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ABSTRACT. A matrix R is called a generalized row substochastic (g-row sub-
stochastic) if the sum of entries on every row of R is less than or equal to one.
For z, y € R,, it is said that = is rsgut-majorized by y (denoted by & <,sgut ¥
) if there exists an n-by-n upper triangular g-row substochastic matrix R such
that x = yR. In the present paper, we characterize the linear preservers and
strong linear preservers of rsgut-majorization on R,,.

1. INTRODUCTION AND PRELIMINARIES

Let M, ,, be the set of all n-by-m real matrices, and let R,, be the set of 1-
by-n real vectors. A matrix R = [r;;] € M,, = M,,,, is called a generalized row
substochastic matrix if Z?Zl ri; < 1 for all ¢. For vectors z,y € R,,, we say that
x is rsgut-magjorized by y, denoted by & <,squt ¥, if = y R for some n-by-n upper
triangular g-row substochastic matrix R.

A linear function 7': M,, ,,, = M, ,,, preserves an order relation < in M,, ,,, if
TX < TY whenever X < Y. Also, T is said to strongly preserve < if for all X,
Y eM,,,

X<Y&eTX <TY.

For X, Y € M, ,,, X is said to be sgut-majorized by Y (denoted by X <4 Y)
if there exists an n-by-n upper triangular g-row substochastic matrix R such that
X = RY. In [7], the second author characterized all linear preservers and strong
linear preservers of <4, on R™ and M,, ,,,, respectively. In this paper, we study
the right case of this relation.
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Some kinds of linear preservers of majorization were mentioned in [1], [4], and
[9]. For more information about right and left matrix majorization, see [2], [3],
and [5]-[8].

The following conventions will be fixed throughout the paper: The standard
basis of R,, is denoted by {ej,...,e,}. The submatrix of A obtained from A by
rows ny,...,n; and columns my, ..., my is denoted by A[nq,...,nmq, ..., mgl.
The abbreviation of Anq, ..., m|nq,...,n] is denoted by Alns,...,n]. The sum-
mation of all components of a vector z in R, is denoted by tr(z). The matrix
representation of a linear function 7' : R, — R,, with respect to the standard
basis is denoted by [T]. We have Tz = z[T]. The summation of all entries of i
row of [T is denoted by r;, also, we will use the following standard function:

1 x>0,
sgn(x) = 0 x =0,
-1 r <0.

2. MAIN RESULTS

In this section, we pay attention to the g-row substochastic upper triangular
matrices and introduce a new type of majorization. We obtain an equivalent
condition for rsgut-majorization on R,,, and we characterize linear functions T
: R, = R, preserving <,s5u. Also, we characterize strong linear preservers of
rsgut-majorization on R,,.

The following proposition provides a criterion for rsgut-majorization on R,,.

Proposition 2.1. Let v = (z1,...,2,), ¥y = (Y1,.--,Yn) € Ry. Then & <,sgur v
if and only if y = 0, implies that x = 0 or x = (0,...,0,24,...,2,), in which
t = min{l : y; # 0} and one of the following conditions holds:

(1) y > 0 and tr(x) < tr(y),

(17) y <0 and tr(x) > tr(y),

(131) y 20 and y £ 0.

Proof. Let us first prove the sufficiency conditions. Clearly, if x = y = 0, then
T <psgut Y- o =1(0,...,0,2¢,...,2,), in which ¢ = min{l : y; # 0}; assume that
(¢) or (i7) holds. If t = n; set

R=(ry) = { w (bd)=(nn),

0  otherwise.
If t < n; choose
(1 (1,7) =(l,n), t+1<1<mn,

R = (ry) = Tn=d i 1Y (i,5) = (t,n)

Yt
0 otherwise.

\
We see that x = yR, where R is g-row substochastic upper triangular matrix
that implies & <55t y. Now, assume that (ii7) holds. Without loss of generality,
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suppose that there exists some p (t < p < n) such that y; > 0 > y,. We claim
that  <,sgu: y. Put

(= (i) = (k). t<k<n—1,
< min{l - Y07} v, Z54Y (i) = (t,n),
R = (Tz‘j) - Tn—=TtnYt (Z,j) = (p’ n),
Yp
L 0 otherwise.

We observe that x = yR, where R is g-row substochastic upper triangular.
This implies & <,sgut ¥ as claimed.

Next, assume that x <, y and y # 0. We observe that there exists some
g-row substochastic upper triangular matrix R such that z = yR. Set t = min{/ :

y #0}. Then z = (0,...,0,24,...,2,). f y 20 and y £ 0, then (ii) occurs. If
not; then y > 0 or y < 0.
We observe that tr(x) = riy; + roys + - -+ + 1Yy, in which r; = 2?21 rij for
each i (1 <7< n). Since r; < 1 for each i (1 <i < n), we have
tr(x) < tr(y);  if y=0,
tr(x) > tr(y);  if y<O0.
O

Lemma 2.2. Let T : R, — R, be a linear preserver of <,squt. Then [T] is an
upper triangular matrix.

Proof. Let [T] = [a;j]. The proof is by induction on n. If n = 1; there is nothing

to prove. Suppose that n > 2. First, we claim that asy = -+ = a,; = 0. We
consider two cases.

Case I. Let a11 = 0. As ey, ep-1,...,€2 <rsgut €1, We have Te,, ..., Tey <rgqut
Te;. It follows that as; = -+ = a,; = 0.

Case I1. Let a;; # 0. Without loss of generality, we assume that aq; = 1. Let
there be some k (2 < k < n) such that ay; #0. Set x = e; and y = e; — alzek.
We see that @ <55t ¥, and so Tx <, Ty, which is a contradiction. Hence
agy = 0 for each k (2 <k <n).

In continuing we assume that the matrix representation of every linear preserver
of <ysgur o0 R, is an upper triangular matrix. Let S: R,,_; — R,,_; be the linear
function with [S] = [T1[2,3,...,n]. Let ' = (2, ..., 2,),¥ = (Y2, -+, Yn) € Ry
and let 2/ <50 v'. Then z := (0,2") <,50u v = (0,7') and hence we get
Tx = (0,57") <ysgue Ty = (0,SY') since x; = 0 and ag; = -+ = a, = 0.
This implies that Sz’ <, Sy’. Therefore, S preserves <, on R,,_;. The
induction hypothesis insures us that [S] is an (n — 1) x (n — 1) upper triangular
matrix. Therefore, [T is upper triangular. O

We will use the notation IJ’“;}’“ for the fact that ¢ is replaced with k in I;,, and

r; is the summation of all entries of i row of [T7].
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Theorem 2.3. Let T : R,, — R,, be a linear function, and let [T] = [a;;]. If

11y -y un # 0, then T preserves <,sgu if and only if [T] is upper triangular,
sgn(ajy) = sgn(ag) = -+ = sgn(ay,), the elements on superdiagonal are zero,
or have opposite sign of the elements on diagonal, r1 = -+ = 1y, DZ:% > 0,
Iy, :=D]_5 >0, n—3 conditions of the following hold.

(1) : I u(segn(ag))t >0,

(2) i Iru(sgn(an))? > 0,

(n—3) : I7L_;w$7,L(Sgr1(£111))n*3 >0,

i which
_ n—(j+1)—n—(j+2)
Iin = Gn—(+on—G+n L1 = Un—(j+2)n—(+1) Lj-1n5
Jj o _
Dy = Q510515 — AjjQ5-15-1,

and if Te, = (%,... %, Qp_in,0,...,0,an,), where 1 <1 <mn—1, then aja,_in <

0.

Proof. We assume a;; = 1 without loss of generality.
First, we prove the sufficiency of the condition. Let z, y € R,,, and let & <, gut
y. We should prove Tz <, T'y. We know that

Tz = (21, a12%1 + 22, . . ., 1,21 + Q2pT2 + -+ - + App ),

and
Ty = (y1, 1291 + a22¥2, - - ., Q1aY1 + A2nY2 + - + Apnln)-
We consider three steps.

Step (I). Ty # 0 and Ty £ 0. If y; # 0, then Tz <,45 Ty. If not; we see
that z; is also zero. If y, # 0, since agy # 0, then Tx <50, Ty. If yo = 0, we
have (T'z)y = (Ty)s = 0. If y3 # 0; by continuing this process, we observe that
Tz '<rsgut Ty

Step (I1). Ty > 0. We claim that y > 0. If it happens, then tr(Tx) = r,tr(x)
and tr(Ty) = rptr(y). If y = 0, then = 0. So, T% <50 Ty. If y # 0; in
this case we consider two cases y; # 0 and y; = 0. In the first case, we have
tr(x) < tr(y), and hence tr(Tx) < tr(Ty). Therefore, as (Ty); # 0 and Ty > 0,
we conclude that Tx <, Ty. If y1 = 0, then 2; = 0. Now, we consider two
cases y2 = 0 and y, # 0. Similarly, one shows that Tz <, Ty. Hence it is
enough to show that y > 0.

As Ty > 0, y; is greater than or equal to zero, too. From (T'y)s > 0, ajp < 0,
ase > 0, and y; > 0, we deduce y, > 0. Note that

(1): (Ty)3 >0 & Ay = Ay A8y <y,

—as3 —as3

(1) : (Ty)iy2 >0 & A= Ry 4 B gy e SR <,

—Q42i42 Q42742 —Q42i42

n—=2):(Ty), >0 < A, o:= Yoy + a2:ny2 +oe gy g <y,

—Qann —a —Qnn
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If we prove that Ay, As,..., A,_o >0, then ys3,...,y, > 0. Thus, y > 0.

By induction on n we prove it whenever n > 3. If n = 3; we know that as3 < 0.
If as3 = 0, by the hypothesis, we have a;3 < 0. Hence A; > 0. If as3 < 0 and
A < 0, then _%"Byl > 1y > _“;;2 y1. If y1 = 0, we obtain a contradiction. If not;
then y; > 0, and then aj3ase > ajsas3, which is a contradiction. Thus, A; > 0.
Now assume that n > 3 and Ay, Ag,..., A3 > 0. If A, 5 < 0; it means that
A1pY1 + G2nYo + - - + Apn_1nYn—1 > 0. By the hypothesis, a,,_1, < 0. So, we should
consider two steps:

Step (1). If a,—1, < 0, then

Ain a2n . an—2n >
—Aan—1n Y + —An—1n Y2 + + —Gn_1n Yn—2 = Yn-1
> Ain—1 .. an—2n—1
- —0n—1n—1 yl + _|_ —An—1n—1 yn_Q’

which implies
[&;2’_)13/1 + I&;2H2y2 R [&;2l—>n73yn73 < _[O,nynf2~

We know [, > 0. We consider two cases.
Case (I). I, = 0. Then

n—2—1 n—2—2 n—2—n—4 n—2—n—3
Io,n Y1+ Io,n Yo+t [o,n Yn—a < _]O,n Yn—3-

Here we have Iy, = ap_on—ol7 """, 113277 = ap_9noI3,> 7", and it
follows that

L7y + 2Py + o+ 27" s < —1pnes.
Case (I[I). In, > 0. In this case we see that
Iy + 102 Py 4+ 1027 s < —1pns.
Similar to the recent procedure, we obtain
Ly + I Py 4+ I Py s < — Do,

—5—1 —5—2 —5—>n—6
Ly + I3 e+ 1T e < —I3nYns,

]2?41,71@1 < —In_4nYo.
We know that I,,_4,, > 0.
Case (I). I,—4n = 0. This implies that I77}, 1 < 0. We see that y; can not
be zero. So, y; > 0 and then 1?7} < 0. It shows that I3, < 0, that is a

n—4,n
contradiction.
Case (I1). I,—4n, > 0. We have

2—1
[nT4,n — w12
Y1 > Y2 2> Yi-
In74,n A22

I2»—>1
n—4,n > —ai2

—In_an a2

We observe that y; can not be zero and so, y; > 0. Then , and

hence I,,_3, < 0, which is a contradiction.
Step (2). an_1, = 0. We have

a1nY1 + A2nY2 +--+ Qp—o2nYn—2 > 0.
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By the hypothesis, a,_2, < 0. We consider two cases.
Case (I). ap—2, < 0. We see that

Ain yl _|_ e + Gn—3n ynfg > yn72

—Qn—2n —Qn—2n
> Ain—2 - n—3n—2
- —an—2n—-2 yl + + —an—2n—2 yn_g,

which implies
]1n,;3'—>1y1 + I{Z?Hz?h + -+ fﬁ;3Hn_4yn—4 < ~linYn-s-

We know I, > 0.
Case (1). 1, = 0. Then

Iﬁ;&—)lyl + I{L’;BHQZD et [i;&—)n75yn75 < _[ﬁ;3r—>n74’
which implies
Iy + 15, P 4 4+ 1 s < —Donea.
Case (2). I1, > 0. This implies that

n—3—1 n—3—n—4
I I

T y1+...+hn1—

_Il,n —11,n

Yn—a > Yn-3
> A1in—3 y1+_._+ Qan—4n—3 yn—4,

—Qn—3n—3

which implies
13;4'_)1?11 + IZ;4»—>2y2 R I£;4b—>n—5yn_5 < _I2,nyn—4.

So,
Iy + 13, Py 4+ I Py s < — Do .

Therefore, in any case

Ly + 15, Py + o 4+ 15,7 s < —LonYnoa
Similarly, it can be proven

I3 g+ I 5Py + o+ 1577 Oy 6 < — I3 s,

—6—1 —6—2 _ _
LG&—) n + IZnGH Yo + -+ ]Znﬁr—m 7yn77 < _14,nyn767

Iif}l,n% < —Ip_anYo.
As I,,_4, > 0, we come to a contradiction.

Case (I1). an_o9, = 0. According to the hypothesis, a,_3, < 0. In a similar
fashion, we can complete the proof. Therefore, A, o > 0.

Step ([II). Ty < 0. This step can be proven in the similar manner as the
proof of Step (I17).

To prove the necessity of the condition, assume that 7" preserves <,sg,¢. Lemma
2.2 ensures that [T] is upper triangular. First, we want to prove sgn(aj;) =
sgn(ags) = -+ - = sgn(ayy ), the elements on superdiagonal are zero, or have oppo-
site sign of the elements on diagonal, and ry = --- = r,. The proof is by induction
on n. If n = 1; there is nothing to prove. For n > 2, assume that the matrix
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representation of every linear preserver of <, on R,_; has desirable condi-
tions. Let S : R,_; — R,,_; be the linear function with [S] = [T][2,3,...,n]. As
T preserves < squ: on R,, S is also on R,,_;. The induction hypothesis insures

sgn(age) = -+ - = sgn(any, ), the elements on superdiagonal are zero, or have oppo-
site sign of the elements on diagonal, and ro = --- =r,,.
If

y:(y17y2a”' 7yn)7 (21)
in which y; = 1,y = =42 yg = 92301203422 ) — i gi—45 .. n.

az2 a22a33 a22a33...a;’

We claim that Ty = (1,0,...,0). We prove it by induction on n. The induction
step is easy to prove. Now suppose the statement holds for n — 1. We want to
prove it for n. We observe that (Ty); = 1,(Ty): = 0,(Ty)s = 0,(Ty); =
ayj + agy; + -+ ajy;, Vi = 4,5,...,n — 1. By the induction hypothesis,
(Ty); = 0 for each 4 < j < n —1. It is enough to show that (T'y), = 0. As
(Ty)s =+ = (Ty)n—1 =0, we have > """ ,(Ty); = (T'y),. On the other hand,

Z?:Q(Ty>i = (a2 + a3+ -+ a1n) + (asa + ass + - -+ + asn)ya + -+ + ApnYn,
= (Tn— 1)+Tn(y2++yn)

Hence (Ty)n, = (rn — 1) +7n(y2 + - - - + y5). We claim that yo 4 - -+, = 1;:",
implies (Ty), = 0. We have yo + -+ + vy, = % If we prove ags > 0, then
a33, .+« Gpp > 0, 23,034, ..., Qp_1, < 0. If agy % 0; then agy < 0.

Case (I). a1z < 0. Set y as (2.1). We observe that y # 0, y £ 0, and y; # 0.
So, for every x € R,, we have v <55t y. Set v = z,e, where z,, < # Then
Tz Arsgue Ty, a contradiction.

Case (II). a2 > 0. Consider y as (2.1). Put z = xz,e, such that z, <
min{ ai, tr(y)}. We conclude © <,sgu ¥y and T 4,50 Ty, which is a contradic-
tion.

Case (I1I). a;s = 0. Choose y; = 1, yo» = —1, and ys,...,y, such that
(Ty)s = -+ = (Ty), = 0. We see that Ty = (1, —as,0,...,0). Consider
r = T,e,, in which z, < % We deduce © <,5gut ¥ but T Arsgue Ty, a
contradiction.

Therefore, asy > 0. We claim that a;2 < 0. If a;2 > 0; by choosing y as (2.1)
and z = x,e, such that z, < ﬁ we have & <55t ¥y but T Aysgue Ty, which is
a contradiction. Thus, a2 < 0.

We want to show that ry = r,. If ry # 7,;

Step (). 1 < ry. Choose y as (2.1) and z = x,e,. We have Ty = (1,0,...,0)
and Tz = (0,...,0,7,2,). Note that 1 = tr(Ty) = + rn(y2 + - - - + yn), which
implies 1 — 71 =7, (Y2 + - - + ypn) and tr(y) = y1 + 1;—:1

Choose % < xn, < tr(y). It shows that © <, y but Tx 4,55, Ty, that is a
contradiction.

Step (I1). r1 > 1. Set y as (2.1) and x = (™)e; — ;*--. We conclude
T <ypsgut Y but Tx Apsque Ty, that is a contradiction. Hence r; = r,, and so, we
have r{ =--- =r,.

We claim that D;,_, > 0. If D, < 0; let S : R3 — Ry be the linear function
with [S] = [T][n —2,n — 1,n]. As T preserves <,z on R, S is also on Rj.
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Select x,y € Ry such that © = x1eq, and y = (1, ;a’i‘f’i‘ll, - fl)z:fam), in which
Ty > a# Observe that @ <,s5u y but Sz A4 Sy is a contradiction. So,
pr_, >"0.

We want to show that D""3 > 0. If D"7} < 0; let S : Ry — Ry be the

linear function with [S] = [T][n — 3,n — 2,n — 1,n|. Since T preserves =,sgut

on R,, S is also on Ry. By choosing x,y € Ry such that * = x4e4, and y =
—Qn—3n Dn_1 I . . 1

(1, a‘i PPN B o smasa), in which x4 > -, we see that @ <,su Y

but Sz A, Sy, which is a contradiction.
Now we prove the following n — 3 conditions:

(1) : Iin(sgn(an))! >0,

(2) : Ion(sgn(ann))® = 0,

(n - 3) : In_gm(sgn(an))“_:% > 0.
We see that n must be greater than or equal to four. By induction on n, we

proveit. If n =4 and I 4 < 0, we consider x = z4e4, and y = (1, ;‘;;2, “23“;;;;;3“22,

), where xy < ﬁ See & <psgur Y but T A,500¢ Ty, which is a contradic-

114
a22a330a44
tion.

Assume that n > 5 and the statement holds for 5,6,...,n — 4. We prove the
statement for n — 3. If not; 1,3, < 0. Choose y as (2.1) and = = x,e,, where
rp, > —=—. We conclude ¥ <544 y but Tx Aps9ut Ty, a contradiction.

We should prove the following statement now. If Te,, = (*,..., %, ap_in,0,...,
0,ann), where 1 < i < n — 1, then apa,—im < 0. If ay_s > 0; let S : Riyq
— R;;1 be the linear function with [S] = [T]|[n —i,n — (i + 1),...,n]. Since T

preserves < gt o0 R,, Sis also on R;4. Set y; = 1, and choose y», . .., y;11 such
that Sy = (1,0,...,0). Choose © = z,e,, where x, > ﬁ This implies that
T <psgut Y but Tx A,59u¢ Ty, which is a contradiction. O

For each k (1 < k < n) we define ji := min{l|k <1 <n,a # 0,ap11 =+ =
Ap = 0}

Theorem 2.4. Let T : R, — R,, be a linear function, n > 2,

a1 * * * Ce *
0 929 * * . *
1] = ,
0 0 ... 0 Ap—1n—1 QAn—1n
O 0 ... 0 0 0

where j1 < Jo < -+ < Jp—g2, and ay_1p—1,0n_1n, # 0. Then T preserves <,sgu if
and only if one of the following conditions holds.

(@) ry=+--=mr,1=0.

(b) sgn(an_1n-1) 7 sgn(an_1n), and for each k =0,1,...,n — 3, we have

An— (k4 2)n—(k+2) - - - An—2n—20n—1n—1 > 0 tf and only if Iy, > 0.

Proof. 1t can be assumed without loss of generality that j, = k, for each 1 < k <
n—2and a;; = 1.
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First, suppose that T preserves <, 4.+ and at least one of r, ..., 7,1 is nonzero.
We proceed by induction on n. Case n = 2 is easy to prove. Suppose that n > 3
and the assertion has been established for all linear preservers of <, 44, on R,,_;.

Let S : R,_; — R,_; be the linear function with [S] = [T][2,3,...,n]. Since T’
preserves <,sgu: on R,, S is also in R,,_;. The induction hypothesis insures that
sgn(an—1n—1) 7 5gN(an—1n), AN Gy (kg 2)n—(k+2) - - - On—2n—20n_1,—1 > 0 if and only
if Iy, > 0, foreach k =0,1,...,n—4. We should prove a1; ... a,—2,—20n_1n—1 > 0
if and only if I,,_3, > 0. If not; we have (ass...an-1n—1 > 0,1,-3, < 0), or
(a2z-~ n-1n-1 < 0, 1n_3, > 0).

If asy...an—9n—2ln_3, <0, then we choose ¥, such that MI"(;*—”III < Yn1 <
I*

n—4,n—1
PR Ifas...an—2n—2l,_3, > 0, then choose y,_; such that

In4n1
a22...Qn—1n—1

I al 1—01n,02, 1—asz An—2 1—an—2
> > n—4,n—1 _ ,m— n, n— ny-Hdn—2n— n—2n
= Yn-1 = G e an—2anin , where ] —4,n—1 7 ]” 4n

I, .
= —ai2 — 023012—a13a22 _tisi — _ _
Set y1 = 1,yp = 22, yg = ewAABAR y, — 20— Vi =4,....n 2,yn71_

_1>yn = —1. We see Ty - (17 Oa . 0 (Ty)n 1 (Ty) ) (Ty)nfla (Ty)n > Oa and
for each x € R,,, we have x <rsgut Y. Observe that tr(Tx) = rixy + - -+ 711251,
and tr(Ty) =y + -+ rn_1yn_1. As at least one of the rq,...,r,_; is nonzero,
we can select z such that tr(Tx) > tr(Ty). For this x we see that x <44, y and
Tx Arsgur Ty, which is a contradiction. Thus, aj; ... ap—2p—2an—1n—1 > 0 if and
only if I,,_5, > 0.

Next, we want to prove T preserves <,sq:. Let x,y € R, and let @ <,5qu ¥-
Ifry=--=r,1 =0, as tr(Tx) = tr(Ty) = 0 and ag,...,a,_1,—1 # 0, then
Tx <,squt Ty. Now suppose that at least one of ry,... 7,1 is nonzero. By
induction on n, we prove 7w <,s5,¢ Ty. If n = 2, it is easy to see. Let n > 3 and
our claim has been proved for n—1. We have Tx = (z1, ajom1 +ag02a, . . ., a1,21 +
AgnTo + -+ Gp_1nTn—1), and Ty = (y1, @121 + @22y, - - ., G1nY1 + A2pY2 + -+ +
An—1nYn—1). If y1 = 0, then, since 1 = 0, the induction hypothesis insures that
T <psgue Ty. If y1 # 0; consider three following steps. We claim that only the
first step happens.

Step (I). Ty # 0 and Ty £ 0. Clearly, Ta <sgut Ty

Step (I1). Ty > 0.

We can assume, without loss of generality, that aii,as,...,a,-1,-1 > 0 and
ap_1n < 0. As Ty > 0, conclude that
(1) LY > 0

—a22

(2) T a1 > y27

() f;;y + amy +"'+az hyz 1<ym

(n—1): =y + =22y o ey, o <y,

—0n—1n—1 —Qn— —Qn—1n
(n) : —;lnlilm Y1+ a2n y2 + - o yn 2 < Yn—2-
From (n — 1) and ( ) "deduce that
Q1n— Q1n Aop— (0579 Ap—3n— Qp—3n
(— oy (g (e Ry, 5 <

—Op—1n—1 Ap—1n —O0p—1n—1 Qp—1n —Op—1n—1 Ap—1n
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_n—3—1 _n—3—2 _n—3—n—4
. . . 1, 1, 1,
Yn—2, which implies —p*—y +—p—yo+- -+ —F——Yp 4 >

( an—2n an—2n—1)
—Qn—1n an—1n—1

_ 721

o . .-
Yn—3. By continuing this process, we obtain — :4’” Y1 2 Y2 = Z22y;. It shows that

aQQIijin — a120p—4, <0 and then I,,_3, <0, a contradiction. So, this does not
happen.
Step (I1I). Ty < 0. Similar Step (I71) it is proved that this step can not

happen. So, Step (I) just happens. Therefore, T" preserves <.sgu:- O

Theorem 2.5. Let T : R, — R, be a linear function, n > 3 and

@11 Q12 @13 ... Aip—2 A1n—1 Q1n
0 ax axs ... Q2n—2 Q2n—1 Qonp,
[T] = ' )
0 0 s 0 An—2n—2 Qan—2n—1 Qan—2n
0 0 0o ... 0 0 0
0 0 0 ... 0 0 0

iy =min{lln — 2 <1 < n,a, o # 0},

io = min{l|i; <1 < n,a,_o # 0,sgn(a,_2;,) 7 sgn(an_2)},
is={lln—2<1<n,a, 9 =0},

J1<J2 <+ <Jn-z <l

Jn—3,n = Op—3i, An—2iy — Ap—2i; An—3iy,

Jin = Gt tjo ot = Qjys Jerin, V1 <k <n—4.

(x) If for some p the set

{Ugp <1 <n,ap #0,ap41 = - = an = 0,5g0(ap;,) = sgn(ap)}
is nonempty, namely, {wy, ..., ws}, then J)”, , = g’i'zsi, V1<i<s.

Then, T' preserves <rsqut tf and only if one of the following conditions occurs.
(@) rqy=+--=1r,2=0.

(b) sgn(Jn_3) = sgn(an—sj, san—2,), and for each k =1,2,...,n —4, if (x) holds,
sgn(Jyn), ..., or sgn(J‘lzsn) is equal to sgn(aij, Ak1j,,, - - - An—3ju_sn—2i,), of (*) does

not hold, sgn(Jin) = sgn(akj, Akt 1j,; - - - An—3j,_s0n—2i1) -

Proof. First, we prove the suficiency of the condition, by induction on n. Case
n = 3 is easy to see. Now suppose that n > 4. Let xz,y € R,, such that x <55 V.
We want to prove Tz <55y Ty. If y1 = 0, then x; is zero, too. The induction
hypothesis ensures that 7@ <, T'y. If 11 # 0, we have three following cases.
Case (I). Ty # 0 and Ty £ 0, we see that Tz <,sgu Ty.
Case (II). Ty > 0, we know that aij,,as,,...,an_3;, , can be positive or
negative also, we have a,_9;,a,—92;, < 0. Consider without loss of generality
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A1y, A2y - - 5 A3, 5 > 0, and a,_9;;, > 0 > a,_9;,. Since T'y > 0, we have
(1) poay 20,
(2) DoAY+ aggpye >0,

(n—3) 1 ay, sy + agj, Yo+ + Gn_zj,_sYn—3 >0,
(i1) Coar Y1+ agi Yo+ 36 Yn—3 + Ap—2i, Yn—2 > 0,
(i2) D1Y1 A2y + o Q36 Yn—3 + Ap—2iyYn—2 = 0.

First, assume that (x) does not hold. From (7;) and (i), we conclude that
— Iy = Py — I s > Jn3Yn-s,

which implies

Jn 4—1 Jn 4—2 Jn 4—n—>5

s s> .
Jn—4 Jn—4 V2 * * Jn—4 Yn=s = Yn—d

Y1+

2>—>

By continuing this process we observe that — Y1 > Yo > ;; -1y1. Therefore, we
J

get ayj, Jop — a5, J3," < 0, which implies JLn S 0, that is a contradiction. So, in
this case Ty > 0 can not be happen. If (x) holds, then since sgn(ay;,) = sgn(ap, )
for each 1 < i < s, the claim can be proved in a similar fashion.

Case (I11). Ty < 0. Similar to Case (/) one can prove it.

For the converse, assume that 1" preserves <,sgys. If 71 = --- = r,_o = 0, there
is nothing to prove. Otherwise, at least one of them is nonzero. We proceed by
induction on n. Case n = 3 is easy to see. Suppose that n > 4 and that the
assertion has been established for all linear preservers of <, on R,_;. Let
S : R,-1 — R,_; be the linear function with [S] = [T][2,3,...,n]. Since T
preserves <,sqt on R,,, we see that S preserves <, on R, 1. We should just
to prove the statement for sgn(J; ).

Case (I). If (x) does not hold. We prove sgn(Ji ;) = sgn(asj, . .. an—sj,_48n—2i,)-
Without loss of generality, aij,,agj,, -+ ,an-3j, 5 > 0, and a,—2;; > 0 > ay_9,.

So, we should prove sgn(Jy ) > 0. If not; sgn(Jy,) < 0. It shows that ag;, .3, —
a1iy Y1+a2iyY2+-+an—3i; Yn—3 < A1inY1+0a2iy Y2+ +an— 312yn 3

a1j,J2, < 0, which implies

—Q2j55An—2iq - — 259 On—2iy
a +a +-+a n— A1igY1+02ig Y2+ +0n—3i5 Yn—
Choose Yn—2 SuCh that 1i1 Y1 2_12a?2J2 . n—3i;Yn—3 < Y2 S lig Y1 2_1zy2 — .n 3igYn—3 )
Jo An—2iq 250 n—2igy
So, (Ty)i,, (Ty)i, > 0. Set y1 = 1,y,-1 = —1,y, = 0. One can select ya, ..., Yy 3
such that Ty > 0. Since at least one of ry,...,r,_o is nonzero, we can choose

x such that <554 vy but To A, Ty, which is a contradiction. Therefore,
Jl,n > 0.
Case (II). If (%) holds. The proof is similar to the first case. O
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Theorem 2.6. Let T : R, — R, be a linear function, n > 3 and

11 Q12 Q13 ... A1p-3 A1n—2 A1n—1 Q1n
0 agp a3 ... a3 A2p—2 A2p—1 Q2n,
[T] - 0 0 0 Ap—3n—3 QGp—3n—2 an—3n—1 Qan—3n |
0 0 0 0 An—2n—2 Qan—2n—1 Qan—2n
0 0 0 0 0 0 0
0 0 0 0 0 0 0
in = min{ljn —2 <1< n,a, o # 0},
io, = min{l|i; <1< n,an_9 # 0,sgn(an_s,) # sgn(ay_a)},
'L.3 = {”n —2< [ < n, Qp—21 = O}a

sgn(an—gj,_,) 7 580 (an—si,), Jj1 <Jjo < - <Jn-g <11,

Jn—?),n = Qp—3i,An—2i5 — Ap—2i; An—3iy,

Jn—(k+1),n = an_kjnikJ:__]f::n_(k—i—l) — an—(k+1)jn_kjn—k,n7 Vk = 3, 4, e, — 2,
Tnf4,n = On—4i3Qjp 353 — An—4j,_sAj,_3isz;

Tomeiym = Gt Do ™™~ esyjn wToions Yk =4,...,n—2.

If one of the following holds, then T' preserves <,sgut-

(@) ry=ro=---=1r,=0.

(b) Q15,4255 -« - An—3j, 30n—2i; Jl,n >0,... ;anf4jn,4an73jn,3anf2i1Jn74,n > 0,
p—3j,, 5 On—2iy In—3.n > 0.

Jn—3—n—2

(C) A15, A2y - - - An—3j, 30n—2i; Jl,n < 07 coey On—44, 4 On—3j, 30An—2i;
Jn—3—n—2
Jnn—4,n < 07 Ap—35,,_30n—2i; Jn73,n S 0.

(d) A1, A2 - - - an_4jn_4an_3i3T17n > 0, a4y - - - an_4jn_4an_3i3T27n >0,...,

Ap—4jp_ 4 On—3iz L pn—an > 0.

Proof. If (a) holds, then T clearly preserves <,ggu:. Assume that © <, y. We
should prove that T'x <55 Ty. If n = 3; then the result is trivial. We proceed
by induction on n. Suppose that n > 4 and the assertion has been established
for all linear preservers of <54, on R

We can assume without loss of generality that j, = k, V1 < k < n — 3,
11y -y Ap—3p—3 > 0, W ="n— 2, 19 = N — 1, 13 = N, Qp_op_o > 0> Ap—2n—1,
An—3n—3 > 0> Ap—3n, An—2n = 0.

We claim that Ty > 0 or Ty < 0 can not be happen. So, Ty % 0 and Ty £ 0
imply that Tz <,s4u T'y. Suppose that T'y > 0.
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If y; = 0, by the induction hypothesis Tz <55, T'y. Let y; # 0. We have

(1) :oyp >0,

(2) : _‘%le < Y2,

(3) Doy 225y <y,

(n—4) @ =ty + =2ty b Sy, 5 <y,
(n=3) « ==y + =y e Sy, <y,
(n—2) @ oy + Bty e SRy, 5 >y,
(n—1) @ oy + =2ty o Sy, s >y,
(n) T 1 M I I e ot/ TS

n—3—1

If (b) happens; by using the relation (n —2) and (n — 1), we conclude J;=5" "y +

Jﬁ:g;’ng + 4 Jﬁ:g’j”%yn% < —Jn_3nYn—3. Also, we know that J, 3, > 0.

. . n—3—1 Jn—3»—>n—4
First consider J,,_3, > 0 and observe that _’3*3:*; 4+ Eﬁ»—fgyn_él > Yp_3.
: —41 —42 ’ —4n—5 -
By using (n—3), we get J2 =iy + J0 i 2yt J0 B s < s,
Jn74>—>1 n—4—n—>5 .
and as Jp—4,, > 0, we have 22—y +- - -+ i}4’f4 Yn—5 > Yn—sa- By using (n—4)

and continuing this process, we deduce J;,, < 0, which is a contradiction. If

Jn—37n = O, we have J::g’;lyﬁ— 7?__5’::2y2_|_ . ._|_J77;‘__§’7':n_5yn_5 < — 77:_—5);>71-4yn_4‘
By multiply this relation with a,_3,_3 > 0, we get g_—j’jlyl + g:f;’QyQ N
Jﬁ:f;’”_5yn_5 < —Jn—4.nYn—a, a contradiction. Therefore, in this case, Ty > 0
can not be happen.

Jn73»—>1 Jn73>—>n74
If (¢) holds; from (n —2) and (n — 1) we deduce %yl 4t T:]?;—:Lmynfél <
Yn—3, whenever J,, 3, < 0. Now, if use (n) and continue as before, we obtain

some contradiction. If J,_3, = 0, similarly, one can prove.

Tn:4»;>1 ::4»:71,75
If (d) holds; from (n) and (n — 3) conclude %yl 4ot ﬁyn% < Yp_a.

By continuing the same process, we have that T}, > 0, a contradiction. Thus,
Ty > 0 can not be happen, too. Similarly, the case Ty < 0 can be proved. 0

Theorem 2.7. Let T : R, — R, be a linear function, n > 4 and

a1 @12 a3z ... QdAip-3 A1n—2 A1n—1 Qin
0 axp axy ... a3 A2n—2 A2n—1 A2,
[T] - 0 0 s 0 Ap—3n—3 Apn—3n—2 0Gp-3n—-1 Qan—3n |
o 0 0 ... 0 0 0 0
o 0 0 ... 0 0 0 0
o o0 0 ... 0 0 0 0

iy =min{lln —3 <1 < n,a,_3 # 0},

i = min{l|i; <1< n,a,-3 # 0,sgn(ay_si,) # sgn(ay,_s1)},
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{li,los} ={n—-3,n—2,n—1,n}\ {i1, iz}, where 1} <ly,
J1<Jz2 <...<Jn-a <ty

4,J _

n—4,n = Qn—440n—-35 — Apn—4jAn—3i,

1, i,jn—k—n—(k+1) . 1,7 o .
n—(k+1),n On—kjp - k]n k,n an_(k'i‘l)jnfkjnfk,n’ Vk = 47 57 EERRL 2.

Then T preserves <ygsqut if one of the following holds.

(@)ri=r9g=-+-=1,=0.

(b)

o Ifsgn(an_s1,) # sgn(an-s1,), one of the following holds.
(1)&1]1612]'2 e Qg g O 311111722 > O, R ,an,4jn_4an,3“1:ll’zjn > 0.
(2) Q15,255 - - - An—4j,_40n— 3“111712 >0,... ,an,4jn_4an,3“1',l;’ljn > 0.
(3) If an—3i, g1, <0,

151259 - + - Ap—4j,_4Qp— 3“121’ > 0,. ,an_4jn_4an_3“1fll’4n > 0.
(4) If an-3i,an-3, <0,

Q14,0245 - - - Ap—45, 4 An— 3“1227 > 0, e ,an_4jn74an_3“112’4n > 0.

o If Sgn(an—iﬂl) = Sgn(an—fih)’

15, 0245, - - - Ap—4j,_4 On— 3%1%’ > O ,an,4jn74an,3zklff’4n > O,

where sgn(an_s;, ) 7 sgn(an—sy ) and t = {l1,la, 91,92} \ {ix}-
o Ifa,_s3, = a,_3, = 0; one of the following holds.
n—ty=max{t|]l <t <n—4,aym_10ray, # 0}, t; = {l;|an_t,, > 0},

t2 - {li‘anftoli == O}) anftojn,to Ap— t0l17a’n tOjnftO a‘nft()lg Z 07 t2 ma’y be empty

(1) Q1514255 - - - On—tgj,_ to Qn— 3“[;177:2% o > 07 ce ’a”*(t0+1)jn—(t0+1)an—tojn—to
Ay —3iq [:1172(1]01115)0'—)751 > 0, an,tojn_to Ay —3iq [;1’220 n > 0.

(2) Q1,2 - - - Antogu_y Gnsis 17" > 0, (1)) - - Crtojrg
Qp— 311[;171(21511)k”—>t2 > 07 An—kj, g« - - On—tojn_ toa'n 37,1[“7 > O 7an—tojn,t0
Ap—34q ];1’220 n > 0.

(3) a1j1a2j2 oo Qpy— tojn— t Qp— 311]“712 > 0, e ,an,tojn_toan,?,“[;l’ifo n > O

(4) a1z, - - - Anetgg_yy Qngiy 107 0,y (k1) oy - - -
An—tojn— to An—3i, Izlvliljil;OHtun bt > 07 An—kjp_p - - 'an—tojn—to Qn—3iq
I:zl—jzljﬁitowl >0, (1o 41)j, - (to+1) Yn—tojn—ty In— 311]:1171(%15)07%1 >0,

. i1,i2
an—to]n—to QAn—3iq In to,n > 0.

o Ifa, 3, =0,a,-3, # 0, one of the following holds.
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n—k = maX{tl]- S t S n_47 Ay 7£ 07 g1y, = 00 = an—311:0}7 An—kj,_p An—kly Z 07
11,12 117

(1) Q14,4245 - + - Ap—45p—s An— 3“1 > 0, ces Op—dg, 4 Gn— 311] n > 0.
11,82 n k1

(2) 15,0255 -+« - Q44,4 O0n— 321]1 " n— > 0, .. ,an,(k+1)jn7<k+1> v O,y

11,82 n— Ic’—ﬂl 11,52
(p—34, [n (k+1),n 07 An—Fkj,_p + - - an74jn,4an73z1jn k.n > 07 vy Qp—4j, 4 n—3i,

11,12
L7, > 0.

(3) If an—si,an—s1, > 0,

A1, A2, - - - Andgj s Gnsi 11207 < 0,y Qg ynzin 2%, <0,

0T A1, A2jy - - - An—dojy_s On— 3111?771[2]71 kh <0,... 1 On— (k4 1)j—(hy1) * - An—4jn—a
tn— 311];271(2]gi1§._>l1 >0, On—kjp—y, -+ - An—4jn_4dn—3iy 111127% n = 0, (n—4j, 4 An—3i
2% <.

(4) [f Ap—33, Ap—31, < 0,

A1, Q245 -+ - An—405p g n— 311Ill7l2 < 07 s aan74jn—4an73i1j7ililin < Oa

OT 15, A2, - - - An—4gj, s An— 3111?771[2]" K <0,... 3 An—(k+1)jp— (k1) - An—4jn_a
On— 311]:’%5:—1;'_”1 >0, An—kjp_p - » On—4j,_40n— 321[;“]371 > 0, An—4j, 4

Ay — 311[“’ < 0.

o Ifa, g, #0,a,_3, = 0; in the case before replacing ly < ls.

Proof. If (a) happens, we see that 1" preserves & <,squt y. Let 2,y € R,, be such
that © <,sgut y. We prove T'x <554 T, by induction on n. Clearly, if n = 4, then
T2 <ysgut T'y. Suppose that n > 5 and the statement holds for n = 5,6,...,n—1.
We should prove it for n.

We claim that Ty > 0 and T’y < 0 can not be happen. So, Ty # 0 and T'y £ 0.
In this case, Tx <,sque Ty. Without loss of generality, assume that Ty > 0, and
Jg =kforeach k =1,2,...n—4, i1, =n—-3,ic=n—2, 11 =n—1, 1, =n,
11,092, + -+« Ap_3n—3 > 0 > a,_3,_9. If y; = 0, by the hypothesis induction, we
have Tx <,sgut Ty. If y1 # 0; as Ty > 0, we see

(1) :oy >0,

(2) : _“#;yl < Yo,

(8) ¢ iy gy, <y

(n—4) @ =y =2y b Sy, 5 <y,
(n—3) : =ty 2y b Sy, <y,
(n—2) @ 2oy 2Ry e Sy, >y
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Step (I). If sgn(an—s1,) # sgn(an—sy,). Let ap—3,-1 > 0> a,_3,. So
(n—=1) « =y + =2y 4+ 2y, <y,
(n) Doy By e Sy, >y, g
If (1) holds; we have ]ﬁf,];lﬁm,... ]fll’zjn > 0. From (n — 3) and (n — 2)
Iil,'?n—éb—}l Izl 14277, 4—n—5 .
conclude %yl RER e 7 Yn—5 > Yn_4. By using (n —4) we observe
17,1 sign—>5—1 ’ i1,ign—5—n—6 . . .
that %yl + 4 "f’}@lh Yn—6 > Yn—s. By continuing this process we
2n 15 ,n n—4,n
Zl Z2 —
<12y, and then I“’l2 < 0, a contradiction
or (n—1,n),

get 2t 24 =
n 4,n
Similarly about (2), (3) and (4) by using (n—3,n), (n—2,n—1)
we obtain contradiction. Thus, Ty % 0.
Step (II). Suppose sgn(a,— 311) = sgn(an 31,)- Let an_3, 1,0, 3, > 0. By the
. I:fpm < 0. So,

hypothesis, for t = {l1, 15,12}, we have 122’ <0, ]”’ <0,.
Myn—4 S yn_3’

(n=1) : ff,ii‘;i_lyl oS
(n) : —Qn— 3ny1+ ;j:lsn—i_”'—i_ S yn 4<yn 3-
), and see that [ ﬁ’fl > 0, which is a contradiction

First, we use (n —3) and (n —2),
Similarly, in cases (n — 1,n — 2) and (n,n — 2) we obtain a contradiction. So, in

this case Ty > 0 can not be happen, too

Step (I1I). Suppose a,_3, = ap—3, =0
We see a4, @n—a1, > 0. Here, we consider four cases
Case (I). ap_an—1,0n—4n >0

(). The hypothesis implies that
S N (o

In this case, tg = 4,t; = {n,n — 1} and ¢,
e s 0), (]1,n

11,02 n—4—N 11,02n—4—N
(Iln ! >07"‘7‘[n 5,7:Z >07n4n
11,12 11,12 11,02
0), or (I, >0,.... "2 >0,1,"F >0),
_ . Ain—1 a2n—1 . An—5n—1 <
(n 1) ’ 7anf4n71y1 + —An—4n—1 y2 + + —Qn—4n— yn_5 - yn_47
. a a an—5
(n) : —anlfz;nyl—i_—% (72 . - nyn 5<yn4
i Iil,?n—4»—>l
; n—4,n
Since I}, > 0, from (n — 2) and (n — 3) we conclude Y + -+
[i1ign—4n—5 nesn
"’4’;1 5 Yn—5 > Yn—a. Now, we can use (n), (n — 1) or (n —4).
T n—4,n
b H i 7‘ ] - H b
If I” RIS (), L DRI s T 2, >0, we use (n). Hence,
Izl sign— m—)l]n74>—>n i1 i72n75r—>n76jn74r—>n
757 .
ni"[:’l 19Jp—4n yl + e + = 77;1'1,1'2]'”,40—)71 yn 6 > yn75‘ By applylng (n - 5) and
n—5mn n—>5,mn
, — . . ..
continuing the process, we obtain I’ 1RJn=a7 () which is a contradiction
11,52 11,02 11,02 11,02
i > O), or (I)N?>0,..., "2, >0, >0),

If (1= >0,
then it is easy to prove.
Case (I1). ay_4n—1 =0 and a,_4, >0
Case (II1). ap_4n—1 >0 and a,_4, =0
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Case (IV). ap_4n—1 = Gn_4n = 0. By the same reasoning to arrive at the same
paradox.

Step (IV). ap_3, =0, ap_g, # 0.

Step (V) Ap—31, 7é 07 Ap—31y, = 0.

Similarly to the previous steps, Step (/V) and Step (V') are investigated. O
Lemma 2.8. Let T : R, — R, be a linear function and

0 ... 0 =« * * .. %

0 ... 0 =« *

0 ... 0 ay * X ... %

0 0 0 * *

[T] = : : : : : : )

0O ... 0 0O * *

0 ... 0 0 Al411+1 *

0O ... 0 0O 0 *

0O ... ... ... . 0 apn

ap #0,2<k<n-—1,and k <. Then T does not preserve <,sgut-

Proof. Set x = e, and y = e; + (- )ey, — ex+1. We observe that © <45, y but

—a
T2 Arsgur Ty. Thus, T' does not prelgerve = rsgut- O
Remark Theorems 2.6 and 2.7 give both sufficient and necessary conditions
for n = 4. As we know, if T': R,, — R,, preserves <,sgu, and S : R,,_; = R,,_; is
the linear function with [S] = [T][i + 1,...,n], then S preserves <,sgu: on R,_;,
too. Pay attention to Lemma 2.8. So only states may for that T" preserves <, sgu:
on R,,, states are listed in the above cases.

Lemma 2.9. Let T : R, — R, be a linear function. If T strongly preserves
=rsqut, then T is invertible.

Proof. Suppose that x € R, and let Tx = 0. As T'x = T0 and T strongly preserves
= rsqut, this implies that x <,45,: 0. Hence z = 0 and 7' is invertible. ]

In the following theorem the structure of linear functions 7" : R,, — R,, strongly
preserving rsgut-majorization will be characterized.

Theorem 2.10. Let T : R, — R, be a linear function. Then, T strongly pre-
serves <psgut if and only if [T = al,, for some a € R\ {0}.

Proof. As the sufficiency of the condition is easy to see, we only prove the necessity
of the condition.

Assume that T strongly preserves <,sgut. S0, 1" is invertible, by Lemma 2.9.
Then T and T preserve ;4. It shows that [T have the form Theorem 2.3.
If n = 1; then the result is trivial.

We proceed by induction on n. Suppose that n > 2 and the assertion has been
established for all linear preservers of <45, on R,,_;. Let S : R,_; — R,_; be
the linear function with [S] = [T][2,3,...,n].
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First, we prove S strongly preserves <,s5u: on R, _1. As T preserves <, gqu
on R,,, we observe that S preserves <, on R,_;. Let 2/, v/ € R,,_;, and
let S/ <,50u SY. Set z = (0,2'), y = (0,y) € R,,. Observe that Tx =
(0,8z") and Ty = (0,S5y'). Since Sz’ <,50ut SY', we have T <550 Ty. The
hypothesis ensures that © <,su ¥, and thus @’ <55, y'. Therefore, S strongly
preserves <,sgut O R,_q1. According to the induction hypothesis, [S] = al,_1,
for some @ € R\ {0}. So, it is enough to show that a2 = -+ = a3, = 0.
Consider z = (0,1 + £,0,...,0), and y = (1,=22 ..., =%=) Without loss of
generality, assume that a;; = 1. Since T' preserves <,sg,¢, Theorem 2.3 implies
that o > 0. Thus, Tx Arsqut Ty. If at least one of the a9, ..., a1, is positive,
we see that o <,su ¥ is a contradiction. Hence aig,...,a1, < 0. Now set
x=(0,14,0,...,0) and y = (1, a42, ..., a1,). If at least one of the ajo,...,a,
is nonzero, we have & <,s5; ¥ and T 'z A, T 'y, which is a contradiction.
Thus, a1 = -+ =ay, = 0.

On the other hand, since T" preserves <,sg4u:, Theorem 2.3 ensures that a = 1.
Therefore, T' = I,. |
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