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A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS
DEFINED BY MEANS OF DIFFERENTIAL SUBORDINATION
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Abstract. The aim of this paper is to introduce a new class of harmonic
functions defined by use of a subordination. We find necessary and sufficient
conditions, radii of starlikeness and convexity and compactness for this class of
functions. Moreover, by using extreme points theory we also obtain coefficients
estimates, distortion theorems for this class of functions. On the other hand,
some results (corollaries) on the paper are pointed out.

1. Introduction and preliminaries

Let H denote the family of continuous complex valued harmonic functions
which are harmonic in the open unit disk U = {z : z ∈ C and |z| < 1} and let A
be the subclass of H consisting of functions which are analytic in U. A function
harmonic in U may be written as f = h + g, where h and g are members of
A. We call h the analytic part and g co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in U is
that |h′(z)| > |g′(z)| (see Clunie and Sheil-Small [1]). To this end, without loss
of generality, we may write

h(z) = z +
∞∑
k=2

akz
k and g(z) =

∞∑
k=2

bkz
k. (1.1)
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Let SH denote the family of functions f = h+g which are harmonic, univalent,
and sense-preserving in U for which f(0) = fz(0)−1 = 0. The subclass SH0 of SH
consists of all functions in SH which have the additional property fz̄(0) = b1 = 0.

In 1984 Clunie and Sheil-Small [1] and (more recently) by Jahangiri and Sil-
verman [5] investigated the class SH as well as its geometric subclasses and
obtained some coefficient bounds. Since then, there have been several related
papers on SH and its subclasses. In the present sequel to these earlier investi-
gations, Jahangiri et al. [6] applied the Alexander integral transforms of certain
analytic functions (which are starlike or convex of positive order) with a view to
investigating the construction of sense-preserving, univalent, and close-to-convex
harmonic functions.

Note that SH reduces to the class S of normalized analytic univalent functions
in U , if the co-analytic part of f is identically zero.

For f ∈ S, the differential operator Dn (n ∈ N0 = N∪{0}) of f was introduced
by Sălăgean [9]. For f = h + g given by (1.1), Jahangiri et al. [8] defined the
modified Sălăgean operator of f as

Dnf(z) = Dnh(z) + (−1)nDng(z), (1.2)

where

Dnh(z) = z +
∞∑
k=2

knakz
k, Dng(z) =

∞∑
k=2

knbkz
k.

We say that a function f : U → C is subordinate to a function g : U → C, and
write f(z) ≺ g(z), if there exists a complex valued function w which maps U into
itself with w(0) = 0, such that

f(z) = g(w(z)) (z ∈ U).

Furthermore, if the function g is univalent in U , then we have the following
equivalence:

f (z) ≺ g (z)⇔ f(0) = g(0) and f(U) ⊂ g(U).

The Hadamard product (or convolution) of functions f1 and f2 of the form

fk(z) = z +
∞∑
k=2

at,kz
k +

∞∑
k=2

bt,kzk (z ∈ U, t ∈ {1, 2})

is defined by

(f1 ∗ f2)(z) = z +
∞∑
k=2

a1,k a2,kz
k +

∞∑
k=2

b1,k b2,kzk (z ∈ U).

Denote by SH0
δ (n,A,B) the subclass of SH0 consisting of functions f of the

form (1.1) that satisfy the condition

δDn+2f(z) + (1− δ)Dn+1f (z)

δDn+1f(z) + (1− δ)Dnf (z)
≺ 1 + Az

1 +Bz
, (1.3)

(0 ≤ δ ≤ 1,−B ≤ A < B ≤ 1)

where Dnf (z) is defined by (1.2).
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By suitably specializing the parameters, the class SH0
δ (n,A,B) reduces to the

various subclasses of harmonic univalent functions, such as,
(i) SH0

0 (λ,A,B) = Hλ(A,B), λ ∈ N0 = N ∪ {0} ([4]),
(ii) SH0

0 (0, A,B) = S∗H(A,B) ∩ SH0 ([2]),
(iii) SH0

0 (n, 2α− 1, 1) = H0(n, α) ([8]),
(iv) SH0

0 (0, 2α− 1, 1) = S∗H0(α) ([7], [10], [11]),
(v) SH0

0 (1, 2α− 1, 1) = SH0
1 (0, 2α− 1, 1) = ScH0(α) ([7]).

Making use of the techniques and methodology used by Dziok (see [2], [3]),
Dziok et al. [4], in this paper we find necessary and sufficient conditions, distortion
bounds, radii of starlikeness and convexity, compactness and extreme points for
the above defined class SH0

δ (n,A,B).

2. Main results

First theorem provides a necessary and sufficient convolution condition for the
harmonic functions in SH0

δ (n,A,B).

Theorem 2.1. A function f belongs to the class SH0
δ (n,A,B) if and only if

f ∈ SH0 and

Dnf (z) ∗ Φ(z; ζ) 6= 0 (ζ ∈ C, |ζ| = 1, z ∈ U),

where

Φ(z; ζ) = (1+Aζ)(δ−1)z3+(δ+1)z2+[B(2δ−1)+A(2−δ)]ζz2+(B−A)ζz
(1−z)3

−(−1)n (1−δ)(1+Aζ)z̄3−3(1−δ)z̄2−[B+(2−3δ)A]ζz̄2+(1−2δ)[2+(B+A)ζ]z̄

(1−z̄)3 .

Proof. Let f ∈ SH0. Then f ∈ SH0
δ (n,A,B) if and only if (1.3) holds or equiv-

alently

δDn+2f(z) + (1− δ)Dn+1f (z)

δDn+1f(z) + (1− δ)Dnf (z)
6= 1 + Aζ

1 +Bζ
(ζ ∈ C, |ζ| = 1, z ∈ U). (2.1)

Now for

Dnh(z) = Dnh(z) ∗ z

1− z , D
n+1h(z) = Dnh(z) ∗ z

(1− z)2
and Dn+2h(z) = Dnh(z) ∗ z + z2

(1− z)3
,

the inequality (2.1) yields

(1 +Bζ)[δDn+2f(z) + (1− δ)Dn+1f (z)]− (1 +Aζ)[δDn+1f(z) + (1− δ)Dnf (z)]

= Dnh(z) ∗
{

(1 +Bζ)

[
δz + δz2

(1− z)3
+

(1− δ)z
(1− z)2

]
− (1 +Aζ)

[
δz

(1− z)2
+

(1− δ)z
1− z

]}

+(−1)nDng(z) ∗
{

(1 +Bζ)

[
δz + δz2

(1− z)3
− (1− δ)z

(1− z)2

]
+ (1 +Aζ)

[
δz

(1− z)2
− (1− δ)z

1− z

]}
= Dnf (z) ∗ Φ(z; ζ) 6= 0.

�

Next we give the sufficient coefficient bound for functions in SH0
δ (n,A,B).
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Theorem 2.2. Let f = h + g be so that h and g are given by (1.1). Then
f ∈ SH0

δ (n,A,B), if
∞∑
k=2

(φk |ak|+ ψk |bk|) ≤ B − A, (2.2)

where

φk = kn[(B + 1) k − (A+ 1)] [1 + δ(k − 1)] (2.3)

and

ψk = kn[(B + 1) k + (A+ 1)] |1− δ (k + 1)| . (2.4)

Proof. It is easy to see that the theorem is true for f(z) = z. So, we assume that
ak 6= 0 or bk 6= 0 for k ≥ 2. Since φk ≥ k (B − A) and ψk ≥ k (B − A) by (2.2),
we obtain

|h′(z)| − |g′(z)| ≥ 1−
∞∑
k=2

k |ak| |z|k−1 −
∞∑
k=2

k |bk| |z|k−1

≥ 1− |z|
∞∑
k=2

(k |ak|+ k |bk|)

≥ 1− |z|
B − A

∞∑
k=2

(φk |ak|+ ψk |bk|)

≥ 1− |z| > 0.

Therefore f is sense preserving and locally univalent in U . For the univalence
condition, consider z1, z2 ∈ U so that z1 6= z2. Then∣∣∣∣zk1 − zk2z1 − z2

∣∣∣∣ =

∣∣∣∣∣
k∑

m=1

zm−1
1 zk−m2

∣∣∣∣∣ ≤
k∑

m=1

∣∣zm−1
1

∣∣ ∣∣zk−m2

∣∣ < k, k ≥ 2.

Hence

|f (z1)− f (z2)| ≥ |h (z1)− h (z2)| − |g (z1)− g (z2)|

≥

∣∣∣∣∣z1 − z2 −
∞∑
k=2

ak
(
zk1 − zk2

)∣∣∣∣∣−
∣∣∣∣∣
∞∑
k=2

bk
(
zk1 − zk2

)∣∣∣∣∣
≥ |z1 − z2| −

∞∑
k=2

|ak|
∣∣zk1 − zk2 ∣∣− ∞∑

k=2

|bk|
∣∣zk1 − zk2 ∣∣

= |z1 − z2|

(
1−

∞∑
k=2

|ak|
∣∣∣∣zk1 − zk2z1 − z2

∣∣∣∣− ∞∑
k=2

|bk|
∣∣∣∣zk1 − zk2z1 − z2

∣∣∣∣
)

> |z1 − z2|

(
1−

∞∑
k=2

k |ak| −
∞∑
k=2

k |bk|

)
≥ 0
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which proves univalence.
On the other hand, f ∈ SH0

δ (n,A,B) if and only if there exists a complex
valued function w; w(0) = 0, |w(z)| < 1 (z ∈ U) such that

δDn+2f(z) + (1− δ)Dn+1f (z)

δDn+1f(z) + (1− δ)Dnf (z)
=

1 + Aw(z)

1 +Bw(z)

or equivalently∣∣∣∣ δDn+2f(z) + (1− 2δ)Dn+1f(z)− (1− δ)Dnf (z)

−BδDn+2f (z) + [δ (A+B)−B]Dn+1f(z) + A (1− δ)Dnf(z)

∣∣∣∣ < 1. (2.5)

The above inequality (2.5) holds, since for |z| = r (0 < r < 1) we obtain∣∣δDn+2f(z) + (1− 2δ)Dn+1f(z)− (1− δ)Dnf (z)
∣∣

−
∣∣BδDn+2f (z)− [δ (A+B)−B]Dn+1f(z)−A (1− δ)Dnf(z)

∣∣
=

∣∣∣∣∣
∞∑
k=2

kn
{
δk2 + (1− 2δ) k − (1− δ)

}
akz

k + (−1)n
∞∑
k=2

kn
[
δk2 − (1− 2δ) k − (1− δ)

]
bkzk

∣∣∣∣∣
−

∣∣∣∣∣(B −A) z +

∞∑
k=2

kn
{
Bδk2 + [B − δ (A+B)] k −A (1− δ)

}
akz

k

+ (−1)n
∞∑
k=2

kn
{
Bδk2 − [B − δ (A+B)] k −A (1− δ)

}
bkzk

∣∣∣∣∣
≤

∞∑
k=2

kn (k − 1) [δ(k − 1) + 1] |ak| rk

+

∞∑
k=2

kn (k + 1) |δ(k + 1)− 1| |bk| rk − (B −A) r

+

∞∑
k=2

kn (Bk −A) [δ(k − 1) + 1] |ak| rk

+

∞∑
k=2

kn (Bk +A) |δ(k + 1)− 1| |bk| rk

≤ r

{
∞∑
k=2

φk |ak| rk−1 +

∞∑
k=2

ψk |bk| rk−1 − (B −A)

}
< 0.

Therefore f ∈ SH0
δ (n,A,B), and so the proof is complete. �

Next we show that the condition (2.2) is also necessary for the functions f ∈ SH
to be in the class SHT 0

δ (n,A,B) = T n ∩ SH0
δ (n,A,B), where T n is the class of

functions f = h+ g ∈ SH0 so that

f = h+ g = z −
∞∑
k=2

|ak| zk + (−1)n
∞∑
k=2

|bk| zk (z ∈ U). (2.6)

Let ψk be defined by (2.4). For 1
3
< δ ≤ 1, we have

ψk = kn[(B + 1) k + (A+ 1)] [δ (k + 1)− 1] .



HARMONIC UNIVALENT FUNCTIONS OBTAINED BY MEANS OF ... 33

Theorem 2.3. Let f = h + g be defined by (2.6). Then f ∈ SHT 0
δ (n,A,B) if

and only if the condition (2.2) holds where 1
3
< δ ≤ 1.

Proof. The ‘if’ part follows from Theorem 2.2. For the ‘only-if’ part, assume that
f ∈ SHT 0

δ (n,A,B), then by (2.5) we have∣∣∣∣∣∣
∞∑

k=2
kn{[δk2+(1−2δ)k−(1−δ)]|ak|zk+[δk2−(1−2δ)k−(1−δ)]|bk|z̄k}

(B−A)z−
∞∑

k=2
kn{[Bδk2+[B−δ(A+B)]k−A(1−δ)]|ak|zk+[Bδk2−[B−δ(A+B)]k−A(1−δ)]|bk|z̄k}

∣∣∣∣∣∣ < 1.

For z = r < 1 we obtain
∞∑

k=2
kn{[δk2+(1−2δ)k−(1−δ)]|ak|+[δk2−(1−2δ)k−(1−δ)]|bk|}rk−1

(B−A)z−
∞∑

k=2
kn{[Bδk2+[B−δ(A+B)]k−A(1−δ)]|ak|+[Bδk2−[B−δ(A+B)]k−A(1−δ)]|bk|}rk−1

< 1.

Thus, for φk and ψk as defined by (2.3) and (2.4), we have

∞∑
k=2

[φk |ak|+ ψk |bk|] rk−1 < B − A (0 ≤ r < 1). (2.7)

Let {σk} be the sequence of partial sums of the series

∞∑
k=2

[φk |ak|+ ψk |bk|] .

Then {σk} is a nondecreasing sequence and by (2.7) it is bounded above by B−A.
Thus, it is convergent and

∞∑
k=2

[φk |ak|+ ψk |bk|] = lim
k→∞

σk ≤ B − A.

This gives the condition (2.2). �

In the following we show that the class of functions of the form (2.6) is convex
and compact.

Theorem 2.4. The class SHT 0
δ (n,A,B) is a convex and compact subset of SH.

Proof. Let ft ∈ SHT 0
δ (n,A,B), where

ft(z) = z −
∞∑
k=2

|at,k| zk + (−1)n
∞∑
k=2

|bt,k| zk (z ∈ U, t ∈ N). (2.8)

Then 0 ≤ η ≤ 1. Let f1, f2 ∈ SHT 0
δ (n,A,B) be defined by (2.8). Then

κ(z) = ηf1(z) + (1− η)f2(z)

= z −
∞∑
k=2

(η |a1,k|+ (1− η) |a2,k|) zk

+(−1)n
∞∑
k=2

(η |b1,k|+ (1− η) |b2,k|) zk
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and

∞∑
k=2

{φk [η |a1,k|+ (1− η) |a2,k|] + ψk [η |b1,k|+ (1− η) |b2,k|]}

= η
∞∑
k=2

{φk |a1,k|+ ψk |b1,k|}+ (1− η)
∞∑
k=2

{φk |a2,k|+ ψk |b2,k|}

≤ η (B − A) + (1− η) (B − A) = B − A.

Thus, the function κ = ηf1 + (1− η)f2 belongs to the class SHT 0
δ (n,A,B). This

means that the class SHT 0
δ (n,A,B) is convex.

On the other hand, for ft ∈ SHT 0
δ (n,A,B), t ∈ N and |z| ≤ r (0 < r < 1), we

get

|ft(z)| ≤ r +
∞∑
k=2

{|at,k|+ |bt,k|} rk

≤ r +
∞∑
k=2

{φk |at,k|+ ψk |bt,k|} rk

≤ r + (B − A) r2.

Therefore, SHT 0
δ (n,A,B) is locally uniformly bounded. Let

ft(z) = z −
∞∑
k=2

|at,k| zk + (−1)n
∞∑
k=2

|bt,k| zk (z ∈ U, t ∈ N)

and let f = h + g be so that h and g are given by (1.1). Using Theorem 2.3 we
obtain

∞∑
k=2

{φk |at,k|+ ψk |bt,k|} ≤ B − A. (2.9)

If we assume that ft → f , then we conclude that |at,k| → |ak| and |bt,k| → |bk|
as k → ∞ (t ∈ N). Let {σk} be the sequence of partial sums of the series
∞∑
k=2

{φk |ak|+ ψk |bk|}. Then {σk} is a nondecreasing sequence and by (2.9) it is

bounded above by B − A. Thus, it is convergent and

∞∑
k=2

{φk |ak|+ ψk |bk|} = lim
k→∞

σk ≤ B − A.

Therefore f ∈ SHT 0
δ (n,A,B) and therefore the class SHT 0

δ (n,A,B) is closed. In
consequence, the class SHT 0

δ (n,A,B) is compact subset of SH, which completes
the proof. �

We continue with the following lemma due to Jahangiri [7].
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Lemma 2.5. Let f = h+ g be so that h and g are given by (1.1). Furthermore,
let

∞∑
k=2

{
k − α
1− α

|ak|+
k + α

1− α
|bk|
}
≤ 1, (z ∈ U)

where 0 ≤ α < 1. Then f is harmonic, orientation preserving, univalent in U
and f is starlike of order α.

In the following theorems we obtain the radii of starlikeness and convexity for
functions in the class SHT 0

δ (n,A,B).

Theorem 2.6. Let 0 ≤ α < 1, φk and ψk be defined by (2.3) and (2.4). Then

r∗α(SHT 0
δ (n,A,B)) = inf

k≥2

[
1− α
B − A

min

{
φk

k − α
,
ψk

k + α

}] 1
k−1

. (2.10)

Proof. Let f ∈ SHT 0
δ (n,A,B) be of the form (2.6). Then, for |z| = r < 1, we get∣∣∣∣Df(z)− (1 + α)f(z)

Df(z) + (1− α)f(z)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
−αz −

∞∑
k=2

(k − 1− α) |ak| zk − (−1)n
∞∑
k=2

(k + 1 + α) |bk| zk

(2− α)z −
∞∑
k=2

(k + 1− α) |ak| zk − (−1)n
∞∑
k=2

(k − 1 + α) |bk| zk

∣∣∣∣∣∣∣∣
≤

α +
∞∑
k=2

{(k − 1− α) |ak|+ (k + 1 + α) |bk|} rk−1

2− α−
∞∑
k=2

{(k + 1− α) |ak|+ (k − 1 + α) |bk|} rk−1

.

Note (see Lemma 2.5) that f is starlike of order α in Ur if and only if∣∣∣∣Df(z)− (1 + α)f(z)

Df(z) + (1− α)f(z)

∣∣∣∣ < 1, z ∈ Ur

or
∞∑
k=2

{
k − α
1− α

|ak|+
k + α

1− α
|bk|
}
rk−1 ≤ 1. (2.11)

Moreover, by Theorem 2.3, we have
∞∑
k=2

{
φk

B − A
|ak|+

ψk
B − A

|bk|
}
rk−1 ≤ 1.

Since φk and ψk be defined by (2.3) and (2.4).
The condition (2.11) is true if

k − α
1− α

rk−1 ≤ φk
B − A

rk−1

and
k + α

1− α
rk−1 ≤ ψk

B − A
rk−1 (k = 2, 3, . . .)
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or if

r ≤ 1− α
B − A

min

{
φk

k − α
,
ψk

k + α

} 1
k−1

(k = 2, 3, . . .).

It follows that the function f is starlike of order α in the disk Ur∗α where

r∗α := inf
k≥2

[
1− α
B − A

min

{
φk

k − α
,
ψk

k + α

}] 1
k−1

.

The function

fk(z) = hk(z) + gk(z) = z − B − A
φk

zk + (−1)n
B − A
ψk

zk

proves that the radius r∗α cannot be any larger. Thus we have (2.10). �

Using a similar argument as above we obtain the following.

Theorem 2.7. Let 0 ≤ α < 1 and φk and ψk be defined by (2.3) and (2.4). Then

rcα(SHT 0
δ (n,A,B)) = inf

k≥2

[
1− α
B − A

min

{
φk

k(k − α)
,

ψk
k(k + α)

}] 1
k−1

.

Our next theorem is on the extreme points of SHT 0
δ (n,A,B).

Theorem 2.8. Extreme points of the class SHT 0
δ (n,A,B) are the functions f of

the form (1.1) where h = hk and g = gk are of the form

h1(z) = z, hk(z) = z − B−A
φk

zk,

gk(z) = (−1)nB−A
ψk

zk, (z ∈ U, k ≥ 2),
(2.12)

and 1
3
< δ ≤ 1.

Proof. Let gk = ηf1 + (1− η)f2 where 0 < η < 1 and f1, f2 ∈ SHT 0
δ (n,A,B) are

functions of the form

ft(z) = z −
∞∑
k=2

|at,k| zk + (−1)n
∞∑
k=2

|bt,k| zk (z ∈ U, t ∈ {1, 2}).

Then, by (2.2), we have

|b1,k| = |b2,k| =
B − A
ψk

,

and therefore a1,t = a2,t = 0 for t ∈ {2, 3, . . .} and b1,t = b2,t = 0 for t ∈
{2, 3, . . .} \ {k} . It follows that gk(z) = f1(z) = f2(z) and gk are in the class
of extreme points of the function class SHT 0

δ (n,A,B). Similarly, we can verify
that the functions hk(z) are the extreme points of the class SHT 0

δ (n,A,B). Now,
suppose that a function f of the form (1.1) is in the family of extreme points
of the class SHT 0

δ (n,A,B) and f is not of the form (2.12). Then there exists
m ∈ {2, 3, . . .} such that

0 < |am| <
B − A

mn[(B + 1)m− (A+ 1)] [1 + δ(m− 1)]
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or

0 < |bm| <
B − A

mn[(B + 1)m+ (A+ 1)] [δ(m+ 1)− 1]
.

If

0 < |am| <
B − A

mn {mn[(B + 1)m− (A+ 1)] [1 + δ(m− 1)]}
,

then putting

η =
|am|mn {mn[(B + 1)m− (A+ 1)] [1 + δ(m− 1)]}

B − A
and

ϕ =
f − ηhm

1− η
,

we have 0 < η < 1, hm 6= ϕ, and

f = ηhm + (1− η)ϕ.

Therefore, f is not in the family of extreme points of the class SHT 0
δ (n,A,B).

Similarly, if

0 < |bm| <
B − A

mn[(B + 1)m+ (A+ 1)] [δ(m+ 1)− 1]
,

then putting

η =
|bm|mn[(B + 1)m+ (A+ 1)] [δ(m+ 1)− 1]

B − A
and

ϕ =
f − ηgm

1− η
,

we have 0 < η < 1, gm 6= ϕ, and

f = ηgm + (1− η)ϕ.

It follows that f is not in the family of extreme points of the class SHT 0
δ (n,A,B)

and so the proof is completed. �

Therefore, by Theorem 2.8, we have the following corollary.

Corollary 2.9. Let f ∈ SHT 0
δ (n,A,B), be a function of the form (2.6). Then

|ak| ≤
B − A

kn[(B + 1) k − (A+ 1)] [δ(k − 1) + 1]

and

|bk| ≤
B − A

kn[(B + 1) k + (A+ 1)] [δ(k + 1)− 1]
.

The result is sharp for the extremal functions hn, gn of the form (2.12).

Corollary 2.10. Let f ∈ SHT 0
δ (n,A,B) and |z| = r < 1. Then

r − B − A
2n [(δ + 1) (2B − A+ 1)]

r2 ≤ |f(z)| ≤ r +
B − A

2n [(δ + 1) (2B − A+ 1)]
r2.

The following covering result follows from Corollary 2.10.
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Corollary 2.11. If f ∈ SHT 0
δ (n,A,B), then Ur ⊂ f(U) where

r = 1− B − A
2n [(δ + 1) (2B − A+ 1)]

.
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