DOI: 10.22034/kjm.2017.49229

Khayyam Journal of Mathematics

emis.de/journals/KJMkjm-math.org

LINEAR PRESERVERS OF RIGHT SGUT-MAJORIZATION ON \mathbb{R}_n

AHMAD MOHAMMADHASANI¹, ASMA ILKHANIZADEH MANESH*²

Communicated by B. Kuzma

ABSTRACT. A matrix R is called a generalized row substochastic (g-row substochastic) if the sum of entries on every row of R is less than or equal to one. For $x, y \in \mathbb{R}_n$, it is said that x is rsgut-majorized by y (denoted by $x \prec_{rsgut} y$) if there exists an n-by-n upper triangular g-row substochastic matrix R such that x = yR. In the present paper, we characterize the linear preservers and strong linear preservers of rsgut-majorization on \mathbb{R}_n .

1. Introduction and preliminaries

Let $\mathbf{M}_{n,m}$ be the set of all n-by-m real matrices, and let \mathbb{R}_n be the set of 1-by-n real vectors. A matrix $R = [r_{ij}] \in \mathbf{M}_n = \mathbf{M}_{n,n}$ is called a generalized row substochastic matrix if $\sum_{j=1}^n r_{ij} \leq 1$ for all i. For vectors $x, y \in \mathbb{R}_n$, we say that x is rsgut-majorized by y, denoted by $x \prec_{rsgut} y$, if x = yR for some n-by-n upper triangular g-row substochastic matrix R.

A linear function $T: \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserves an order relation \prec in $\mathbf{M}_{n,m}$, if $TX \prec TY$ whenever $X \prec Y$. Also, T is said to strongly preserve \prec if for all X, $Y \in \mathbf{M}_{n,m}$

$$X \prec Y \Leftrightarrow TX \prec TY$$
.

For $X, Y \in \mathbf{M}_{n,m}$, X is said to be sgut-majorized by Y (denoted by $X \prec_{sgut} Y$) if there exists an n-by-n upper triangular g-row substochastic matrix R such that X = RY. In [7], the second author characterized all linear preservers and strong linear preservers of \prec_{sgut} on \mathbb{R}^n and $\mathbf{M}_{n,m}$, respectively. In this paper, we study the right case of this relation.

Date: Received: 15 March 2017; Revised: 2 August 2017; Accepted: 11 August 2017.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A04; Secondary 15A51.

Key words and phrases. Linear preserver, g-row substochastic matrix, rsgut-majorization, strong linear preserver.

Some kinds of linear preservers of majorization were mentioned in [1], [4], and [9]. For more information about right and left matrix majorization, see [2], [3], and [5]-[8].

The following conventions will be fixed throughout the paper: The standard basis of \mathbb{R}_n is denoted by $\{e_1, \ldots, e_n\}$. The submatrix of A obtained from A by rows n_1, \ldots, n_l and columns m_1, \ldots, m_k is denoted by $A[n_1, \ldots, n_l|m_1, \ldots, m_k]$. The abbreviation of $A[n_1, \ldots, n_l|n_1, \ldots, n_l]$ is denoted by $A[n_1, \ldots, n_l]$. The summation of all components of a vector x in \mathbb{R}_n is denoted by tr(x). The matrix representation of a linear function $T: \mathbb{R}_n \to \mathbb{R}_n$ with respect to the standard basis is denoted by [T]. We have Tx = x[T]. The summation of all entries of i^{th} row of [T] is denoted by r_i , also, we will use the following standard function:

$$sgn(x) = \begin{cases} 1 & x > 0, \\ 0 & x = 0, \\ -1 & x < 0. \end{cases}$$

2. Main results

In this section, we pay attention to the g-row substochastic upper triangular matrices and introduce a new type of majorization. We obtain an equivalent condition for regut-majorization on \mathbb{R}_n , and we characterize linear functions $T: \mathbb{R}_n \to \mathbb{R}_n$ preserving \prec_{rsgut} . Also, we characterize strong linear preservers of regut-majorization on \mathbb{R}_n .

The following proposition provides a criterion for regut-majorization on \mathbb{R}_n .

Proposition 2.1. Let $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}_n$. Then $x \prec_{rsgut} y$ if and only if y = 0, implies that x = 0 or $x = (0, ..., 0, x_t, ..., x_n)$, in which $t = \min\{l : y_l \neq 0\}$ and one of the following conditions holds:

- (i) $y \ge 0$ and $tr(x) \le tr(y)$,
- (ii) $y \le 0$ and $tr(x) \ge tr(y)$,
- (iii) $y \not\geq 0$ and $y \not\leq 0$.

Proof. Let us first prove the sufficiency conditions. Clearly, if x = y = 0, then $x \prec_{rsgut} y$. If $x = (0, \ldots, 0, x_t, \ldots, x_n)$, in which $t = \min\{l : y_l \neq 0\}$; assume that (i) or (ii) holds. If t = n; set

$$R = (r_{ij}) = \begin{cases} \frac{x_n}{y_n} & (i,j) = (n,n), \\ 0 & \text{otherwise.} \end{cases}$$

If t < n; choose

$$R = (r_{ij}) = \begin{cases} 1 & (i,j) = (l,n), \quad t+1 \le l \le n, \\ \frac{x_k}{y_t} & t \le k \le n-1, \\ \frac{x_n - \sum_{j=t+1}^n y_j}{y_t} & (i,j) = (t,n), \\ 0 & \text{otherwise.} \end{cases}$$

We see that x = yR, where R is g-row substochastic upper triangular matrix that implies $x \prec_{rsgut} y$. Now, assume that (iii) holds. Without loss of generality,

suppose that there exists some p $(t such that <math>y_t > 0 > y_p$. We claim that $x \prec_{rsgut} y$. Put

$$R = (r_{ij}) = \begin{cases} \frac{x_k}{y_t} & (i,j) = (t,k), & t \le k \le n-1, \\ \le \min\{1 - \sum_{k=t}^{n-1} r_{tk}, \frac{x_n - y_j}{y_t}\} & (i,j) = (t,n), \\ \frac{x_n - r_{tn}y_t}{y_p} & (i,j) = (p,n), \\ 0 & \text{otherwise.} \end{cases}$$

We observe that x = yR, where R is g-row substochastic upper triangular. This implies $x \prec_{rsqut} y$ as claimed.

Next, assume that $x \prec_{rsgut} y$ and $y \neq 0$. We observe that there exists some g-row substochastic upper triangular matrix R such that x = yR. Set $t = \min\{l : y_l \neq 0\}$. Then $x = (0, \dots, 0, x_t, \dots, x_n)$. If $y \not\geq 0$ and $y \not\leq 0$, then (iii) occurs. If not; then $y \geq 0$ or $y \leq 0$.

We observe that $\operatorname{tr}(\mathbf{x}) = r_1 y_1 + r_2 y_2 + \dots + r_n y_n$, in which $r_i = \sum_{j=1}^n r_{ij}$ for each i $(1 \le i \le n)$. Since $r_i \le 1$ for each i $(1 \le i \le n)$, we have

$$\begin{cases} \operatorname{tr}(\mathbf{x}) \le \operatorname{tr}(\mathbf{y}); & if \ y \ge 0, \\ \operatorname{tr}(\mathbf{x}) \ge \operatorname{tr}(\mathbf{y}); & if \ y \le 0. \end{cases}$$

Lemma 2.2. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear preserver of \prec_{rsgut} . Then [T] is an upper triangular matrix.

Proof. Let $[T] = [a_{ij}]$. The proof is by induction on n. If n = 1; there is nothing to prove. Suppose that $n \geq 2$. First, we claim that $a_{21} = \cdots = a_{n1} = 0$. We consider two cases.

Case I. Let $a_{11} = 0$. As $e_n, e_{n-1}, \ldots, e_2 \prec_{rsgut} e_1$, we have $Te_n, \ldots, Te_2 \prec_{rsgut} Te_1$. It follows that $a_{21} = \cdots = a_{n1} = 0$.

Case II. Let $a_{11} \neq 0$. Without loss of generality, we assume that $a_{11} = 1$. Let there be some k $(2 \leq k \leq n)$ such that $a_{k1} \neq 0$. Set $x = e_1$ and $y = e_1 - \frac{1}{a_{k1}}e_k$. We see that $x \prec_{rsgut} y$, and so $Tx \prec_{rsgut} Ty$, which is a contradiction. Hence $a_{k1} = 0$ for each k $(2 \leq k \leq n)$.

In continuing we assume that the matrix representation of every linear preserver of \prec_{rsgut} on \mathbb{R}_{n-1} is an upper triangular matrix. Let $S: \mathbb{R}_{n-1} \to \mathbb{R}_{n-1}$ be the linear function with $[S] = [T][2,3,\ldots,n]$. Let $x' = (x_2,\ldots,x_n), y' = (y_2,\ldots,y_n) \in \mathbb{R}_{n-1}$ and let $x' \prec_{rsgut} y'$. Then $x := (0,x') \prec_{rsgut} y := (0,y')$ and hence we get $Tx = (0,Sx') \prec_{rsgut} Ty = (0,Sy')$ since $x_1 = 0$ and $a_{21} = \cdots = a_{n1} = 0$. This implies that $Sx' \prec_{rsgut} Sy'$. Therefore, S preserves \prec_{rsgut} on \mathbb{R}_{n-1} . The induction hypothesis insures us that [S] is an $(n-1) \times (n-1)$ upper triangular matrix. Therefore, [T] is upper triangular.

We will use the notation $I_{j,n}^{t \to k}$ for the fact that t is replaced with k in $I_{j,n}$, and r_i is the summation of all entries of i^{th} row of [T].

Theorem 2.3. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function, and let $[T] = [a_{ij}]$. If $a_{11}, \ldots, a_{nn} \neq 0$, then T preserves \prec_{rsgut} if and only if [T] is upper triangular, $\operatorname{sgn}(a_{11}) = \operatorname{sgn}(a_{22}) = \cdots = \operatorname{sgn}(a_{nn})$, the elements on superdiagonal are zero, or have opposite sign of the elements on diagonal, $r_1 = \cdots = r_n$, $D_{n-3}^{n-1} \geq 0$, $I_{0,n} := D_{n-2}^n \geq 0$, n-3 conditions of the following hold.

(1) :
$$I_{1,n}(\operatorname{sgn}(a_{11}))^1 \ge 0$$
,

(2) :
$$I_{2,n}(\operatorname{sgn}(a_{11}))^2 \ge 0$$
,

:

:
$$(n-3)$$
 : $I_{n-3,n}(\operatorname{sgn}(a_{11}))^{n-3} \ge 0$,

in which

$$I_{j,n} = a_{n-(j+1)n-(j+1)} I_{j-1,n}^{n-(j+1)\mapsto n-(j+2)} - a_{n-(j+2)n-(j+1)} I_{j-1,n},$$

$$D_i^j = a_{ij-1} a_{i-1j} - a_{ij} a_{i-1j-1},$$

and if $Te_n = (*, ..., *, a_{n-in}, 0, ..., 0, a_{nn})$, where $1 \le i \le n-1$, then $a_{11}a_{n-in} \le 0$.

Proof. We assume $a_{11} = 1$ without loss of generality.

First, we prove the sufficiency of the condition. Let $x, y \in \mathbb{R}_n$, and let $x \prec_{rsgut} y$. We should prove $Tx \prec_{rsgut} Ty$. We know that

$$Tx = (x_1, a_{12}x_1 + a_{22}x_2, \dots, a_{1n}x_1 + a_{2n}x_2 + \dots + a_{nn}x_n),$$

and

$$Ty = (y_1, a_{12}y_1 + a_{22}y_2, \dots, a_{1n}y_1 + a_{2n}y_2 + \dots + a_{nn}y_n).$$

We consider three steps.

Step (I). $Ty \ngeq 0$ and $Ty \nleq 0$. If $y_1 \neq 0$, then $Tx \prec_{rsgut} Ty$. If not; we see that x_1 is also zero. If $y_2 \neq 0$, since $a_{22} \neq 0$, then $Tx \prec_{rsgut} Ty$. If $y_2 = 0$, we have $(Tx)_2 = (Ty)_2 = 0$. If $y_3 \neq 0$; by continuing this process, we observe that $Tx \prec_{rsgut} Ty$.

Step (II). $Ty \ge 0$. We claim that $y \ge 0$. If it happens, then $tr(Tx) = r_n tr(x)$ and $tr(Ty) = r_n tr(y)$. If y = 0, then x = 0. So, $Tx \prec_{rsgut} Ty$. If $y \ne 0$; in this case we consider two cases $y_1 \ne 0$ and $y_1 = 0$. In the first case, we have $tr(x) \le tr(y)$, and hence $tr(Tx) \le tr(Ty)$. Therefore, as $(Ty)_1 \ne 0$ and $Ty \ge 0$, we conclude that $Tx \prec_{rsgut} Ty$. If $y_1 = 0$, then $x_1 = 0$. Now, we consider two cases $y_2 = 0$ and $y_2 \ne 0$. Similarly, one shows that $Tx \prec_{rsgut} Ty$. Hence it is enough to show that $y \ge 0$.

As $Ty \ge 0$, y_1 is greater than or equal to zero, too. From $(Ty)_2 \ge 0$, $a_{12} \le 0$, $a_{22} > 0$, and $y_1 \ge 0$, we deduce $y_2 \ge 0$. Note that

$$(1): (Ty)_3 \ge 0$$
 $\Leftrightarrow A_1 := \frac{a_{13}}{-a_{33}} y_1 + \frac{a_{23}}{-a_{33}} y_2 \le y_3,$

:

$$(i): (Ty)_{i+2} \ge 0 \qquad \Leftrightarrow \quad A_i := \frac{a_{1i+2}}{-a_{i+2i+2}} y_1 + \frac{a_{2i+2}}{-a_{i+2i+2}} y_2 + \dots + \frac{a_{i+1i+2}}{-a_{i+2i+2}} y_{i+1} \le y_{i+2},$$

:

$$(n-2): (Ty)_n \ge 0 \iff A_{n-2}:=\frac{a_{1n}}{-a_{nn}}y_1 + \frac{a_{2n}}{-a_{nn}}y_2 + \dots + \frac{a_{n-1n}}{-a_{nn}}y_{n-1} \le y_n.$$

If we prove that $A_1, A_2, \ldots, A_{n-2} \ge 0$, then $y_3, \ldots, y_n \ge 0$. Thus, $y \ge 0$.

By induction on n we prove it whenever $n \geq 3$. If n = 3; we know that $a_{23} \leq 0$. If $a_{23} = 0$, by the hypothesis, we have $a_{13} \leq 0$. Hence $A_1 \geq 0$. If $a_{23} < 0$ and $A_1 < 0$, then $\frac{a_{13}}{-a_{23}}y_1 > y_2 \geq \frac{a_{12}}{-a_{22}}y_1$. If $y_1 = 0$, we obtain a contradiction. If not; then $y_1 > 0$, and then $a_{13}a_{22} > a_{12}a_{23}$, which is a contradiction. Thus, $A_1 \geq 0$. Now assume that n > 3 and $A_1, A_2, \ldots, A_{n-3} \geq 0$. If $A_{n-2} < 0$; it means that $a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{n-1n}y_{n-1} > 0$. By the hypothesis, $a_{n-1n} \leq 0$. So, we should consider two steps:

Step (1). If $a_{n-1n} < 0$, then

$$\frac{a_{1n}}{-a_{n-1n}}y_1 + \frac{a_{2n}}{-a_{n-1n}}y_2 + \dots + \frac{a_{n-2n}}{-a_{n-1n}}y_{n-2} \ge y_{n-1}$$

$$\ge \frac{a_{1n-1}}{-a_{n-1n-1}}y_1 + \dots + \frac{a_{n-2n-1}}{-a_{n-1n-1}}y_{n-2},$$

which implies

$$I_{0,n}^{n-2\mapsto 1}y_1 + I_{0,n}^{n-2\mapsto 2}y_2 + \dots + I_{0,n}^{n-2\mapsto n-3}y_{n-3} < -I_{0,n}y_{n-2}.$$

We know $I_{0,n} \geq 0$. We consider two cases.

Case (I). $I_{0,n} = 0$. Then

$$I_{0,n}^{n-2\mapsto 1}y_1 + I_{0,n}^{n-2\mapsto 2}y_2 + \dots + I_{0,n}^{n-2\mapsto n-4}y_{n-4} < -I_{0,n}^{n-2\mapsto n-3}y_{n-3}.$$

Here we have $I_{1,n} = a_{n-2n-2}I_{0,n}^{n-2\mapsto n-3}, \dots, I_{1,n}^{n-3\mapsto n-2} = a_{n-2n-2}I_{0,n}^{n-2\mapsto n-4}$, and it follows that

$$I_{1,n}^{n-3\mapsto 1}y_1 + I_{1,n}^{n-3\mapsto 2}y_2 + \dots + I_{1,n}^{n-3\mapsto n-4}y_{n-4} < -I_{1,n}y_{n-3}.$$

Case (II). $I_{0,n} > 0$. In this case we see that

$$I_{1,n}^{n-3\mapsto 1}y_1 + I_{1,n}^{n-3\mapsto 2}y_2 + \dots + I_{1,n}^{n-3\mapsto n-4}y_{n-4} < -I_{1,n}y_{n-3}.$$

Similar to the recent procedure, we obtain

$$I_{2,n}^{n-4\mapsto 1}y_1 + I_{2,n}^{n-4\mapsto 2}y_2 + \dots + I_{2,n}^{n-4\mapsto n-5}y_{n-5} < -I_{2,n}y_{n-4},$$

$$I_{3,n}^{n-5\mapsto 1}y_1 + I_{3,n}^{n-5\mapsto 2}y_2 + \dots + I_{3,n}^{n-5\mapsto n-6}y_{n-6} < -I_{3,n}y_{n-5},$$

$$\vdots$$

$$I_{n-4,n}^{2\mapsto 1} y_1 < -I_{n-4,n} y_2.$$

We know that $I_{n-4,n} \geq 0$.

Case (I). $I_{n-4,n} = 0$. This implies that $I_{n-4,n}^{2\mapsto 1}y_1 < 0$. We see that y_1 can not be zero. So, $y_1 > 0$ and then $I_{n-4,n}^{2\mapsto 1} < 0$. It shows that $I_{n-3,n} < 0$, that is a contradiction.

Case (II). $I_{n-4,n} > 0$. We have

$$\frac{I_{n-4,n}^{2\mapsto 1}}{I_{n-4,n}}y_1 > y_2 \ge \frac{-a_{12}}{a_{22}}y_1.$$

We observe that y_1 can not be zero and so, $y_1 > 0$. Then $\frac{I_{n-4,n}^{2 \mapsto 1}}{-I_{n-4,n}} > \frac{-a_{12}}{a_{22}}$, and hence $I_{n-3,n} < 0$, which is a contradiction.

Step (2). $a_{n-1n} = 0$. We have

$$a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{n-2n}y_{n-2} > 0.$$

By the hypothesis, $a_{n-2n} \leq 0$. We consider two cases.

Case (I). $a_{n-2n} < 0$. We see that

$$\frac{a_{1n}}{-a_{n-2n}}y_1 + \dots + \frac{a_{n-3n}}{-a_{n-2n}}y_{n-3} > y_{n-2}$$

$$\geq \frac{a_{1n-2}}{-a_{n-2n-2}}y_1 + \dots + \frac{a_{n-3n-2}}{-a_{n-2n-2}}y_{n-3},$$

which implies

$$I_{1,n}^{n-3\mapsto 1}y_1 + I_{1,n}^{n-3\mapsto 2}y_2 + \dots + I_{1,n}^{n-3\mapsto n-4}y_{n-4} < -I_{1,n}y_{n-3}.$$

We know $I_{1,n} \geq 0$.

Case (1). $I_{1,n} = 0$. Then

$$I_{1,n}^{n-3\mapsto 1}y_1 + I_{1,n}^{n-3\mapsto 2}y_2 + \dots + I_{1,n}^{n-3\mapsto n-5}y_{n-5} < -I_{1,n}^{n-3\mapsto n-4},$$

which implies

$$I_{2,n}^{n-4\mapsto 1}y_1 + I_{2,n}^{n-4\mapsto 2}y_2 + \dots + I_{2,n}^{n-4\mapsto n-5}y_{n-5} < -I_{2,n}y_{n-4}.$$

Case (2). $I_{1,n} > 0$. This implies that

$$\frac{I_{1,n}^{n-3\mapsto 1}}{-I_{1,n}}y_1 + \dots + \frac{I_{1,n}^{n-3\mapsto n-4}}{-I_{1,n}}y_{n-4} > y_{n-3} \\
\geq \frac{a_{1n-3}}{-a_{n-3n-3}}y_1 + \dots + \frac{a_{n-4n-3}}{-a_{n-3n-3}}y_{n-4},$$

which implies

$$I_{2,n}^{n-4\mapsto 1}y_1 + I_{2,n}^{n-4\mapsto 2}y_2 + \dots + I_{2,n}^{n-4\mapsto n-5}y_{n-5} < -I_{2,n}y_{n-4}.$$

So,

$$I_{2,n}^{n-4\mapsto 1}y_1 + I_{2,n}^{n-4\mapsto 2}y_2 + \dots + I_{2,n}^{n-4\mapsto n-5}y_{n-5} < -I_{2,n}y_{n-4}$$

Therefore, in any case

$$I_{2,n}^{n-4\mapsto 1}y_1 + I_{2,n}^{n-4\mapsto 2}y_2 + \dots + I_{2,n}^{n-4\mapsto n-5}y_{n-5} < -I_{2,n}y_{n-4}.$$

Similarly, it can be proven

$$I_{3,n}^{n-5\mapsto 1}y_1 + I_{3,n}^{n-5\mapsto 2}y_2 + \dots + I_{3,n}^{n-5\mapsto n-6}y_{n-6} < -I_{3,n}y_{n-5},$$

$$I_{4,n}^{n-6\mapsto 1}y_1 + I_{4,n}^{n-6\mapsto 2}y_2 + \dots + I_{4,n}^{n-6\mapsto n-7}y_{n-7} < -I_{4,n}y_{n-6},$$

$$\vdots$$

$$I^{2\mapsto 1} \quad \text{a. c. } \quad I_{4,n} = 0$$

As $I_{n-4,n} \geq 0$, we come to a contradiction.

Case (II). $a_{n-2n} = 0$. According to the hypothesis, $a_{n-3n} \leq 0$. In a similar fashion, we can complete the proof. Therefore, $A_{n-2} \geq 0$.

Step (III). $Ty \leq 0$. This step can be proven in the similar manner as the proof of Step (II).

To prove the necessity of the condition, assume that T preserves \prec_{rsgut} . Lemma 2.2 ensures that [T] is upper triangular. First, we want to prove $\operatorname{sgn}(a_{11}) = \operatorname{sgn}(a_{22}) = \cdots = \operatorname{sgn}(a_{nn})$, the elements on superdiagonal are zero, or have opposite sign of the elements on diagonal, and $r_1 = \cdots = r_n$. The proof is by induction on n. If n = 1; there is nothing to prove. For $n \geq 2$, assume that the matrix

representation of every linear preserver of \prec_{rsgut} on \mathbb{R}_{n-1} has desirable conditions. Let $S: \mathbb{R}_{n-1} \to \mathbb{R}_{n-1}$ be the linear function with $[S] = [T][2, 3, \ldots, n]$. As T preserves \prec_{rsgut} on \mathbb{R}_n , S is also on \mathbb{R}_{n-1} . The induction hypothesis insures $\operatorname{sgn}(a_{22}) = \cdots = \operatorname{sgn}(a_{nn})$, the elements on superdiagonal are zero, or have opposite sign of the elements on diagonal, and $r_2 = \cdots = r_n$. If

$$y = (y_1, y_2, \cdots, y_n),$$
 (2.1)

in which $y_1 = 1$, $y_2 = \frac{-a_{12}}{a_{22}}$, $y_3 = \frac{a_{23}a_{12} - a_{13}a_{22}}{a_{22}a_{33}}$, $y_i = \frac{I_{i-3,i}}{a_{22}a_{33}...a_{ii}}$, $\forall i = 4, 5, ..., n$.

We claim that Ty = (1, 0, ..., 0). We prove it by induction on n. The induction step is easy to prove. Now suppose the statement holds for n-1. We want to prove it for n. We observe that $(Ty)_1 = 1, (Ty)_2 = 0, (Ty)_3 = 0, (Ty)_j = a_{1j} + a_{2j}y_j + \cdots + a_{jj}y_j$, $\forall j = 4, 5, \ldots, n-1$. By the induction hypothesis, $(Ty)_j = 0$ for each $1 \le j \le n-1$. It is enough to show that $1 \le j \le n-1$. As $1 \le j \le n-1$, we have $1 \le j \le n-1$. On the other hand,

$$\sum_{i=2}^{n} (Ty)_i = (a_{12} + a_{13} + \dots + a_{1n}) + (a_{22} + a_{23} + \dots + a_{2n})y_2 + \dots + a_{nn}y_n,$$

= $(r_n - 1) + r_n(y_2 + \dots + y_n).$

Hence $(Ty)_n = (r_n - 1) + r_n(y_2 + \dots + y_n)$. We claim that $y_2 + \dots + y_n = \frac{1 - r_n}{r_n}$, implies $(Ty)_n = 0$. We have $y_2 + \dots + y_n = \frac{1 - r_n}{r_n}$. If we prove $a_{22} > 0$, then $a_{33}, \dots, a_{nn} > 0$, $a_{23}, a_{34}, \dots, a_{n-1n} \le 0$. If $a_{22} \ne 0$; then $a_{22} < 0$.

Case (I). $a_{12} < 0$. Set y as (2.1). We observe that $y \ngeq 0$, $y \nleq 0$, and $y_1 \ne 0$. So, for every $x \in \mathbb{R}_n$ we have $x \prec_{rsgut} y$. Set $x = x_n e_n$ where $x_n < \frac{1}{a_{nn}}$. Then $Tx \not\prec_{rsgut} Ty$, a contradiction.

Case (II). $a_{12} > 0$. Consider y as (2.1). Put $x = x_n e_n$ such that $x_n < \min\{\frac{1}{a_{nn}}, \operatorname{tr}(y)\}$. We conclude $x \prec_{rsgut} y$ and $Tx \not\prec_{rsgut} Ty$, which is a contradiction

Case (III). $a_{12}=0$. Choose $y_1=1,\ y_2=-1,\ \text{and}\ y_3,\ldots,y_n$ such that $(Ty)_3=\cdots=(Ty)_n=0$. We see that $Ty=(1,-a_{22},0,\ldots,0)$. Consider $x=x_ne_n$, in which $x_n<\frac{1-a_{22}}{a_{nn}}$. We deduce $x\prec_{rsgut}y$ but $Tx\not\prec_{rsgut}Ty$, a contradiction.

Therefore, $a_{22} > 0$. We claim that $a_{12} \le 0$. If $a_{12} > 0$; by choosing y as (2.1) and $x = x_n e_n$ such that $x_n < \frac{1}{a_{nn}}$ we have $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$, which is a contradiction. Thus, $a_{12} \le 0$.

We want to show that $r_1 = r_n$. If $r_1 \neq r_n$;

Step (I). $r_1 < r_n$. Choose y as (2.1) and $x = x_n e_n$. We have Ty = (1, 0, ..., 0) and $Tx = (0, ..., 0, r_n x_n)$. Note that $1 = tr(Ty) = r_1 + r_n(y_2 + \cdots + y_n)$, which implies $1 - r_1 = r_n(y_2 + \cdots + y_n)$ and $tr(y) = y_1 + \frac{1-r_1}{r_n}$.

Choose $\frac{1}{r_n} < x_n \le \operatorname{tr}(y)$. It shows that $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$, that is a contradiction.

Step (II). $r_1 > r_n$. Set y as (2.1) and $x = (\frac{r_n+1}{r_n})e_1 - \frac{r_1}{r_n e_n}$. We conclude $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$, that is a contradiction. Hence $r_1 = r_n$, and so, we have $r_1 = \cdots = r_n$.

We claim that $D_{n-2}^n \geq 0$. If $D_{n-2}^n < 0$; let $S : \mathbb{R}_3 \to \mathbb{R}_3$ be the linear function with [S] = [T][n-2, n-1, n]. As T preserves \prec_{rsqut} on \mathbb{R}_n , S is also on \mathbb{R}_3 .

Select $x, y \in \mathbb{R}_3$ such that $x = x_1 e_1$, and $y = (1, \frac{-a_{n-2n-1}}{a_{n-1n-1}}, \frac{D_{n-2}^n}{a_{n-1n-1}a_{nn}})$, in which $x_1 > \frac{1}{a_{nn}}$. Observe that $x \prec_{rsgut} y$ but $Sx \not\prec_{rsgut} Sy$ is a contradiction. So, $D_{n-2}^n \geq 0$.

We want to show that $D_{n-3}^{n-1} \geq 0$. If $D_{n-3}^{n-1} < 0$; let $S : \mathbb{R}_4 \to \mathbb{R}_4$ be the linear function with [S] = [T][n-3, n-2, n-1, n]. Since T preserves \prec_{rsgut} on \mathbb{R}_n , S is also on \mathbb{R}_4 . By choosing $x, y \in \mathbb{R}_4$ such that $x = x_4e_4$, and $y = (1, \frac{-a_{n-3n-2}}{a_{n-2n-2}}, \frac{D_{n-3}^{n-1}}{a_{n-2n-2n-1}}, \frac{I_{1,4}}{a_{22}a_{33}a_{44}})$, in which $x_4 > \frac{1}{a_{44}}$, we see that $x \prec_{rsgut} y$ but $Sx \not\prec_{rsgut} Sy$, which is a contradiction.

Now we prove the following n-3 conditions:

- $(1): I_{1,n}(\operatorname{sgn}(a_{11}))^1 \ge 0,$
- $(2): I_{2,n}(\operatorname{sgn}(a_{11}))^2 \ge 0,$

:

 $(n-3): I_{n-3,n}(\operatorname{sgn}(a_{11}))^{n-3} \ge 0.$

We see that n must be greater than or equal to four. By induction on n, we prove it. If n=4 and $I_{1,4}<0$, we consider $x=x_4e_4$, and $y=\left(1,\frac{-a_{12}}{a_{22}},\frac{a_{23}a_{12}-a_{13}a_{22}}{a_{22}a_{33}},\frac{I_{1,4}}{a_{22}a_{33}a_{44}}\right)$, where $x_4<\frac{1}{a_{44}}$. See $x\prec_{rsgut} y$ but $Tx\not\prec_{rsgut} Ty$, which is a contradiction

Assume that $n \geq 5$ and the statement holds for $5, 6, \ldots, n-4$. We prove the statement for n-3. If not; $I_{n-3,n} < 0$. Choose y as (2.1) and $x = x_n e_n$, where $x_n > \frac{1}{a_{nn}}$. We conclude $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$, a contradiction.

We should prove the following statement now. If $Te_n = (*, ..., *, a_{n-in}, 0, ..., 0, a_{nn})$, where $1 \le i \le n-1$, then $a_{11}a_{n-in} \le 0$. If $a_{n-in} > 0$; let $S : \mathbb{R}_{i+1} \to \mathbb{R}_{i+1}$ be the linear function with [S] = [T][n-i, n-(i+1), ..., n]. Since T preserves \prec_{rsgut} on \mathbb{R}_n , S is also on \mathbb{R}_{i+1} . Set $y_1 = 1$, and choose $y_2, ..., y_{i+1}$ such that Sy = (1, 0, ..., 0). Choose $x = x_n e_n$, where $x_n > \frac{1}{a_{nn}}$. This implies that $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$, which is a contradiction.

For each $k \ (1 \le k \le n)$ we define $j_k := \min\{l | k \le l \le n, a_{kl} \ne 0, a_{k+1l} = \dots = a_{nl} = 0\}.$

Theorem 2.4. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function, $n \geq 2$,

$$[T] = \begin{pmatrix} a_{11} & * & * & * & \dots & * \\ 0 & a_{22} & * & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & \dots & 0 & 0 & 0 \end{pmatrix},$$

where $j_1 < j_2 < \cdots < j_{n-2}$, and $a_{n-1n-1}, a_{n-1n} \neq 0$. Then T preserves \prec_{rsgut} if and only if one of the following conditions holds.

- (a) $r_1 = \cdots = r_{n-1} = 0$.
- (b) $\operatorname{sgn}(a_{n-1n-1}) \neq \operatorname{sgn}(a_{n-1n})$, and for each $k = 0, 1, \dots, n-3$, we have $a_{n-(k+2)n-(k+2)} \dots a_{n-2n-2} a_{n-1n-1} > 0$ if and only if $I_{k,n} > 0$.

Proof. It can be assumed without loss of generality that $j_k = k$, for each $1 \le k \le n-2$ and $a_{11} = 1$.

First, suppose that T preserves \prec_{rsgut} and at least one of r_1, \ldots, r_{n-1} is nonzero. We proceed by induction on n. Case n=2 is easy to prove. Suppose that $n \geq 3$ and the assertion has been established for all linear preservers of \prec_{rsgut} on \mathbb{R}_{n-1} .

Let $S: \mathbb{R}_{n-1} \to \mathbb{R}_{n-1}$ be the linear function with $[S] = [T][2, 3, \ldots, n]$. Since T preserves \prec_{rsgut} on \mathbb{R}_n , S is also in \mathbb{R}_{n-1} . The induction hypothesis insures that $\operatorname{sgn}(a_{n-1n-1}) \neq \operatorname{sgn}(a_{n-1n})$, and $a_{n-(k+2)n-(k+2)} \ldots a_{n-2n-2} a_{n-1n-1} > 0$ if and only if $I_{k,n} > 0$, for each $k = 0, 1, \ldots, n-4$. We should prove $a_{11} \ldots a_{n-2n-2} a_{n-1n-1} > 0$ if and only if $I_{n-3,n} > 0$. If not; we have $(a_{22} \ldots a_{n-1n-1} > 0, I_{n-3,n} \leq 0)$, or $(a_{22} \ldots a_{n-1n-1} < 0, I_{n-3,n} \geq 0)$.

If $a_{22} \dots a_{n-2n-2}I_{n-3,n} \leq 0$, then we choose y_{n-1} such that $\frac{I_{n-4,n-1}}{a_{22}\dots a_{n-1n-1}} \leq y_{n-1} \leq \frac{I_{n-4,n-1}^*}{a_{22}\dots a_{n-2n-2}a_{n-1n}}$. If $a_{22}\dots a_{n-2n-2}I_{n-3,n} \geq 0$, then choose y_{n-1} such that $\frac{I_{n-4,n-1}}{a_{22}\dots a_{n-1n-1}} \geq y_{n-1} \geq \frac{I_{n-4,n-1}^*}{a_{22}\dots a_{n-2n-2}a_{n-1n}}$, where $I_{n-4,n-1}^* = I_{n-4,n}^{a_1,n-1} \mapsto a_{1n}, a_{2n-1} \mapsto a_{2n}, \dots, a_{n-2,n-1} \mapsto a_{n-2n}}$. Set $y_1 = 1, y_2 = \frac{-a_{12}}{a_{22}}, y_3 = \frac{a_{23}a_{12} - a_{13}a_{22}}{a_{22}a_{33}}, y_i = \frac{I_{i-3,i}}{a_{22}a_{33}\dots a_{ii}}, \forall i = 4, \dots, n-2, y_{n-1} = -1, y_n = -1$. We see $Ty = (1, 0, \dots, 0, (Ty)_{n-1}, (Ty)_n), (Ty)_{n-1}, (Ty)_n \geq 0$, and for each $x \in \mathbb{R}_n$, we have $x \prec_{rsgut} y$. Observe that $\operatorname{tr}(Tx) = r_1x_1 + \dots + r_{n-1}x_{n-1}$, and $\operatorname{tr}(Ty) = r_1y_1 + \dots + r_{n-1}y_{n-1}$. As at least one of the r_1, \dots, r_{n-1} is nonzero, we can select x such that $\operatorname{tr}(Tx) > \operatorname{tr}(Ty)$. For this x we see that $x \prec_{rsgut} y$ and $Tx \not\prec_{rsgut} Ty$, which is a contradiction. Thus, $a_{11} \dots a_{n-2n-2}a_{n-1n-1} > 0$ if and only if $I_{n-3,n} > 0$.

Next, we want to prove T preserves \prec_{rsgut} . Let $x,y \in \mathbb{R}_n$ and let $x \prec_{rsgut} y$. If $r_1 = \cdots = r_{n-1} = 0$, as $\operatorname{tr}(\operatorname{Tx}) = \operatorname{tr}(\operatorname{Ty}) = 0$ and $a_{22}, \ldots, a_{n-1n-1} \neq 0$, then $Tx \prec_{rsgut} Ty$. Now suppose that at least one of r_1, \ldots, r_{n-1} is nonzero. By induction on n, we prove $Tx \prec_{rsgut} Ty$. If n = 2, it is easy to see. Let $n \geq 3$ and our claim has been proved for n-1. We have $Tx = (x_1, a_{12}x_1 + a_{22}x_2, \ldots, a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{n-1n}x_{n-1})$, and $Ty = (y_1, a_{12}y_1 + a_{22}y_2, \ldots, a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{n-1n}y_{n-1})$. If $y_1 = 0$, then, since $x_1 = 0$, the induction hypothesis insures that $Tx \prec_{rsgut} Ty$. If $y_1 \neq 0$; consider three following steps. We claim that only the first step happens.

Step (I). $Ty \ngeq 0$ and $Ty \nleq 0$. Clearly, $Tx \prec_{rsgut} Ty$. Step (II). $Ty \trianglerighteq 0$.

We can assume, without loss of generality, that $a_{11}, a_{22}, \ldots, a_{n-1n-1} > 0$ and $a_{n-1n} < 0$. As $Ty \ge 0$, conclude that

$$\begin{array}{l}
(1): y_1 > 0, \\
(2): \frac{a_{12}}{-a_{22}} y_1 \le y_2, \\
.
\end{array}$$

$$(i): \frac{a_{1i}}{-a_{ii}}y_1 + \frac{a_{2i}}{-a_{ii}}y_2 + \dots + \frac{a_{i-1i}}{-a_{ii}}y_{i-1} \le y_i,$$

 $(n-1): \frac{a_{1n-1}}{-a_{n-1n-1}}y_1 + \frac{a_{2n-1}}{-a_{n-1n-1}}y_2 + \dots + \frac{a_{n-2n-1}}{-a_{n-1n-1}}y_{n-2} \le y_{n-1},$ $(n): \frac{a_{1n}}{-a_{n-1n}}y_1 + \frac{a_{2n}}{-a_{n-1n}}y_2 + \dots + \frac{a_{n-2n}}{-a_{n-1n}}y_{n-2} \le y_{n-2}.$ From (n-1) and (n) deduce that

$$\big(\frac{a_{1n-1}}{-a_{n-1n-1}}+\frac{a_{1n}}{a_{n-1n}}\big)y_1+\big(\frac{a_{2n-1}}{-a_{n-1n-1}}+\frac{a_{2n}}{a_{n-1n}}\big)y_2+\dots+\big(\frac{a_{n-3n-1}}{-a_{n-1n-1}}+\frac{a_{n-3n}}{a_{n-1n}}\big)y_{n-3}\leq$$

 $(\frac{a_{n-2n}}{-a_{n-1n}} + \frac{a_{n-2n-1}}{a_{n-1n-1}}) y_{n-2}, \text{ which implies } \frac{-I_{1,n}^{n-3\mapsto 1}}{I_{1,n}} y_1 + \frac{-I_{1,n}^{n-3\mapsto 2}}{I_{1,n}} y_2 + \dots + \frac{-I_{1,n}^{n-3\mapsto n-4}}{I_{1,n}} y_{n-4} \geq y_{n-3}. \text{ By continuing this process, we obtain } \frac{-I_{n-4,n}^{2\mapsto 1}}{I_{n-4,n}} y_1 \geq y_2 \geq \frac{a_{12}}{-a_{22}} y_1. \text{ It shows that } a_{22} I_{n-4,n}^{2\mapsto 1} - a_{12} I_{n-4,n} \leq 0 \text{ and then } I_{n-3,n} \leq 0, \text{ a contradiction. So, this does not happen.}$

Step (III). $Ty \leq 0$. Similar Step (II) it is proved that this step can not happen. So, Step (I) just happens. Therefore, T preserves \prec_{rsgut} .

Theorem 2.5. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function, $n \geq 3$ and

$$[T] = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n-2} & a_{1n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n-2} & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-2n-2} & a_{n-2n-1} & a_{n-2n} \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{pmatrix},$$

$$\begin{split} i_1 &= \min\{l|n-2 \leq l \leq n, a_{n-2l} \neq 0\}, \\ i_2 &= \min\{l|i_1 < l \leq n, a_{n-2l} \neq 0, \operatorname{sgn}(a_{n-2i_1}) \neq \operatorname{sgn}(a_{n-2l})\}, \\ i_3 &= \{l|n-2 \leq l \leq n, a_{n-2l} = 0\}, \\ j_1 &< j_2 < \dots < j_{n-3} < i_1, \\ J_{n-3,n} &= a_{n-3i_1}a_{n-2i_2} - a_{n-2i_1}a_{n-3i_2}, \\ J_{k,n} &= a_{k+1j_{k+1}}J_{k+1,n}^{k+1\mapsto k} - a_{kj_{k+1}}J_{k+1,n}, \ \forall \ 1 \leq k \leq n-4. \\ (*) \ \textit{If for some p the set} \end{split}$$

$$\{l|j_p < l \le n, a_{pl} \ne 0, a_{p+1l} = \dots = a_{nl} = 0, \operatorname{sgn}(a_{pj_p}) = \operatorname{sgn}(a_{pl})\}$$

is nonempty, namely, $\{w_1, \ldots, w_s\}$, then $J_{p-1,n}^{w_i} := J_{p-1,n}^{j_p \mapsto w_i}$, $\forall 1 \le i \le s$.

Then, T preserves \prec_{rsgut} if and only if one of the following conditions occurs. (a) $r_1 = \cdots = r_{n-2} = 0$.

$$\begin{split} &(b) \ sgn(J_{n-3}) = sgn(a_{n-3j_{n-3}}a_{n-2i_1}), \ \textit{and for each} \ k = 1, 2, \dots, n-4, \ \textit{if} \ (*) \ \textit{holds}, \\ &sgn(J_{k,n}), \dots, \ \textit{or} \ sgn(J_{k,n}^{w_s}) \ \textit{is equal to} \ sgn(a_{kj_k}a_{k+1j_{k+1}}\dots a_{n-3j_{n-3}}a_{n-2i_1}), \ \textit{if} \ (*) \ \textit{does} \\ &\textit{not hold}, \ sgn(J_{k,n}) = sgn(a_{kj_k}a_{k+1j_{k+1}}\dots a_{n-3j_{n-3}}a_{n-2i_1}). \end{split}$$

Proof. First, we prove the sufficiency of the condition, by induction on n. Case n=3 is easy to see. Now suppose that $n\geq 4$. Let $x,y\in\mathbb{R}_n$ such that $x\prec_{rsgut} y$.

We want to prove $Tx \prec_{rsgut} Ty$. If $y_1 = 0$, then x_1 is zero, too. The induction hypothesis ensures that $Tx \prec_{rsgut} Ty$. If $y_1 \neq 0$, we have three following cases.

Case (I). $Ty \ngeq 0$ and $Ty \nleq 0$, we see that $Tx \prec_{rsgut} Ty$.

Case (II). $Ty \ge 0$, we know that $a_{1j_1}, a_{2j_2}, \ldots, a_{n-3j_{n-3}}$ can be positive or negative also, we have $a_{n-2i_1}a_{n-2i_2} < 0$. Consider without loss of generality

 $a_{1j_1}, a_{2j_2}, \dots, a_{n-3j_{n-3}} > 0$, and $a_{n-2i_1} > 0 > a_{n-2i_2}$. Since $Ty \ge 0$, we have

 $(1) : a_{1j_1}y_1 \ge 0,$

$$(2) : a_{1j_2}y_1 + a_{2j_2}y_2 \ge 0,$$

:

$$(n-3)$$
: $a_{1i_{n-3}}y_1 + a_{2i_{n-3}}y_2 + \dots + a_{n-3i_{n-3}}y_{n-3} \ge 0$,

$$(i_1)$$
 : $a_{1i_1}y_1 + a_{2i_1}y_2 + \dots + a_{n-3i_1}y_{n-3} + a_{n-2i_1}y_{n-2} \ge 0$,

$$(i_2)$$
 : $a_{1i_2}y_1 + a_{2i_2}y_2 + \dots + a_{n-3i_2}y_{n-3} + a_{n-2i_2}y_{n-2} \ge 0$.

First, assume that (*) does not hold. From (i_1) and (i_2) , we conclude that

$$-J_{n-3}^{n-3\mapsto 1}y_1 + -J_{n-3}^{n-3\mapsto 2}y_2 + \dots + -J_{n-3}^{n-3\mapsto n-4}y_{n-4} \ge J_{n-3}y_{n-3},$$

which implies

$$\frac{J_{n-4}^{n-4\mapsto 1}}{J_{n-4}}y_1 + \frac{J_{n-4}^{n-4\mapsto 2}}{J_{n-4}}y_2 + \dots + \frac{J_{n-4}^{n-4\mapsto n-5}}{J_{n-4}}y_{n-5} \ge y_{n-4}.$$

By continuing this process we observe that $\frac{-J_{2,n}^{2\mapsto 1}}{J_{2,n}}y_1 \geq y_2 \geq \frac{a_{1j}}{-a_{2j}}y_1$. Therefore, we get $a_{1j_1}J_{2,n} - a_{2j_2}J_{2,n}^{2\mapsto 1} \leq 0$, which implies $J_{1,n} \leq 0$, that is a contradiction. So, in this case $Ty \geq 0$ can not be happen. If (*) holds, then since $\operatorname{sgn}(a_{pj_p}) = \operatorname{sgn}(a_{pw_i})$ for each $1 \leq i \leq s$, the claim can be proved in a similar fashion.

Case (III). $Ty \leq 0$. Similar to Case (II) one can prove it.

For the converse, assume that T preserves \prec_{rsgut} . If $r_1 = \cdots = r_{n-2} = 0$, there is nothing to prove. Otherwise, at least one of them is nonzero. We proceed by induction on n. Case n = 3 is easy to see. Suppose that $n \geq 4$ and that the assertion has been established for all linear preservers of \prec_{rsgut} on \mathbb{R}_{n-1} . Let $S : \mathbb{R}_{n-1} \to \mathbb{R}_{n-1}$ be the linear function with $[S] = [T][2, 3, \ldots, n]$. Since T preserves \prec_{rsgut} on \mathbb{R}_n , we see that S preserves \prec_{rsgut} on \mathbb{R}_{n-1} . We should just to prove the statement for $\operatorname{sgn}(J_{1,n})$.

Case (I). If (*) does not hold. We prove $\text{sgn}(J_{1,n}) = \text{sgn}(a_{1j_1} \dots a_{n-3j_{n-3}} a_{n-2i_1})$. Without loss of generality, $a_{1j_1}, a_{2j_2}, \dots, a_{n-3j_{n-3}} > 0$, and $a_{n-2i_1} > 0 > a_{n-2i_2}$. So, we should prove $\text{sgn}(J_{1,n}) > 0$. If not; $\text{sgn}(J_{1,n}) \leq 0$. It shows that $a_{2j_2}J_{2,n}^{2 \mapsto 1} - a_{1j_2}J_{2,n} \leq 0$, which implies $\frac{a_{1i_1}y_1 + a_{2i_2}y_2 + \dots + a_{n-3i_1}y_{n-3}}{-a_{2j_2}a_{n-2i_1}} \leq \frac{a_{1i_2}y_1 + a_{2i_2}y_2 + \dots + a_{n-3i_2}y_{n-3}}{-a_{2j_2}a_{n-2i_2}}$. Choose y_{n-2} such that $\frac{a_{1i_1}y_1 + a_{2i_2}y_2 + \dots + a_{n-3i_1}y_{n-3}}{-a_{2j_2}a_{n-2i_1}} \leq y_{n-2} \leq \frac{a_{1i_2}y_1 + a_{2i_2}y_2 + \dots + a_{n-3i_2}y_{n-3}}{-a_{2j_2}a_{n-2i_2}}$. So, $(Ty)_{i_1}, (Ty)_{i_2} \geq 0$. Set $y_1 = 1, y_{n-1} = -1, y_n = 0$. One can select y_2, \dots, y_{n-3} such that $Ty \geq 0$. Since at least one of x_1, \dots, x_{n-2} is nonzero, we can choose x such that $x \prec_{rsgut} y$ but $x_1 \not\prec_{rsgut} y$, which is a contradiction. Therefore, $y_{n-1} > 0$.

Case (II). If (*) holds. The proof is similar to the first case.

Theorem 2.6. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function, $n \geq 3$ and

$$[T] = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n-3} & a_{1n-2} & a_{1n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n-3} & a_{2n-2} & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-3n-3} & a_{n-3n-2} & a_{n-3n-1} & a_{n-3n} \\ 0 & 0 & \dots & 0 & 0 & a_{n-2n-2} & a_{n-2n-1} & a_{n-2n} \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$i_1 = \min\{l|n-2 \le l \le n, a_{n-2l} \ne 0\},$$

$$i_2 = \min\{l|i_1 < l \le n, a_{n-2l} \ne 0, \operatorname{sgn}(a_{n-2i_1}) \ne \operatorname{sgn}(a_{n-2l})\},$$

$$i_3 = \{l|n-2 \le l \le n, a_{n-2l} = 0\},$$

$$sgn(a_{n-3j_{n-3}}) \neq sgn(a_{n-3i_3}), \quad j_1 < j_2 < \dots < j_{n-3} < i_1,$$

$$J_{n-3,n} = a_{n-3i_1}a_{n-2i_2} - a_{n-2i_1}a_{n-3i_2},$$

$$J_{n-(k+1),n} = a_{n-kj_{n-k}}J_{n-k,n}^{n-k\mapsto n-(k+1)} - a_{n-(k+1)j_{n-k}}J_{n-k,n}, \quad \forall k = 3, 4, \dots, n-2,$$

$$T_{n-4,n} = a_{n-4i_3}a_{j_{n-3}j_{n-3}} - a_{n-4j_{n-3}}a_{j_{n-3}i_3},$$

$$T_{n-(k+1),n} = a_{n-kj_{n-k}}T_{n-k,n}^{n-k\mapsto n-(k+1)} - a_{n-(k+1)j_{n-k}}T_{n-k,n}, \quad \forall k = 4, \dots, n-2.$$

If one of the following holds, then T preserves \prec_{rsgut} .

(a)
$$r_1 = r_2 = \dots = r_n = 0$$
.

(b)
$$a_{1j_1}a_{2j_2}\dots a_{n-3j_{n-3}}a_{n-2i_1}J_{1,n} > 0, \dots, a_{n-4j_{n-4}}a_{n-3j_{n-3}}a_{n-2i_1}J_{n-4,n} > 0,$$

 $a_{n-3j_{n-3}}a_{n-2i_1}J_{n-3,n} \ge 0.$

(c)
$$a_{1j_1}a_{2j_2}\dots a_{n-3j_{n-3}}a_{n-2i_1}J_{1,n}^{j_{n-3}\mapsto n-2} < 0,\dots, a_{n-4j_{n-4}}a_{n-3j_{n-3}}a_{n-2i_1}$$

 $J_{n-4,n}^{j_{n-3}\mapsto n-2} < 0, a_{n-3j_{n-3}}a_{n-2i_1}J_{n-3,n} \le 0.$

(d)
$$a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_3}T_{1,n} > 0, a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_3}T_{2,n} > 0, \dots,$$

 $a_{n-4j_{n-4}}a_{n-3i_3}T_{n-4,n} > 0.$

Proof. If (a) holds, then T clearly preserves \prec_{rsgut} . Assume that $x \prec_{rsgut} y$. We should prove that $Tx \prec_{rsgut} Ty$. If n = 3; then the result is trivial. We proceed by induction on n. Suppose that $n \geq 4$ and the assertion has been established for all linear preservers of \prec_{rsgut} on \mathbb{R}^{n-1} .

We can assume without loss of generality that $j_k = k$, $\forall 1 \le k \le n-3$, $a_{11}, \ldots, a_{n-3n-3} > 0$, $i_1 = n-2$, $i_2 = n-1$, $i_3 = n$, $a_{n-2n-2} > 0 > a_{n-2n-1}$, $a_{n-3n-3} > 0 > a_{n-3n}$, $a_{n-2n} = 0$.

We claim that $Ty \ge 0$ or $Ty \le 0$ can not be happen. So, $Ty \not\ge 0$ and $Ty \not\le 0$ imply that $Tx \prec_{rsqut} Ty$. Suppose that $Ty \ge 0$.

If $y_1 = 0$, by the induction hypothesis $Tx \prec_{rsqut} Ty$. Let $y_1 \neq 0$. We have

(1) :
$$y_1 > 0$$
,

(2) :
$$\frac{a_{12}}{-a_{22}}y_1 \leq y_2$$

(2) :
$$\frac{a_{12}}{-a_{22}}y_1 \le y_2$$
,
(3) : $\frac{a_{13}}{-a_{33}}y_1 + \frac{a_{23}}{-a_{33}}y_2 \le y_3$,

:
$$(n-4)$$
 : $\frac{a_{1n-4}}{-a_{n-4n-4}}y_1 + \frac{a_{2n-4}}{-a_{n-4n-4}}y_2 + \dots + \frac{a_{n-5n-4}}{-a_{n-4n-4}}y_{n-5} \le y_{n-4}$,

$$(n-3)$$
: $\frac{a_{1n-3}}{-a_{n-3n-3}}y_1 + \frac{a_{2n-3}}{-a_{n-3n-3}}y_2 + \dots + \frac{a_{n-4n-3}}{-a_{n-3n-3}}y_{n-4} \le y_{n-3}$

$$(n-3) : \frac{a_{1n-3}}{-a_{n-3n-3}} y_1 + \frac{a_{2n-3}}{-a_{n-3n-3}} y_2 + \dots + \frac{a_{n-4n-4}}{-a_{n-3n-3}} y_{n-4} \le y_{n-3},$$

$$(n-2) : \frac{a_{1n-2}}{-a_{n-2n-2}} y_1 + \frac{a_{2n-2}}{-a_{n-2n-2}} y_2 + \dots + \frac{a_{n-3n-2}}{-a_{n-2n-2}} y_{n-3} \ge y_{n-2},$$

$$(n-1) : \frac{a_{1n-1}}{-a_{n-2n-1}} y_1 + \frac{a_{2n-1}}{-a_{n-2n-1}} y_2 + \dots + \frac{a_{n-3n-1}}{-a_{n-2n-1}} y_{n-3} \ge y_{n-2},$$

$$(n-1)$$
: $\frac{a_{1n-1}}{-a_{n-2n-1}}y_1 + \frac{a_{2n-1}}{-a_{n-2n-1}}y_2 + \dots + \frac{a_{n-3n-1}}{-a_{n-2n-1}}y_{n-3} \ge y_{n-2}$

(n) :
$$\frac{a_{1n}}{-a_{n-3n}}y_1 + \frac{a_{2n}}{-a_{n-3n}}y_2 + \dots + \frac{a_{n-4n}}{-a_{n-3n}}y_{n-4} \ge y_{n-3}$$
.

If (b) happens; by using the relation (n-2) and (n-1), we conclude $J_{n-3,n}^{n-3\mapsto 1}y_1 + J_{n-3,n}^{n-3\mapsto 2}y_2 + \cdots + J_{n-3,n}^{n-3\mapsto n-4}y_{n-4} \leq -J_{n-3,n}y_{n-3}$. Also, we know that $J_{n-3,n} \geq 0$. First consider $J_{n-3,n}$ $y_{n-4} \le -J_{n-3,n}y_{n-3}$. Also, we know that $J_{n-3,n} \ge 0$. First consider $J_{n-3,n} > 0$ and observe that $\frac{J_{n-3,n}^{n-3 \mapsto 1}}{J_{n-3,n}}y_1 + \dots + \frac{J_{n-3,n}^{n-3 \mapsto n-4}}{J_{n-3,n}}y_{n-4} \ge y_{n-3}$. By using (n-3), we get $J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto n-5}y_{n-5} \le -J_{n-4,n}y_{n-4}$, and as $J_{n-4,n} > 0$, we have $\frac{J_{n-4,n}^{n-4 \mapsto 1}}{J_{n-4,n}}y_1 + \dots + \frac{J_{n-4,n}^{n-4 \mapsto n-5}}{J_{n-4,n}}y_{n-5} \ge y_{n-4}$. By using (n-4) and continuing this process, we deduce $J_{1,n} \le 0$, which is a contradiction. If $J_{n-3,n} = 0$, we have $J_{n-3,n}^{n-3 \mapsto 1}y_1 + J_{n-3,n}^{n-3 \mapsto 2}y_2 + \dots + J_{n-3,n}^{n-3 \mapsto n-5}y_{n-5} \le -J_{n-3,n}^{n-3 \mapsto n-4}y_{n-4}$. By multiply this relation with $a_{n-3,n-3} > 0$, we get $J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto n-5}y_1 \le J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto n-5}y_1 \le J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto n-5}y_1 \le J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_2 + \dots + J_{n-4,n}^{n-4 \mapsto 1}y_1 + J_{n-4,n}^{n-4 \mapsto 2}y_1 + \dots + J_{n-4,n}^{n-4 \mapsto 2}y_1 + \dots$ $J_{n-4,n}^{n-4\mapsto n-5}y_{n-5} \leq -J_{n-4,n}y_{n-4}$, a contradiction. Therefore, in this case, $Ty\geq 0$ can not be happen.

If (c) holds; from (n-2) and (n-1) we deduce $\frac{J_{n-3,n}^{n-3\mapsto 1}}{-J_{n-3,n}}y_1 + \dots + \frac{J_{n-3,n}^{n-3\mapsto n-4}}{-J_{n-3,n}}y_{n-4} \le 1$ y_{n-3} , whenever $J_{n-3,n} < 0$. Now, if use (n) and continue as before, we obtain

some contradiction. If $J_{n-3,n}=0$, similarly, one can prove. If (d) holds; from (n) and (n-3) conclude $\frac{T_{n-4,n}^{n-4\mapsto 1}}{-T_{n-4,n}}y_1+\cdots+\frac{T_{n-4,n}^{n-4\mapsto n-5}}{-T_{n-4,n}}y_{n-5}\leq y_{n-4}$. By continuing the same process, we have that $T_{1,n}\geq 0$, a contradiction. Thus, $Ty \geq 0$ can not be happen, too. Similarly, the case $Ty \leq 0$ can be proved.

Theorem 2.7. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function, $n \geq 4$ and

$$[T] = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n-3} & a_{1n-2} & a_{1n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n-3} & a_{2n-2} & a_{2n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-3n-3} & a_{n-3n-2} & a_{n-3n-1} & a_{n-3n} \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$i_1 = \min\{l|n-3 \le l \le n, a_{n-3l} \ne 0\},\$$

$$i_2 = \min\{l | i_1 < l \le n, a_{n-3l} \ne 0, \operatorname{sgn}(a_{n-3i_1}) \ne \operatorname{sgn}(a_{n-3l})\},\$$

$$\{l_1, l_2\} = \{n - 3, n - 2, n - 1, n\} \setminus \{i_1, i_2\}, \text{ where } l_1 < l_2,$$

 $j_1 < j_2 < \ldots < j_{n-4} < i_1,$

$$I_{n-4,n}^{i,j} = a_{n-4i}a_{n-3j} - a_{n-4j}a_{n-3i},$$

$$I_{n-(k+1),n}^{i,j} = a_{n-kj_{n-k}}I_{n-k,n}^{i,jn-k\mapsto n-(k+1)} - a_{n-(k+1)j_{n-k}}I_{n-k,n}^{i,j}, \quad \forall k = 4, 5, \dots, n-2.$$

Then T preserves \prec_{rsaut} if one of the following holds.

(a)
$$r_1 = r_2 = \dots = r_n = 0$$
.

(b)

• If
$$sgn(a_{n-3l_1}) \neq sgn(a_{n-3l_2})$$
, one of the following holds.

$$(1)a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{1,n}^{i_1,i_2} > 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_1,i_2} > 0.$$

(2)
$$a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{1,n}^{l_1,l_2} > 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{l_1,l_2} > 0.$$

(3) If
$$a_{n-3i_1}a_{n-3l_i} < 0$$
,

$$a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{1,n}^{i_1,l_i} > 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_1,l_i} > 0.$$

(4) If
$$a_{n-3i_2}a_{n-3l_i} < 0$$
,

$$a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{1,n}^{i_2,l_i} > 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_2,l_i} > 0.$$

•
$$If \operatorname{sgn}(a_{n-3l_1}) = \operatorname{sgn}(a_{n-3l_2}),$$

$$a_{1j_1}a_{2j_2}\dots a_{n-4j_{n-4}}a_{n-3i_k}I_{1,n}^{i_k,t} > 0,\dots, a_{n-4j_{n-4}}a_{n-3i_k}I_{n-4,n}^{i_k,t} > 0,$$

where $\operatorname{sgn}(a_{n-3i_k}) \neq \operatorname{sgn}(a_{n-3l_1})$ and $t = \{l_1, l_2, i_1, i_2\} \setminus \{i_k\}.$

• If $a_{n-3l_1} = a_{n-3l_2} = 0$; one of the following holds.

$$n - t_0 = \max\{t | 1 \le t \le n - 4, a_{tn-1} \text{ or } a_{tn} \ne 0\}, t_1 = \{l_i | a_{n-t_0 l_i} > 0\},$$

$$t_2 = \{l_i | a_{n-t_0 l_i} = 0\}, \ a_{n-t_0 j_{n-t_0}} a_{n-t_0 l_1}, a_{n-t_0 j_{n-t_0}} a_{n-t_0 l_2} \geq 0, \ t_2 \ may \ be \ empty.$$

$$(1) \ a_{1j_1} a_{2j_2} \dots a_{n-t_0 j_{n-t_0}} a_{n-3i_1} I_{1,n}^{i_1, i_2 j_{n-t_0} \mapsto t_1} > 0, \dots, a_{n-(t_0+1)j_{n-(t_0+1)}} a_{n-t_0 j_{n-t_0}}$$

$$a_{n-3i_1}I_{n-(t_0+1),n}^{i_1,i_2j_{n-t_0}\mapsto t_1} > 0, \ a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{n-t_0,n}^{i_1,i_2} > 0.$$

$$(2) \ a_{1j_1} a_{2j_2} \dots a_{n-t_0 j_{n-t_0}} a_{n-3i_1} I_{1,n}^{i_1, i_2 j_{n-k} \mapsto t_2} > 0, \dots, a_{n-(k+1) j_{n-(k+1)}} \dots a_{n-t_0 j_{n-t_0}}$$

$$a_{n-3i_1}I_{n-(k+1),n}^{i_1,i_2j_{n-k}\mapsto t_2}>0, a_{n-kj_{n-k}}\dots a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{n-k,n}^{i_1,i_2}>0,\dots,a_{n-t_0j_{n-t_0}}$$

$$a_{n-3i_1}I_{n-t_0,n}^{i_1,i_2} > 0.$$

(3)
$$a_{1j_1}a_{2j_2}\dots a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{1,n}^{i_1,i_2} > 0,\dots, a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{n-t_0,n}^{i_1,i_2} > 0.$$

$$(4) \ a_{1j_1} a_{2j_2} \dots a_{n-t_0 j_{n-t_0}} a_{n-3i_1} I_{1,n}^{i_1, i_2 j_{n-t_0} \mapsto t_1 j_{n-k} \mapsto t_2} > 0, \dots, a_{n-(k+1) j_{n-(k+1)}} \dots$$

$$a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{n-(k+1),n}^{i_1,i_2j_{n-t_0}\mapsto t_1j_{n-k}\mapsto t_2} > 0, a_{n-kj_{n-k}}\dots a_{n-t_0j_{n-t_0}}a_{n-3i_1}$$

$$I_{n-k,n}^{i_1,i_2j_{n-t_0}\mapsto t_1} > 0, \dots, a_{n-(t_0+1)j_{n-(t_0+1)}} a_{n-t_0j_{n-t_0}} a_{n-3i_1} I_{n-(t_0+1),n}^{i_1,i_2j_{n-t_0}\mapsto t_1} > 0,$$

$$a_{n-t_0j_{n-t_0}}a_{n-3i_1}I_{n-t_0,n}^{i_1,i_2} > 0.$$

• If $a_{n-3l_1} = 0$, $a_{n-3l_2} \neq 0$, one of the following holds.

$$n-k = \max\{t | 1 \le t \le n-4, a_{tl_1} \ne 0, a_{t+1l_1} = \dots = a_{n-3l_1=0}\}, a_{n-kj_{n-k}} a_{n-kl_1} \ge 0,$$

$$(1) \ a_{1j_1} a_{2j_2} \dots a_{n-40j_{n-4}} a_{n-3i_1} I_{1,n}^{i_1,i_2} > 0, \dots, a_{n-4j_{n-4}} a_{n-3i_1} I_{n-4,n}^{i_1,i_2} > 0.$$

$$(2) \ a_{1j_1} a_{2j_2} \dots a_{n-4j_{n-4}} a_{n-3i_1} I_{1,n}^{i_1,i_2j_{n-k} \mapsto l_1} > 0, \dots, a_{n-(k+1)j_{n-(k+1)}} \dots a_{n-4j_{n-4}}$$

$$a_{n-3i_1}I_{n-(k+1),n}^{i_1,i_2j_{n-k}\mapsto l_1} > 0, a_{n-kj_{n-k}}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{n-k,n}^{i_1,i_2} > 0, \dots, a_{n-4j_{n-4}}a_{n-2i_1}I_{n-k,n}^{i_1,i_2} > 0, \dots, a_{n-4j_{n-4}}a_{n-2i_1}I_{n-k,n}^{i_1,i_2} > 0, \dots, a$$

$$I_{n-4,n}^{i_1,i_2} > 0.$$

(3) If $a_{n-3i_1}a_{n-3i_2} > 0$,

$$\begin{aligned} a_{1j_1}a_{2j_2}\dots a_{n-4_0j_{n-4}}a_{n-3i_1}I_{1,n}^{i_2,l_2} &< 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_2,l_2} &< 0,\\ or\ a_{1j_1}a_{2j_2}\dots a_{n-4_0j_{n-4}}a_{n-3i_1}I_{1,n}^{i_2,l_2j_{n-k}\mapsto l_1} &< 0,\dots,a_{n-(k+1)j_{n-(k+1)}}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{n-(k+1),n}^{i_2,l_2j_{n-k}\mapsto l_1} &> 0,\\ a_{n-3i_1}I_{n-(k+1),n}^{i_2,l_2j_{n-k}\mapsto l_1} &> 0,a_{n-kj_{n-k}}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{n-k,n}^{i_2,l_2} &> 0,\\ a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_2,l_2} &< 0. \end{aligned}$$

(4) If
$$a_{n-3i_1}a_{n-3l_2} < 0$$
,

$$\begin{aligned} a_{1j_1}a_{2j_2}\dots a_{n-40j_{n-4}}a_{n-3i_1}I_{1,n}^{i_1,l_2} &< 0,\dots,a_{n-4j_{n-4}}a_{n-3i_1}I_{n-4,n}^{i_1,l_2} &< 0,\\ or\ a_{1j_1}a_{2j_2}\dots a_{n-40j_{n-4}}a_{n-3i_1}I_{1,n}^{i_1,l_2j_{n-k}\mapsto l_1} &< 0,\dots,a_{n-(k+1)j_{n-(k+1)}}\dots a_{n-4j_{n-4}}\\ a_{n-3i_1}I_{n-(k+1),n}^{i_1,l_2j_{n-k}\mapsto l_1} &> 0,a_{n-kj_{n-k}}\dots a_{n-4j_{n-4}}a_{n-3i_1}I_{n-k,n}^{i_1,l_2} &> 0,a_{n-4j_{n-4}}\\ a_{n-3i_1}I_{n-4,n}^{i_1,l_2} &< 0. \end{aligned}$$

• If $a_{n-3l_1} \neq 0$, $a_{n-3l_2} = 0$; in the case before replacing $l_1 \leftrightarrow l_2$.

Proof. If (a) happens, we see that T preserves $x \prec_{rsgut} y$. Let $x, y \in \mathbb{R}_n$ be such that $x \prec_{rsqut} y$. We prove $Tx \prec_{rsqut} Ty$, by induction on n. Clearly, if n = 4, then $Tx \prec_{rsqut} Ty$. Suppose that $n \geq 5$ and the statement holds for $n = 5, 6, \ldots, n-1$. We should prove it for n.

We claim that $Ty \geq 0$ and $Ty \leq 0$ can not be happen. So, $Ty \ngeq 0$ and $Ty \nleq 0$. In this case, $Tx \prec_{rsgut} Ty$. Without loss of generality, assume that $Ty \geq 0$, and $j_k = k$ for each k = 1, 2, ..., n - 4, $i_1 = n - 3$, $i_2 = n - 2$, $l_1 = n - 1$, $l_2 = n$, $a_{11}, a_{22}, \dots, a_{n-3n-3} > 0 > a_{n-3n-2}$. If $y_1 = 0$, by the hypothesis induction, we have $Tx \prec_{rsqut} Ty$. If $y_1 \neq 0$; as $Ty \geq 0$, we see

$$(1) : y_1 > 0,$$

$$(2) : \frac{a_{12}}{-a_{22}} y_1 \le y_2,$$

$$(3) : \frac{a_{13}}{-a_{33}} y_1 + \frac{a_{23}}{-a_{33}} y_2 \le y_3,$$

$$(n-4) : \frac{a_{1n-4}}{-a_{n-4n-4}} y_1 + \frac{a_{2n-4}}{-a_{n-4n-4}} y_2 + \dots + \frac{a_{n-5n-4}}{-a_{n-4n-4}} y_{n-5} \le y_{n-4},$$

$$(n-3) : \frac{a_{1n-3}}{-a_{n-3n-3}} y_1 + \frac{a_{2n-3}}{-a_{n-3n-3}} y_2 + \dots + \frac{a_{n-4n-3}}{-a_{n-3n-3}} y_{n-4} \le y_{n-3},$$

$$(n-2) : \frac{a_{1n-2}}{-a_{n-3n-2}} y_1 + \frac{a_{2n-2}}{-a_{n-3n-2}} y_2 + \dots + \frac{a_{n-4n-2}}{-a_{n-3n-2}} y_{n-4} \ge y_{n-3}.$$

$$(n-2) : \frac{a_{1n-2}}{-a_{n-3n-2}} y_1 + \frac{a_{2n-2}}{-a_{n-3n-2}} y_2 + \dots + \frac{a_{n-4n-2}}{-a_{n-3n-2}} y_{n-4} \ge y_{n-3}$$

Step (I). If
$$sgn(a_{n-3l_1}) \neq sgn(a_{n-3l_2})$$
. Let $a_{n-3n-1} > 0 > a_{n-3n}$. So,

$$(n-1)$$
: $\frac{a_{1n-1}}{-a_{n-3n-1}}y_1 + \frac{a_{2n-1}}{-a_{n-3n-1}}y_2 + \dots + \frac{a_{n-4n-1}}{-a_{n-3n-1}}y_{n-4} \le y_{n-3}$,

(n) :
$$\frac{a_{1n}}{-a_{n-3n}}y_1 + \frac{a_{2n}}{-a_{n-3n}}y_2 + \dots + \frac{a_{n-4n}}{-a_{n-3n}}y_{n-4} \ge y_{n-3}$$
.

If (1) holds; we have $I_{1,n}^{i_1,i_2}, I_{2,n}^{i_1,i_2}, \dots, I_{n-4,n}^{i_1,i_2} > 0$. From (n-3) and (n-2) we conclude $\frac{I_{n-4,n}^{i_1,i_2n-4\mapsto 1}}{-I_{n-4,n}^{i_1,i_2}}y_1 + \dots + \frac{I_{n-4,n}^{i_1,i_2n-4\mapsto n-5}}{-I_{n-4,n}^{i_1,i_2}}y_{n-5} \ge y_{n-4}$. By using (n-4) we observe that $\frac{I_{n-5,n}^{i_1,i_2n-5\mapsto 1}}{-I_{n-5,n}^{i_1,i_2}}y_1 + \dots + \frac{I_{n-5,n}^{i_1,i_2n-5\mapsto n-6}}{-I_{n-4,n}^{i_1,i_2}}y_{n-6} \ge y_{n-5}$. By continuing this process we $I_{n-4,n}^{i_1,i_2n-5\mapsto 1}$

get $\frac{I_{2,n}^{i_1,i_2} \to i_1}{-I_{n-4,n}^{i_1,i_2}} y_1 \ge y_2 \ge \frac{a_{12}}{-a_{22}} y_1$, and then $I_{1,n}^{i_1,i_2} \le 0$, a contradiction.

Similarly about (2), (3) and (4) by using (n-3, n), (n-2, n-1), or (n-1, n), we obtain contradiction. Thus, $Ty \ngeq 0$.

Step (II). Suppose $\operatorname{sgn}(a_{n-3l_1}) = \operatorname{sgn}(a_{n-3l_2})$. Let $a_{n-3n-1}, a_{n-3n} > 0$. By the hypothesis, for $t = \{l_1, l_2, i_2\}$, we have $I_{1,n}^{i_2,t} < 0, I_{2,n}^{i_2,t} < 0, \dots, I_{n-4,n}^{i_2,t} < 0$. So,

$$(n-1)$$
: $\frac{a_{1n-1}}{-a_{n-3n-1}}y_1 + \frac{a_{2n-1}}{-a_{n-3n-1}}y_2 + \dots + \frac{a_{n-4n-1}}{-a_{n-3n-1}}y_{n-4} \le y_{n-3}$

(n) :
$$\frac{a_{1n}}{-a_{n-3n}}y_1 + \frac{a_{2n}}{-a_{n-3n}} + \dots + \frac{a_{n-4n}}{-a_{n-3n}}y_{n-4} \le y_{n-3}$$
.

First, we use (n-3) and (n-2), and see that $I_{1,n}^{i_2,i_1} \geq 0$, which is a contradiction. Similarly, in cases (n-1, n-2) and (n, n-2) we obtain a contradiction. So, in this case $Ty \geq 0$ can not be happen, too.

Step (III). Suppose $a_{n-3l_1} = a_{n-3l_2} = 0$.

We see $a_{n-4l_1}, a_{n-4l_2} \geq 0$. Here, we consider four cases.

Case (I). $a_{n-4n-1}, a_{n-4n} > 0$.

In this case, $t_0=4, t_1=\{n,n-1\}$ and $t_2=\emptyset$. The hypothesis implies that $(I_{1,n}^{i_1,i_2j_{n-4}\mapsto n}>0,\ldots,I_{n-5,n}^{i_1,i_2j_{n-4}\mapsto n}>0,I_{n-4,n}^{i_1,i_2}>0), (I_{1,n}^{i_1,i_2j_{n-4}\mapsto n-1}>0,\ldots,I_{n-4,n}^{i_1,i_2}>0),$ or $(I_{1,n}^{i_1,i_2}>0,\ldots,I_{n-5,n}^{i_1,i_2}>0,I_{n-4,n}^{i_1,i_2}>0),$

$$(n-1)$$
: $\frac{a_{1n-1}}{-a_{n-4n-1}}y_1 + \frac{a_{2n-1}}{-a_{n-4n-1}}y_2 + \dots + \frac{a_{n-5n-1}}{-a_{n-4n-1}}y_{n-5} \le y_{n-4}$

(n) :
$$\frac{a_{1n}}{-a_{n-4n}}y_1 + \frac{a_{2n}}{-a_{n-4n}}y_2 + \dots + \frac{a_{n-5n}}{-a_{n-4n}}y_{n-5} \le y_{n-4}$$
.

Since $I_{n-4,n}^{i_1,i_2} > 0$, from (n-2) and (n-3) we conclude $\frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2} - 4 \mapsto 1}{-I_{n-4,n}^{i_1,i_2}} y_1 + \cdots + \frac{I_{n-4,n}^{i_1,i_2}$

$$\frac{I_{n-4,n}^{i_1,i_2,n-4\mapsto n-5}}{-I_{n-4,n}^{i_1,i_2}}y_{n-5} \ge y_{n-4}. \text{ Now, we can use } (n), (n-1) \text{ or } (n-4).$$

If
$$I_{1,n}^{i_1,i_2j_{n-4}\mapsto n} > 0, \dots, I_{n-5,n}^{i_1,i_2j_{n-4}\mapsto n} > 0, I_{n-4,n}^{i_1,i_2} > 0$$
, we use (n) . Hence,
$$\frac{I_{n-5,n}^{i_1,i_2n-5\mapsto 1j_{n-4}\mapsto n}}{-I_{n-5,n}^{i_1,i_2j_{n-4}\mapsto n}} y_1 + \dots + \frac{I_{n-5,n}^{i_1,i_2j_{n-4}\mapsto n}}{-I_{n-5,n}^{i_1,i_2j_{n-4}\mapsto n}} y_{n-6} \ge y_{n-5}. \text{ By applying } (n-5) \text{ and continuing the process, we obtain } I_{1,n}^{i_1,i_2j_{n-4}\mapsto n} \le 0, \text{ which is a contradiction.}$$

If $(I_{1,n}^{i_1,i_2j_{n-4}\mapsto n-1} > 0, \dots, I_{n-4,n}^{i_1,i_2} > 0)$, or $(I_{1,n}^{i_1,i_2} > 0, \dots, I_{n-5,n}^{i_1,i_2} > 0, I_{n-4,n}^{i_1,i_2} > 0)$, then it is easy to prove.

Case (II). $a_{n-4n-1} = 0$ and $a_{n-4n} > 0$.

Case (III). $a_{n-4n-1} > 0$ and $a_{n-4n} = 0$.

Case (IV). $a_{n-4n-1} = a_{n-4n} = 0$. By the same reasoning to arrive at the same paradox.

Step (IV). $a_{n-3l_1} = 0$, $a_{n-3l_2} \neq 0$.

Step (V). $a_{n-3l_1} \neq 0$, $a_{n-3l_2} = 0$.

Similarly to the previous steps, Step (IV) and Step (V) are investigated.

Lemma 2.8. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function and

$$[T] = \begin{pmatrix} 0 & \dots & 0 & * & * & * & \dots & * \\ \vdots & \vdots \\ 0 & \dots & 0 & * & * & * & \dots & * \\ 0 & \dots & 0 & a_{kl} & * & * & \dots & * \\ 0 & \dots & 0 & 0 & * & * & \dots & * \\ \vdots & \vdots \\ 0 & \dots & 0 & 0 & * & * & \dots & * \\ 0 & \dots & 0 & 0 & a_{l+1l+1} & * & \dots & * \\ 0 & \dots & 0 & 0 & 0 & * & \dots & * \\ \vdots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 & a_{nn} \end{pmatrix}$$

 $a_{kl} \neq 0, \ 2 \leq k \leq n-1, \ and \ k < l. \ Then \ T \ does \ not \ preserve \prec_{rsqut}$.

Proof. Set $x = e_k$ and $y = e_1 + (\frac{a_{1l}}{-a_{kl}})e_k - e_{k+1}$. We observe that $x \prec_{rsgut} y$ but $Tx \not\prec_{rsgut} Ty$. Thus, T does not preserve \prec_{rsgut} .

Remark Theorems 2.6 and 2.7 give both sufficient and necessary conditions for n = 4. As we know, if $T : \mathbb{R}_n \to \mathbb{R}_n$ preserves \prec_{rsgut} , and $S : \mathbb{R}_{n-i} \to \mathbb{R}_{n-i}$ is the linear function with $[S] = [T][i+1,\ldots,n]$, then S preserves \prec_{rsgut} on \mathbb{R}_{n-i} , too. Pay attention to Lemma 2.8. So only states may for that T preserves \prec_{rsgut} on \mathbb{R}_n , states are listed in the above cases.

Lemma 2.9. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function. If T strongly preserves \prec_{rsqut} , then T is invertible.

Proof. Suppose that $x \in \mathbb{R}_n$ and let Tx = 0. As Tx = T0 and T strongly preserves \prec_{rsgut} , this implies that $x \prec_{rsgut} 0$. Hence x = 0 and T is invertible.

In the following theorem the structure of linear functions $T: \mathbb{R}_n \to \mathbb{R}_n$ strongly preserving regut-majorization will be characterized.

Theorem 2.10. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function. Then, T strongly preserves \prec_{rsgut} if and only if $[T] = \alpha I_n$, for some $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. As the sufficiency of the condition is easy to see, we only prove the necessity of the condition.

Assume that T strongly preserves \prec_{rsgut} . So, T is invertible, by Lemma 2.9. Then T and T^{-1} preserve \prec_{rsgut} . It shows that [T] have the form Theorem 2.3. If n = 1; then the result is trivial.

We proceed by induction on n. Suppose that $n \geq 2$ and the assertion has been established for all linear preservers of \prec_{rsgut} on \mathbb{R}_{n-1} . Let $S: \mathbb{R}_{n-1} \to \mathbb{R}_{n-1}$ be the linear function with $[S] = [T][2, 3, \ldots, n]$.

First, we prove S strongly preserves \prec_{rsgut} on \mathbb{R}_{n-1} . As T preserves \prec_{rsgut} on \mathbb{R}_n , we observe that S preserves \prec_{rsgut} on \mathbb{R}_{n-1} . Let $x', y' \in \mathbb{R}_{n-1}$, and let $Sx' \prec_{rsgut} Sy'$. Set $x = (0, x'), y = (0, y') \in \mathbb{R}_n$. Observe that Tx = (0, Sx') and Ty = (0, Sy'). Since $Sx' \prec_{rsgut} Sy'$, we have $Tx \prec_{rsgut} Ty$. The hypothesis ensures that $x \prec_{rsgut} y$, and thus $x' \prec_{rsgut} y'$. Therefore, S strongly preserves \prec_{rsgut} on \mathbb{R}_{n-1} . According to the induction hypothesis, $[S] = \alpha I_{n-1}$, for some $\alpha \in \mathbb{R} \setminus \{0\}$. So, it is enough to show that $a_{12} = \cdots = a_{1n} = 0$. Consider $x = (0, 1 + \frac{1}{\alpha}, 0, \ldots, 0)$, and $y = (1, \frac{-a_{12}}{\alpha}, \ldots, \frac{-a_{1n}}{\alpha})$. Without loss of generality, assume that $a_{11} = 1$. Since T preserves \prec_{rsgut} , Theorem 2.3 implies that $\alpha > 0$. Thus, $Tx \not\prec_{rsgut} Ty$. If at least one of the a_{12}, \ldots, a_{1n} is positive, we see that $x \prec_{rsgut} y$ is a contradiction. Hence $a_{12}, \ldots, a_{1n} \leq 0$. Now set $x = (0, 1 + \alpha, 0, \ldots, 0)$ and $y = (1, a_{12}, \ldots, a_{1n})$. If at least one of the a_{12}, \ldots, a_{1n} is nonzero, we have $x \prec_{rsgut} y$ and $T^{-1}x \not\prec_{rsgut} T^{-1}y$, which is a contradiction. Thus, $a_{12} = \cdots = a_{1n} = 0$.

On the other hand, since T preserves \prec_{rsgut} , Theorem 2.3 ensures that $\alpha = 1$. Therefore, $T = I_n$.

References

- 1. T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra and its Applications, 118 (1989), 163–248.
- 2. A. Armandnejad, Right gw-majorization on $M_{n,m}$, Bulletin of the Iranian Mathmatical Society, **35** (2009), no. 2, 69–76.
- 3. A. Armandnejad and A. Ilkhanizadeh Manesh, Gut-majorization on $M_{n,m}$ and its linear preservers, Electronic Journal of Linear Algebra, 23 (2012), 646–654.
- 4. H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear and Multilinear Algebra, 53 (2005), 1–11.
- 5. A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra, 15 (2006), 260–268.
- 6. A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra and its Applications, 423 (2007), 255–261.
- 7. A. Ilkhanizadeh Manesh, On linear preservers of sgut-majorization on $M_{n,m}$, Bulletin of the Iranian Mathmatical Society, **42** (2016), no. 2, 470–481.
- 8. A. Ilkhanizadeh Manesh, Right gut-Majorization on $M_{n,m}$, Electronic Journal of Linear Algebra, 31 (2016), no. 1, 13–26.
- 9. A. W. Marshall, I. Olkin, and B. C. Arnold, *Inequalities: Theory of majorization and its applications*, Springer, New York, 2011.

E-mail address: a.ilkhani@vru.ac.ir

¹ DEPARTMENT OF MATHEMATICS, SIRJAN UNIVERSITY OF TECHNOLOGY, SIRJAN, IRAN. *E-mail address*: a.mohammadhasani530gmail.com

 $^{^2}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box: 7713936417, Rafsanjan, Iran.