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Abstract. A class of vector-valued sequence spaces is introduced employing
the fractional difference operator ∆(α), a sequence of modulus functions and
a non-negative infinite matrix. Sequence spaces of this class generalize many
sequence spaces which are defined by difference operators and modulus func-
tions. It is proved that the spaces of this class are complete paranormed spaces
under certain conditions. Some properties of these spaces are studied and it is
shown that the spaces are not solid in general.

1. Introduction

The theory of sequence space plays a significant role in the study of functional
analysis. A sequence space is a linear subspace of the set w of all sequences of
complex numbers. Over the years, many sequence spaces have been introduced
by several authors. Ruckle [13] used the concept of modulus function to introduce
the FK-space

L(f) =

{
x = (xn) ∈ w :

∞∑
n=1

f(|xn|) <∞

}
. (1.1)

Later, Maddox [9] introduced and studied some strongly Cesàro summable spaces
such as

w0(f) = {x = (xk) ∈ w : tn(x)→ 0} (1.2)
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and

w∞(f) =

{
x = (xk) ∈ w : sup

n
tn(x) <∞

}
, (1.3)

where tn(x) = 1
n

n∑
k=1

f(|xk|). Ozturk and Bilgin [12] further generalized w0(f) with

respect to a bounded sequence p = (pk) of positive real numbers and studied the
space

w0(f, p) =

{
x = (xk) ∈ w :

1

n

n∑
k=1

[f(|xk|)]pk → 0

}
. (1.4)

In an analogous way, sequence spaces using difference operator are also introduced
by several authors, among them Kizmaz [7] was the first to introduce in this
direction. For the spaces X = l∞, c and c0, he defined and studied some Banach
spaces X (∆) = {x = (xk) : ∆x ∈ X}, where ∆x = (xk − xk+1). Et and Colak [6]
replaced the first order difference operator by an m-th order difference operator
in X (∆) and defined X (∆m) = {x = (xk) : ∆mx ∈ X}, which are BK- spaces.
Subsequently, Sahinar [14] used both the concepts, viz. modulus function and
difference operator to introduce a more general space

Bg(p, f, q, s) =

{
x = (xk) ∈ w(X ) :

∞∑
k=1

1

ks
[f(q(∆xk))]

pk <∞

}
, (1.5)

where s ≥ 0 and (X , q) is a seminormed linear space over the set of complex
numbers. Further generalizations in this direction are

l(∆m, f, p, q, s) =

{
x = (xk) ∈ w(X ) :

∞∑
k=1

1

ks
[f(q(∆mxk))]

pk <∞

}
, (1.6)

given by Altin et al.[2] and

Np(Ek,∆m, f, s) =

{
x = (xk) ∈ w(Ek) :

(
1

|vk|
s
pk

f(qk(∆
mxk))

)
∈ Np

}
, (1.7)

given by Srivastava and Kumar [15], where v = (vk) is such that 1 ≤ |vk| < ∞.
To study more about difference sequence space, one can follow [1], [16], [4], [11],
[10] etc. Recently, many authors such as Diaz et al. [5], Baliarsingh [3] and others
have studied some fractional difference operators. This motivated us to develop a
class of sequence spaces N

[
A, f, q,∆(α), p

]
by the use of the fractional difference

operator ∆(a) and a sequence of modulus functions f = (fk) that generalizes
many sequence spaces.

2. Preliminaries

Before we proceed, let us recall some preliminaries, definitions and results.

Definition 2.1. [13] A function f : [0,∞) → [0,∞) is said to be a modulus
function if it satisfies the following conditions:

(1) f(x) = 0 if and only if x = 0
(2) f(x+ y) ≤ f(x) + f(y) for all x, y ≥ 0
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(3) f is an increasing function
(4) f is continuous from the right at 0.

Definition 2.2. (Paranorm): A paranorm g is a real function defined on a linear
space X such that for all x, y in X and for all scalars β, it satisfies the following
conditions:

(1) g(θ) = 0, where θ is the zero element of X
(2) g(−x) = g(x)
(3) g(x) ≥ 0
(4) g(x+ y) ≤ g(x) + g(y) and
(5) If (βn) is a sequence of scalars with βn → 0 as n → ∞ and (xn) is a

sequence in X such that g(xn − x)→ 0 as n→∞ for some x ∈ X, then
g(βnxn − βx)→ 0 as n→∞.

Definition 2.3. A sequence space λ is called normal or solid if and only if it
contains all such sequences y = (yk) corresponding to each of which there is a
sequence x = (xk) ∈ λ such that |yk| ≤ |xk| for all non-negative integers k.

Definition 2.4. (fractional difference operator)[3] Let x = (xk) ∈ w and α be a
real number, then the fractional difference operator ∆(α) is defined by

∆(α)xk =
k∑
i=0

(−α)i
i!

xk−i, (2.1)

where (α)i denotes the Pochhammer symbol defined as:

(α)i =

{
1, if α = 0 or i = 0,

α(α + 1)(α + 2)...(α + i− 1), otherwise.
(2.2)

Lemma 2.5. [8] For a complex number β, we have the inequalities |β|pk ≤
max

(
1, |β|H

)
and |ak + bk|pk ≤ C

(
|ak|pk + |bk|pk

)
, where H = sup

k
pk < ∞ and

C = max
(
1, 2H−1

)
.

Remark 2.6. Let f be a modulus function. Then for a non-negative integer n and
for a real number a ∈ [0,∞), we have

(1) f(nx) ≤ nf(x).
(2) f(ax) ≤ (1 + bac)f(x), where b.c denotes the greatest integer function.

Throughout this article we assume x−k = 0 for all non negative integer k i.e
all such term which has negative suffix is considered to be zero.

3. The sequence space N
[
A, f, q,∆(α), p

]
Let (Ek, qk) be a sequence of seminormed spaces such that Ek−1 ⊆ Ek for all

non-negative integers k. We define w(Ek) =
{
x = (xk) ∈ w : xk ∈ Ek for all

non-negative integers k
}

. We see that w(Ek) is a linear space with respect to the
operations x + y = (xk + yk) and ax = (axk), where a ∈ C. Let N be a normal
sequence space, f = (fk) be a sequence of modulus functions, A = (ank) be a
non-negative infinite matrix, i.e. ank ≥ 0 for all non-negative integers, α be any



A CLASS OF SEQUENCE SPACES... 137

real number and p = (pk) be a bounded sequence of positive real numbers such
that 0 < inf

k
pk ≤ sup

k
pk = H < ∞. We introduce a space N

[
A, f, q,∆(α), p

]
of

sequences as follows:

N
[
A, f, q,∆(α), p

]
=

{
x = (xk) ∈ w(Ek) :

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk)
n

∈ N
}
. (3.1)

This space is a paranormed space with the paranorm g defined by

g(x) = sup
n

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk) 1
M

, (3.2)

where M = max {1, H}. Moreover, this space is a complete paranormed space
with respect to g under some suitable conditions.

3.1. Special cases. The sequence space (3.1) generalizes many known sequence
spaces. Some of them are as follows:

• For Ek = C, A = I, the unit matrix of infinite order, f = (fk ≡ f), α =
0, N = l∞, p = (1), the class N

[
A, f, q,∆(α), p

]
reduces to L(f) (1.1).

• Choose A = [ank] such that ank = 1/n for n ≥ k and 0 otherwise, Ek =
C, f = (fk ≡ f), α = 0. Now for N = c0, the class N

[
A, f, q,∆(α), p

]
reduces to w0(f, p) (1.4). Moreover, if we choose p = (1) and take the
space N = c0 and l∞, the class N

[
A, f, q,∆(α), p

]
reduces to w0(f) (1.2)

and w∞(f) (1.3).
• If we choose A = [ank] such that ank = 1/ks for all n, f = (fk ≡ f), q =

(qk ≡ q), α = 1 and N = l∞, the class N
[
A, f, q,∆(α), p

]
reduces to

Bg(p, f, q, s) (1.5). In this case if we take α = m, then it reduces to
l(∆m, f, p, q, s) (1.6).
• If we choose A = [ank] such that ank = |vk|−(s/pk) for all n = k and 0 other-

wise, f = (fk ≡ f), q = (qk ≡ q), and α = m , the class N
[
A, f, q,∆(α), p

]
reduces to Np(Ek,∆m, f, s) (1.7).

3.2. Results on the sequence space N
[
A, f, q,∆(α), p

]
. We use Lemma 2.5

to find the following results. The constants C and H, which are used in these
results, are same as in Lemma 2.5.

Lemma 3.1. (1) Let x = (xk) and y = (yk) be two elements of N
[
A, f, q,∆(α), p

]
.

Then,

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)(xk + yk)

))]pk
≤ C

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk +
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)yk

))]pk) (3.3)

for all non-negative integer n.
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(2) Let a be an element of C. Then,
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)(axk)

))]pk
≤ max

{
1, (1 + b|a|c)H

}( ∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk) (3.4)

for all non-negative integer n.
(3) Let f = (fk) and g = (gk) be two sequences of modulus functions. Then,

∞∑
k=0

ank
[
(fk + gk)

(
qk
(
∆(α)xk

))]pk
≤ C

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk +
∞∑
k=0

ank
[
gk
(
qk
(
∆(α)xk

))]pk) (3.5)

for all non-negative integer n.
(4) Let q = (qk) and q′ = (q′k) be two sequences of seminorms. Then,

∞∑
k=0

ank
[
fk
(
(qk + q′k)

(
∆(α)xk

))]pk
≤ C

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk +
∞∑
k=0

ank
[
fk
(
q′k
(
∆(α)xk

))]pk) (3.6)

for all non-negative integer n.

Proof. Proof of this lemma is easy, so we omit it. �

Theorem 3.2. The set N
[
A, f, q,∆(α), p

]
is a linear space over C.

Proof. Using part 1 of Lemma 3.1, we can easily prove this theorem. So we omit
the proof. �

Theorem 3.3. The sequence space N
[
A, f, q,∆(α), p

]
is a paranormed space with

paranorm g defined by

g(x) = sup
n

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk) 1
M

,

where M = max {1, H} and H = sup
k
pk <∞.

Proof. Let x = (xk) and y = (yk) be two elements of the space N
[
A, f, q,∆(α), p

]
and θ = (0, 0, 0, ...) be the zero of this space. Clearly, g(x) ≥ 0, g(θ) = 0 and
g(−x) = g(x). From Minkowski’s inequality, we have(

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)(xk + yk)

))]pk) 1
M

≤

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk) 1
M

+

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)yk

))]pk) 1
M

. (3.7)
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Taking supremum of both sides of this inequality, we get g(x+ y) ≤ g(x) + g(y).
To prove g to be a jointly continuous function, it is enough to show that for a
fixed x = (xk), g(tmx)→ 0 as tm → 0. As tm → 0, there exists a natural number
n0 such that |tm| < 1 for all m ≥ n0. Thus,

qk
(
∆(α)tmxk

)
= |tm|qk

(
∆(α)xk

)
< qk

(
∆(α)xk

)
(3.8)

for all m ≥ n0. Consequently,

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)tmxk

))]pk ≤ ∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
<∞ (3.9)

for all m ≥ n0. Since the above sum is finite, there exists a natural number k0
for each real number ε > 0 such that

∞∑
k=k0

ank
[
fk
(
qk
(
∆(α)tmxk

))]pk
<
ε

2
. (3.10)

Now, we consider a function h such that

h(µ) =

k0∑
k=0

ank
[
fk
(
qk
(
∆(α)µxk

))]pk
.

Clearly, h is a continuous function with h(0) = 0. Then for each ε > 0, there
exists a real number δ > 0 such that |h(µ)| < ε

2
whenever |µ| < δ. Since tm → 0,

we can find a natural number n1 such that |tm| < δ for all m ≥ n1. Replacing µ
by tm, we get h(tm) < ε

2
, i.e.

k0∑
k=0

ank
[
fk
(
qk
(
∆(α)tmxk

))]pk
<
ε

2
. (3.11)

Inequalities (3.10) and (3.11) imply that g(tmx) → 0 as tm → 0. Thus, g is
a jointly continuous function. Hence, N

[
A, f, q,∆(α), p

]
is a paranormed space

with the paranorm g. �

Theorem 3.4. Let A = [ank] be a non-negative infinite matrix whose every col-
umn has at least one non-zero element. Let (Ek, qk) be a sequence of complete
seminormed spaces and f = (fk) be a sequence of modulus functions such that
each fk is strictly increasing. Then the sequence space N

[
A, f, q,∆(α), p

]
is a

complete paranormed space with respect to the paranorm g defined by

g(x) = sup
n

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk) 1
M

,

where M = max {1, H} and H = sup
k
pk <∞.

Proof. We have already shown that the sequence space N
[
A, f, q,∆(α), p

]
is a

paranormed space with the paranorm g. It remains to prove that the space is

complete with respect to g. For this let (x(i))i, where x(i) = (x
(i)
k )k be a Cauchy
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sequence in N
[
A, f, q,∆(α), p

]
. Then for every real number ε > 0, there exists a

natural number i0 such that

g(x(i) − x(j)) < ε (3.12)

for all i, j ≥ i0. This implies that

sup
n

(
∞∑
k=0

ank

[
fk

(
qk

(
∆(α)(x

(i)
k − x

(j)
k )
))]pk) 1

M

< ε (3.13)

for all i, j ≥ i0. Then,

∞∑
k=0

ank

[
fk

(
qk

(
∆(α)(x

(i)
k − x

(j)
k )
))]pk

< εM (3.14)

for all i, j ≥ i0 and for all n. Since each column of the matrix A has at least
one non zero element, so we may suppose an00 is a nonzero element in the first
column. Then for n = n0 and k = 0, we have

an00

[
f0

(
q0

(
∆(α)(x

(i)
0 − x

(j)
0 )
))]p0

< εM for all i, j ≥ i0.

Since an00 and p0 both are greater than zero, we can write

f0

(
q0

(
∆(α)(x

(i)
0 − x

(j)
0 )
))

<

(
εM

an00

) 1
p0

for all i, j ≥ i0.

Since f0 is a strictly increasing and continous function, we can find an interval
[0, c] where it is invertible. Then, we have

q0

(
∆(α)x

(i)
0 −∆(α)x

(j)
0

)
< f−10

((
εM

an00

) 1
p0

)
= ε′ for all i, j ≥ i0.

This shows that (∆(α)x
(i)
0 ) = (x

(i)
0 ) is a Cauchy sequence in E0 with respect to

q0. Since E0 is complete, (x
(i)
0 ) will converge to an element of E0, say x0. If we

repeat the above process for second column of the matrix A, then we find that

the sequence (∆(α)x
(i)
1 ) = (x

(i)
1 − αx

(i)
0 ) is a Cauchy sequence. Also, (x

(i)
1 ) =

(∆(α)x
(i)
1 ) + α(x

(i)
0 ) is a Cauchy sequence, since it is a linear combination of two

Cauchy sequences. In this way, we can prove that each sequence (x
(i)
k ) is a Cauchy

sequence and converges to xk (say). Now, we claim that the sequence (x(i))
converges to x = (xk) in N

[
A, f, q,∆(α), p

]
with respect to g. Taking j tends to

infinity in the Inequality (3.12), we get

g(x(i) − x) < ε (3.15)

for all i ≥ i0. This shows that (x(i)) converges to x = (xk). Now it remains to
prove that x = (xk) ∈ N [A, f, q,∆(α), p]. We have,

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
=
∞∑
k=0

ank

[
fk

(
qk

(
∆(α)

(
xk − x(i0)k + x

(i0)
k

)))]pk
.
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From part 1. of Lemma (3.1), we can write
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
≤ C

{
∞∑
k=0

ank

[
fk

(
qk

(
∆(α)

(
xk − x(i0)k

)))]pk
+
∞∑
k=0

ank

[
fk

(
qk

(
∆(α)(x

(i0)
k )
))]pk}

.

(3.16)

Using inequality (3.15), we get

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
< C

{
ε+

∞∑
k=0

ank

[
fk

(
qk

(
∆(α)(x

(i0)
k )
))]pk}

.

Since ε is arbitrary, we have
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
< C

∞∑
k=0

ank

[
fk

(
qk

(
∆(α)(x

(i0)
k )
))]pk

.

Since N is normal, the sequence

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk)
n

∈ N . This im-

plies that the sequence x = (xk) ∈ N
[
A, f, q,∆(α), p

]
. Thus the spaceN

[
A, f, q,∆(α), p

]
is a complete paranormed space. �

Theorem 3.5. Let f = (fk) and g = (gk) be two sequences of modulus functions.
Then

N
[
A, f, q,∆(α), p

]
∩N

[
A, g, q,∆(α), p

]
⊆ N

[
A, f + g, q,∆(α), p

]
.

Proof. Let x = (xk) ∈ N
[
A, f, q,∆(α), p

]
∩ N

[
A, g, q,∆(α), p

]
. Then the se-

quences

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk)
n

and

(
∞∑
k=0

ank
[
gk
(
qk
(
∆(α)xk

))]pk)
n

both

are in N . Now, from Part 3. of Lemma 3.1, we can write
∞∑
k=0

ank
[
(fk + gk)

(
qk
(
∆(α)xk

))]pk
≤ C

{∑
ank
[
fk
(
qk
(
∆(α)xk

))]pk
+
∑

ank
[
gk
(
qk
(
∆(α)xk

))]pk}
. (3.17)

Since N is normal,

(
∞∑
k=0

ank
[
(fk + gk)

(
qk
(
∆(α)xk

))]pk)
n

∈ N . Then, x = (xk)

∈ N
[
A, f + g, q,∆(α), p

]
. Hence, the above inclusion relation holds. �

Theorem 3.6. Let q = (qk) and q′ = (q′k) be two sequences of seminorms. Sup-
pose addition of two sequences of seminorms is defined as q + q′ = (qk + q′k).
Then,

N
[
A, f, q,∆(α), p

]
∩N

[
A, f, q′,∆(α), p

]
⊆ N

[
A, f, q + q′,∆(α), p

]
.

Proof. Proof of this theorem runs on the similar lines as that of the Theorem 3.5.
So we omit the proof. �
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Theorem 3.7. If q = (qk) and q′ = (q′k) are two sequences of seminorms such
that qk is stronger than q′k for each k, then

N
[
A, f, q,∆(α), p

]
⊆ N

[
A, f, q′,∆(α), p

]
.

Proof. Let x = (xk) ∈ N
[
A, f, q,∆(α), p

]
. Then,

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk)
n

∈ N . Since each qk is stronger than corresponding q′k, we have a natural number
Mk corresponding to each non-negative integer k such that q′k(t) ≤ Mkqk(t).
Let M = max {Mk}. Then, q′k(t) ≤ Mqk(t) for all non-negative integers k.
Consequently, q′k

(
∆(α)xk

)
≤ Mqk

(
∆(α)xk

)
. Using Remark 2.6 and Lemma 2.5,

we get
∞∑
k=0

ank
[
fk
(
q′k
(
∆(α)xk

))]pk ≤ max
{

1,MH
} ∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
.

(3.18)

As the sequence space N is normal,

(
∞∑
k=0

ank
[
fk
(
q′k
(
∆(α)xk

))]pk)
n

∈ N , i.e.

x = (xk) ∈ N
[
A, f, q′,∆(α), p

]
. Hence, the inclusion holds. �

Corollary 3.8. If q = (qk) and q′ = (q′k) are two sequences of seminorms such
that qk is equivalent to q′k for each k, then

N
[
A, f, q,∆(α), p

]
= N

[
A, f, q′,∆(α), p

]
.

Theorem 3.9. Let f = (fk) and f ′ = (f ′k) be two sequences of modulus functions
such that fk(1) is finite for each k. Let A = [ank] be a non-negative infinite matrix

such that

(
∞∑
k=0

ank

)
n

∈ N . Then,

N
[
A, f ′, q,∆(α), p

]
⊆ N

[
A, f ◦ f ′, q,∆(α), p

]
,

where the composition of two sequence of functions is defined as f ◦f ′ = (fk ◦f ′k).

Proof. Let x = (xk) ∈ N [A, f ′, q,∆(α), p]. Then (
∞∑
k=0

ank[f
′
k(qk(∆

(α)xk))]
pk)n ∈ N .

Since each fk is continuous and fk(0) = 0 for each k, we can choose δ ∈ (0, 1)
corresponding to an arbitrary ε > 0 such that fk(t) < ε for 0 ≤ t ≤ δ. Now, we
take tk = f ′k

(
qk
(
∆(α)xk

))
and consider

∞∑
k=1

ank[fk(tk)]
pk =

∑
1

ank[fk(tk)]
pk +

∑
2

ank[fk(tk)]
pk , (3.19)

where the first summation is over tk ≤ δ and the second is over tk > δ. For tk ≤ δ,
we have fk(tk) < ε and so

∑
1

ank[fk(tk)]
pk <

∑
1

ank[ε]
pk . Then from Lemma 2.5,

we get ∑
1

ank[fk(tk)]
pk < max (1, εH)

∑
1

ank ≤ max (1, εH)
∞∑
k=0

ank. (3.20)
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For tk > δ, we have tk <
tk
δ

. So, from Remark 2.6, we get

fk(tk) < fk

(
tk
δ

)
≤
(

1 +

⌊
tk
δ

⌋)
fk(1) ≤ 2fk(1)

tk
δ
. (3.21)

Let η = max
k

(fk(1)), then fk(tk) < 2η tk
δ
. Using Lemma 2.5, we find that

∑
2

ank[fk(tk)]
pk ≤ max

(
1,

(
2η

δ

)H) ∞∑
k=0

ank[tk]
pk . (3.22)

By Inequalities (3.19), (3.20) and (3.22), we have

∞∑
k=1

ank[fk(tk)]
pk ≤ max (1, εH)

∞∑
k=0

ank + max

(
1,

(
2η

δ

)H) ∞∑
k=0

ank[tk]
pk .

Since N is normal,(
∞∑
k=1

ank[fk(tk)]
pk

)
n

=

(
∞∑
k=1

ank
[
fk ◦ f ′k

(
qk
(
∆(α)xk

))]pk)
n

∈ N.

Then, x = (xk) belongs to N
[
A, f ◦ f ′, q,∆(α), p

]
. Hence, the inclusion holds. �

Theorem 3.10. Let f = (fk) be a sequence of modulus functions such that
fk(t) ≤ fk−1(t) for all t ∈ [0,∞) and q = (qk) be a sequence of seminorms
such that qk(t) ≤ qk−1(t) for all t. Suppose A = [ank] is a non-negative infi-
nite matrix such that ank ≤ an(k−1) for all non-negative integers n and k and
suppose p = (pk ≡ p) is a constant sequence of positive real number. Then
N
[
A, f, q,∆(α−1), p

]
⊂ N

[
A, f, q,∆(α), p

]
and the inclusion is strict, in general.

Proof. Let x = (xk) ∈ N [A, f, q,∆(α−1), p]. Then, (
∞∑
k=0

ank [fk (qk (∆(α−1) xk)) ]p

)n ∈ N . As fk(t) ≤ fk−1(t), qk(t) ≤ qk−1(t) and ank ≤ an(k−1), we have
∞∑
k=0

ank
[
fk
(
qk
(
∆(α−1)xk−1

))]p ≤ ∞∑
k=0

an(k−1)
[
fk−1

(
qk−1

(
∆(α−1)xk−1

))]p
=
∞∑
k=0

an(k)
[
fk
(
qk
(
∆(α−1)xk

))]p
.

Since N is normal,

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α−1)xk−1

))]p)
n

∈ N . Now,

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]p
=
∞∑
k=0

ank
[
fk
(
qk
(
∆(α−1)(xk − xk−1)

))]p
≤ C

{
∞∑
k=0

ank
[
fk
(
qk
(
∆(α−1)xk

))]p
+
∞∑
k=0

ank
[
fk
(
qk
(
∆(α−1)xk−1

))]p}
.
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Again N is normal implies

(
∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk)
n

∈ N . This implies

that x = (xk) ∈ N
[
A, f, q,∆(α), p

]
. Thus the inclusion holds. �

To show strictness of the above inclusion relation, we consider the following
example in which we show that there exists a sequence x = (xk) in the sequence
space l∞

[
A, f, q,∆(α), p

]
, but not in the sequence space l∞

[
A, f, q,∆(α−1), p

]
.

Example 3.11. Let A = I be the identity matrix of infinite order. Consider the
terms of the sequences f = (fk), q = (qk), p = (pk) and x = (xk) as fk(x) = x,
qk(x) = |x|, pk = 1 and xk = 1 for all non-negative integer k respectively. Then,

sup
n

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
= sup

n
|1− (α)

1!
+

(α)(α− 1)

2!
+ . . .

+ (−1)n
(α)(α− 1)...(α− (n− 1))

n!
|

= sup
n
|Tn(α)|(say).

If we take α = 1
2
, then sup

n
|Tn(α)| < ∞, whereas sup

n
|Tn(α − 1)| = ∞. So,

x = (xk) ∈ l∞

[
I, f, q,∆( 1

2
), p
]
, but x = (xk) /∈ l∞

[
I, f, q,∆(−1

2
), p
]
. Hence the

inclusion relation is strict in general.

Theorem 3.12. The sequence space N
[
A, f, q,∆(α), p

]
is not solid in general.

We consider the following example to show this result.

Example 3.13. As in the previous example, suppose A = I, fk(x) = x, qk(x) =
|x| and pk = 1 for all non-negative integer k. Let α = −1

2
. Consider the sequences

x = (xk) = ((−1)k) and y = (yk) = (1). Clearly, |yk| ≤ |xk| for each k. Now,

sup
n

∞∑
k=0

ank
[
fk
(
qk
(
∆(α)xk

))]pk
= sup

n
|1 +

(α)

1!
+

(α)(α− 1)

2!
+ . . .

+
(α)(α− 1) . . . (α− (n− 1))

n!
|

= sup
n
|T ′n| (say).

The sequence (T ′n) converges to (1 + 1)α = (1 + 1)−
1
2 = 1√

2
. Therefore, sup

n
|T ′n| <

∞. Now,

sup
n

∞∑
k=0

ank[fk(qk(∆
(α)yk))]

pk = sup
n
|1− (α)

1!
+

(α)(α− 1)

2!
+ . . .

+ (−1)n
(α)(α− 1)...(α− (n− 1))

n!
|

= sup
n
|(T ′′n )|,
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where T ′′n → (1 + (−1))α = (1 + (−1))−
1
2 = ∞. Therefore, sup

n
|T ′′n | = ∞.

So, x = (xk) ∈ l∞
[
A, f, q,∆(α), p

]
and y = (yk) /∈ l∞

[
A, f, q,∆(α), p

]
, whereas

|yk| ≤ |xk| for each k, i.e. the sequence space l∞
[
A, f, q,∆(α), p

]
is not solid.

Theorem 3.14. Let us denote the infinite matrix of ones by J , i.e. all entries
of J are 1. If 0 < inf

k
tk < tk ≤ rk < sup

k
rk < ∞ for all non-negative integer k,

then the inclusion l∞
[
J, f, q,∆(α), t

]
⊆ l∞

[
J, f, q,∆(α), r

]
holds.

Proof. Let x = (xk) ∈ l∞
[
J, f, q,∆(α), t

]
. This implies that

sup
n

∞∑
k=0

[
fk
(
qk
(
∆(α)xk

))]tk
=
∞∑
k=0

[
fk
(
qk
(
∆(α)xk

))]tk
<∞.

Then for sufficiently large k, say k0, we have[
fk
(
qk
(
∆(α)xk

))]tk ≤ 1 (3.23)

for all k ≥ k0. Consequently,{[
fk
(
qk
(
∆(α)xk

))]tk} rk
tk ≤

[
fk
(
qk
(
∆(α)xk

))]tk
.

for all k ≥ k0. Taking summation from k0 to ∞ both side, we get
∞∑

k=k0

[
fk
(
qk
(
∆(α)xk

))]rk ≤ ∞∑
k=k0

[
fk
(
qk
(
∆(α)xk

))]tk
<∞,

This implies that sup
n

∞∑
k=0

[
fk
(
qk
(
∆(α)xk

))]rk < ∞. So, x = (xk) belongs to

l∞
[
J, f, q,∆(α), r

]
. Thus, the inclusion relation holds. �

4. Conclusions

The purpose of this article was to give an insight to the concepts of fractional
difference operator and modulus function by defining a new class of sequence
spaces and studying properties of the spaces of this class.
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