say that M is an almost paracontact metric manifold with an almost
paracontact metric structure (ϕ, ξ, η, g) and such metric g is called compatible
metric. Any compatible metric g is necessarily of signature (n+ 1, n).

From (2.4), one can see that [16]

g(X,ϕY ) = −g(ϕX, Y ), (2.5)

g(X, ξ) = η(X), (2.6)
for any X, Y ∈ Γ(TM).

The fundamental 2-form of M is defined by

Φ(X, Y ) = g(X,ϕY ).
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An almost paracontact metric structure becomes a paracontact metric struc-
ture [16] if g(X,ϕY ) = dη(X, Y ), for all vector fields X, Y , where dη(X, Y ) =
1
2
{Xη(Y )− Y η(X)− η([X, Y ])}.
For a (2n+ 1) dimensional manifold M with the structure (ϕ, ξ, η, g), one can

also construct a local orthonormal basis which is called a ϕ−basis (Xi, ϕXi, ξ),
(i = 1, 2, ..., n) [16].

An almost paracontact metric structure (ϕ, ξ, η, g) on M is a para-Sasakian
manifold if and only if [16]

(∇Xϕ)Y = −g(X, Y )ξ + η(Y )X, (2.7)

where X, Y ∈ Γ(TM) and ∇ is Levi-Civita connection of M .
From (2.7), it can be seen that

∇Xξ = −ϕX. (2.8)

Example 2.1 ( [4]). Let M = R2n+1 be the (2n + 1)−dimensional real number
space with (x1, y1, x2, y2, ..., xn, yn, z) standard coordinate system. Defining

ϕ
∂

∂xα
=

∂

∂yα
, ϕ

∂

∂yα
=

∂

∂xα
, ϕ

∂

∂z
= 0,

ξ =
∂

∂z
, η = dz,

g = η ⊗ η +
n∑

α=1

dxα ⊗ dxα −
n∑

α=1

dyα ⊗ dyα,

where α = 1, 2, ..., n, then the set (M,ϕ, ξ, η, g) is an almost paracontact metric
manifold.

In a para-Sasakian manifold M , the following relations hold [16]:

g(R(X, Y )Z, ξ) = η(R(X, Y )Z)

= g(X,Z)η(Y )− g(Y, Z)η(X), (2.9)

R(X, Y )ξ = η(X)Y − η(Y )X, (2.10)
R(ξ,X)Y = −g(X, Y )ξ + η(Y )X, (2.11)

R(ξ,X)ξ = X − η(X)ξ, (2.12)
S(X, ξ) = −2nη(X), (2.13)

for any vector fields X, Y, Z ∈ Γ(TM). Here, R is Riemannian curvature tensor
and S is Ricci tensor defined by S(X, Y ) = g(QX, Y ), where Q is Ricci operator.

Now we consider the connection ∇̄ defined by [14],

∇̄XY = ∇XY + η(X)ϕY − η(Y )∇Xξ + (∇Xη)Y · ξ, (2.14)

where X, Y ∈ Γ(TM) and ∇ denotes Levi-Civita connection on M .
In view of (2.8) in (2.14), we arrive at

∇̄XY = ∇XY + η(X)ϕY + η(Y )ϕX + g(X,ϕY )ξ. (2.15)

Definition 2.2. On a para-Sasakian manifold, the connection ∇̄ given by (2.15)
is called a canonical paracontact connection.
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On a para-Sasakian manifold, canonical paracontact connection ∇̄ has the
following properties:

∇̄η = 0, ∇̄g = 0, ∇̄ξ = 0, (2.16)
(∇̄Xϕ)Y = (∇Xϕ)Y + g(X, Y )ξ − η(Y )X. (2.17)

3. Curvature Tensor

The curvature tensor R̄ of a para-Sasakian manifold M with respect to the
canonical paracontact connection ∇̄ is defined by

R̄(X, Y )Z = ∇̄X∇̄YZ − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (3.1)

If we use equation (2.15) in (3.1) we get

R̄(X, Y )Z = R(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ (3.2)
+η(Y )η(Z)X − η(X)η(Z)Y + 2g(X,ϕY )ϕZ

+g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX,

where R is the curvature tensor of M with respect to Levi-Civita connection ∇.

Assume that T and T̄ are curvature tensors of type (0, 4) defined by

T (X, Y, Z,W ) = g(R(X, Y )Z,W ),

and
T̄ (X, Y, Z,W ) = g(R̄(X, Y )Z,W ),

respectively.

Theorem 3.1. In a para-Sasakian manifold the following relations hold:

R̄(X, Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0, (3.3)

T̄ (X, Y, Z,W ) + T̄ (Y,X,Z,W ) = 0, (3.4)

T̄ (X, Y, Z,W ) + T̄ (X, Y,W,Z) = 0, (3.5)

T̄ (X, Y, Z,W )− T̄ (Z,W,X, Y ) = 0. (3.6)

Suppose that Ei = {ei, ϕei, ξ} (i = 1, 2, ..., n) is a local orthonormal ϕ−basis of
a para-Sasakian manifold M . Then the Ricci tensor S̄ and the scalar curvature
τ̄ of M with respect to canonical paracontact connection ∇̄ are defined by

S̄(X, Y ) =
n∑
i=1

g(R̄(ei, X)Y, ei)−
n∑
i=1

g(R̄(ϕei, X)Y, ϕei)

+g(R̄(ξ,X)Y, ξ) (3.7)

and

τ̄ =
n∑
j=1

S̄(ej, ej)−
n∑
j=1

S̄(ϕej, ϕej) + S̄(ξ, ξ), (3.8)

respectively.
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Theorem 3.2. In a para-Sasakian manifold M , the Ricci tensor S̄ and scalar
curvature τ̄ of canonical paracontact connection ∇̄ are defined by

S̄(X, Y ) = S(X, Y )− 2g(X, Y ) + (2n+ 2)η(X)η(Y ), (3.9)

τ̄ = τ − 2n, (3.10)

where S and τ denote the Ricci tensor and scalar curvature of Levi-Civita con-
nection ∇, respectively. Consequently, S̄ is symmetric.

Lemma 3.3. If M is a para-Sasakian manifold with canonical paracontact con-
nection ∇̄, then

g(R̄(X, Y )Z, ξ) = η(R̄(X, Y )Z) = 0, (3.11)

R̄(X, Y )ξ = R̄(ξ,X)Y = R̄(ξ,X)ξ = 0, (3.12)

S̄(X, ξ) = 0, (3.13)

for all X, Y, Z ∈ Γ(TM).

4. Conharmonical Curvature Tensor With Canonical Paracontact
Connection

The conharmonic curvature tensor (see [6]) of M with a canonical paracontact
connection is given by;

K̄(X, Y )V = R̄(X, Y )V − 1

2n− 1

(
S̄(Y, V )X − S̄(X, V )Y

+g(Y, V )Q̄X − g(X, V )Q̄Y

)
. (4.1)

By using (3.2) and (3.9), we obtain from (4.1)

K̄(X, Y )V = R(X, Y )V + g(Y, V )η(X)ξ − g(X, V )η(Y )ξ

+η(Y )η(V )X − η(X)η(V )Y + 2g(X,ϕY )ϕV

+g(X,ϕV )ϕY − g(Y, ϕV )ϕX (4.2)

− 1

2n− 1


S(Y, V )X − S(X, V )Y
−4g(Y, V )X + 4g(X, V )Y

+g(Y, V )QX − g(X, V )QY

+(2n+ 2)

[
η(Y )η(V )X − η(X)η(V )Y

+g(Y, V )η(X)ξ − g(X, V )η(Y )ξ

]
 .

Definition 4.1. A differentiable manifold M satisfying the condition

ϕ2K̄(ϕX,ϕY )ϕV = 0, (4.3)

is called ϕ−conharmonically flat.

It can be easily seen that ϕ2K̄(ϕX,ϕY )ϕV = 0 holds if and only if

g(K̄(ϕX,ϕY )ϕV, ϕU) = 0, (4.4)

for any X, Y, U, V ∈ Γ(TM).
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In view of (4.2), ϕ−conharmonically flatness gives

g(R(ϕX,ϕY )ϕV, ϕU) + 2g(ϕX, Y )g(V, ϕU)

+g(ϕX, V )g(Y, ϕU)− g(ϕY, V )g(X,ϕU) (4.5)

=
1

2n− 1


S(ϕY, ϕV )g(ϕX,ϕU)− S(ϕX,ϕV )g(ϕY, ϕU)
−2g(ϕY, ϕV )g(ϕX,ϕU) + 2g(ϕX,ϕV )g(ϕY, ϕU)
+S(ϕX,ϕU)g(ϕY, ϕV )− S(ϕY, ϕU)g(ϕX,ϕV )
−2g(ϕY, ϕV )g(ϕX,ϕU) + 2g(ϕX,ϕV )g(ϕY, ϕU)

 .

Choosing {ei, ϕei, ξ} as an orthonormal basis of vector fields in M , so by suitable
contraction of (4.5) with respect to X and U we obtain

S(ϕY, ϕV )− 2g(ϕY, ϕV ) =
1

2n− 1

(
(2n− 2)S(ϕY, ϕV )

+(τ + 4− 6n)g(ϕY, ϕV )

)
,

for any vector fields Y and V on M . From above equation, we get

S(Y, V ) = (2n− τ − 2)g(Y, V ) + (τ − 4n+ 2)η(Y )η(V ),

which implies that M is an η−Einstein manifold. This leads us to state the
following:

Theorem 4.2. Let M be a ϕ−conharmonically flat para-Sasakian manifold with
respect to canonical paracontact connection. Then M is an η−Einstein manifold.

Definition 4.3. A differentiable manifold M satisfying the condition

g(K̄(X, Y )V, ϕU) = 0, (4.6)

is called quasi-conharmonically flat.

From (4.2) we can write

g(R(X, Y )V, ϕU) + g(X,ϕU)η(Y )η(V )

−g(Y, ϕU)η(X)η(V ) + 2g(X,ϕY )g(ϕV, ϕU) (4.7)
+g(X,ϕV )g(ϕY, ϕU)− g(Y, ϕV )g(ϕX,ϕU)

=
1

2n− 1


S(Y, V )g(X,ϕU)− S(X, V )g(Y, ϕU)
−4g(Y, V )g(X,ϕU) + 4g(X, V )g(Y, ϕU)
+S(X,ϕU)g(Y, V )− S(Y, ϕU)g(X, V )

+(2n+ 2)

[
g(X,ϕU)η(Y )η(V )
−g(Y, ϕU)η(X)η(V )

]
 .

Putting Y = V = ξ in (4.7) and by using (2.1) we get

g(R(X, ξ)ξ, ϕU) + g(X,ϕU) =
1

2n− 1
(S(X,ϕU)− 2g(X,ϕU)) , (4.8)

for any vector fields X and U on M . In view of (2.12) in (4.8), we obtain

S(X,ϕU) = −2g(X,ϕU).

Replacing U by ϕU in the above equation, we have

S(X,U) = −2g(X,U) + (2− 2n)η(X)η(U).

Therefore we conclude the following:
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Theorem 4.4. Let M be a quasi-conharmonically flat para-Sasakian manifold
with respect to canonical paracontact connection. Then M is an η−Einstein man-
ifold.

5. W2−Curvature Tensor With Canonical Paracontact
Connection

In [8] Pokhariyal and Mishra have introduced new tensor field, called W2 and
E−tensor field, in a Riemannian manifold and studied their properties.

The curvature tensor W2 is defined

W2(X, Y, Z, V ) = R(X, Y, Z, V ) +
1

n− 1
(g(X,Z)S(Y, V )− g(Y, Z)S(X, V )) ,

where S is a Ricci tensor of type (0, 2).
The W̄2−curvature tensor of a para-Sasakian manifold M with respect to

canonical paracontact connection is defined by;

W̄2(X, Y )V = R̄(X, Y )V − 1

2n

(
g(Y, V )Q̄X − g(X, V )Q̄Y

)
. (5.1)

By using (3.2) and (3.9) from (5.1), we obtain

W̄2(X, Y )V = R(X, Y )V + g(Y, V )η(X)ξ − g(X, V )η(Y )ξ

+η(Y )η(V )X − η(X)η(V )Y + 2g(X,ϕY )ϕV

+g(X,ϕV )ϕY − g(Y, ϕV )ϕX (5.2)

− 1

2n


+g(Y, V )QX − g(X, V )QY
−2g(Y, V )X + 2g(X, V )Y

+(2n+ 2)

[
g(Y, V )η(X)ξ
−g(X, V )η(Y )ξ

]
 .

Definition 5.1. A differentiable manifold M satisfying the condition

ϕ2W̄2(ϕX,ϕY )ϕV = 0, (5.3)

is called ϕ−W2 flat.

It can be easily seen that ϕ2W̄2(ϕX,ϕY )ϕV = 0 holds if and only if

g(W̄2(ϕX,ϕY )ϕV, ϕU) = 0, (5.4)

for any X, Y, U, V ∈ Γ(TM).
In view of (5.2), we can write

g(R(ϕX,ϕY )ϕV, ϕU) + 2g(ϕX, Y )g(V, ϕU) (5.5)
+g(ϕX, V )g(Y, ϕU)− g(ϕY, V )g(X,ϕU)

=
1

2n

(
S(ϕX,ϕU)g(ϕY, ϕV )− S(ϕY, ϕU)g(ϕX,ϕV )
−2g(ϕY, ϕV )g(ϕX,ϕU) + 2g(ϕX,ϕV )g(ϕY, ϕU)

)
.

Choosing {ei, ϕei, ξ} as an orthonormal basis of vector fields in M , so by suitable
contraction of (5.5) with respect to X and U we obtain

S(ϕY, ϕV )− 2g(ϕY, ϕV ) =
1

2n

(
−S(ϕY, ϕV )

+(τ + 2− 2n)g(ϕY, ϕV )

)
,
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for any vector fields Y and V on M . From above equation, we get

S(Y, V ) = −
(
τ + 2n+ 2

2n+ 1

)
g(Y, V ) +

(
τ − 4n2 + 2

2n+ 1

)
η(Y )η(V ),

which implies that M is an η−Einstein manifold. So we have:

Theorem 5.2. Let M be a ϕ−W2 flat para-Sasakian manifold with respect to
canonical paracontact connection. Then it is an η−Einstein manifold.

Definition 5.3. A differentiable manifold M satisfying the condition

g(W̄2(X, Y )V, ϕU) = 0, (5.6)

is called quasi−W2 flat.

From (5.2), we can write

g(R(X, Y )V, ϕU) + g(X,ϕU)η(Y )η(V )

−g(Y, ϕU)η(X)η(V ) + 2g(X,ϕY )g(ϕV, ϕU) (5.7)
+g(X,ϕV )g(ϕY, ϕU)− g(Y, ϕV )g(ϕX,ϕU)

=
1

2n


S(X,ϕU)g(Y, V )− S(Y, ϕU)g(X, V )
−2g(X,ϕU)g(Y, V ) + 2g(Y, ϕU)g(X, V )

+(2n+ 2)

[
g(X,ϕU)η(Y )η(V )
−g(Y, ϕU)η(X)η(V )

]
 .

Putting Y = V = ξ in (5.7) and by using (2.1) we get

g(R(X, ξ)ξ, ϕU) + g(X,ϕU) =
1

2n
(S(X,ϕU) + 2ng(X,ϕU)) , (5.8)

for any vector fields X and U on M .
In view of (2.12) we obtain

S(X,ϕU) = −2ng(X,ϕU).

Replacing U by ϕU in the above equation we have

S(X,U) = −2ng(X,U).

Therefore we get the following:

Theorem 5.4. Let M be a quasi−W2 flat para-Sasakian manifold with respect to
canonical paracontact connection. Then M is an Einstein manifold.

6. Pseudo-Projective Curvature Tensor With Canonical
Paracontact Connection

Prasad [9] defined and studied a tensor field P̄ on a Riemannian manifold of
dimension n, which includes projective curvature tensor P . This tensor field P̄
is known as pseudo-projective curvature tensor.

In this section, we study pseudo-projective curvature tensor in a para-Sasakian
manifold with respect to canonical paracontact connection ∇̄ and we denote this
curvature tensor with P̄ P̄ .
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Let M be a para-Sasakian manifold with canonical paracontact connection.
The pseudo-projective curvature tensor P̄ P̄ of M with respect to canonical para-
contact connection ∇̄ is defined by;

P̄ P̄ (X, Y )V = aR̄(X, Y )V + b
(
S̄(Y, V )X − S̄(X, V )Y

)
(6.1)

− τ̄

(2n+ 1)

( a
2n

+ b
)

(g(Y, V )X − g(X, V )Y ) ,

where a and b are constants such that a, b 6= 0. If a = 1 and b = 1
2n+2

, then (6.1)
takes the form

P̄ P̄ (X, Y )V = R̄(X, Y )V +
1

2n+ 2

(
S̄(Y, V )X − S̄(X, V )Y

)
(6.2)

− τ̄

(2n+ 2)n
(g(Y, V )X − g(X, V )Y ) .

By using (3.2), (3.9) and (3.10), from (6.2) we obtain

P̄ P̄ (X, Y )V = R(X, Y )V + g(Y, V )η(X)ξ − g(X, V )η(Y )ξ (6.3)
+η(Y )η(V )X − η(X)η(V )Y + 2g(X,ϕY )ϕV

+g(X,ϕV )ϕY − g(Y, ϕV )ϕX

+
1

2n+ 2


S(Y, V )X − S(X, V )Y
−2g(Y, V )X + 2g(X, V )Y

+(2n+ 2)

[
η(Y )η(V )X
−η(X)η(V )Y

]


− τ − 2n

(2n+ 2)n
(g(Y, V )X − g(X, V )Y ) .

Definition 6.1. A differentiable manifold M satisfying the condition

ϕ2P̄ P̄ (ϕX,ϕY )ϕV = 0, (6.4)

is called ϕ−pseudo projectively flat.

It can be easily seen that ϕ2P̄ P̄ (ϕX,ϕY )ϕV = 0 holds if and only if

g(P̄ P̄ (ϕX,ϕY )ϕV, ϕU) = 0, (6.5)

for any X, Y, U, V ∈ Γ(TM).
In view of (6.2) ϕ−pseudo projectively flatness means

g(R(ϕX,ϕY )ϕV, ϕU) + 2g(ϕX, Y )g(V, ϕU)

+g(ϕX, V )g(Y, ϕU)− g(ϕY, V )g(X,ϕU) (6.6)

= − 1

2n+ 2

(
S(ϕY, ϕV )g(ϕX,ϕU)− S(ϕX,ϕV )g(ϕY, ϕU)
−2g(ϕY, ϕV )g(ϕX,ϕU) + 2g(ϕX,ϕV )g(ϕY, ϕU)

)
+

τ − 2n

n(2n+ 2)

(
g(ϕY, ϕV )g(ϕX,ϕU)
−g(ϕX,ϕV )g(ϕY, ϕU)

)
.
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Choosing {ei, ϕei, ξ} as an orthonormal basis of vector fields in M , so by suitable
contraction of (6.6) with respect to X and U we obtain

S(ϕY, ϕV )− 2g(ϕY, ϕV ) = − 1

2n+ 2

(
(2n− 1)S(ϕY, ϕV )

+(2− 4n)g(ϕY, ϕV )

)
+

τ − 2n

n(2n+ 2)
((2n− 1)g(ϕY, ϕV )) ,

for any vector fields Y and V on M . From above equation, we get

S(Y, V ) =

(
τ − 4n2 − 4n− 2nτ

4n2 + n

)
g(Y, V )+

(
2nτ − τ − 8n3 + 2n2 + 4n

4n2 + n

)
η(Y )η(V ),

which implies thatM is an η−Einstein manifold. Therefore we have the following:

Theorem 6.2. Let M be a ϕ−pseudo projectively flat para-Sasakian manifold
with respect to canonical paracontact connection. Then M is an η−Einstein man-
ifold.

Definition 6.3. A differentiable manifold M satisfying the condition

g(P̄ P̄ (X, Y )V, ϕU) = 0, (6.7)

is called quasi-pseudo projectively flat.

From (6.3), we can write

g(R(X, Y )V, ϕU) + g(X,ϕU)η(Y )η(V )

−g(Y, ϕU)η(X)η(V ) + 2g(X,ϕY )g(ϕV, ϕU) (6.8)
+g(X,ϕV )g(ϕY, ϕU)− g(Y, ϕV )g(ϕX,ϕU)

= − 1

2n+ 2


S(Y, V )g(X,ϕU)− S(X, V )g(Y, ϕU)
−2g(Y, V )g(X,ϕU) + 2g(X, V )g(Y, ϕU)

+(2n+ 2)

[
g(X,ϕU)η(Y )η(V )
−g(Y, ϕU)η(X)η(V )

]


+
τ − 2n

(2n+ 2)n

(
g(Y, V )g(X,ϕU)
−g(X, V )g(Y, ϕU)

)
.

Putting Y = V = ξ in (6.8) and by using (2.1), we get

g(R(X, ξ)ξ, ϕU) + g(X,ϕU) =
τ − 2n

(2n+ 2)n
g(X,ϕU), (6.9)

for any vector fields X and U on M .
In view of (2.12) we obtain(

τ − 2n

(2n+ 2)n

)
g(X,ϕU) = 0.

In this case we can state following:

Theorem 6.4. If a para-Sasakian manifold M is quasi-pseudo projectively flat
with respect to canonical paracontact connection, then it is of constant scalar
curvature.
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