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Abstract. In this paper, the dynamic response of two identical parallel non-
mindlin (i.e., not taking into account the effect of shear deformation and ro-
tatory inertia) plates which are elastically connected and subjected to a con-
stant moving load is considered. The fourth order coupled partial differential
governing equations is formulated and solved, using an approximate analytical
method by assuming; firstly, a series solution later on treating the resulting cou-
pled second order ordinary differential equations with an asymptotic method of
Struble. The differential transform method, being a semi-analytical technique,
is applied to the reduced coupled second order ordinary differential equations,
to get a non-oscillatory series solution. An after treatment technique, com-
prising of the Laplace transform and Pade approximation techniques, is finally
used via MAPLE ODE solver to make the series solution oscillatory. The
dynamic deflections of the upper and lower plates are presented in analytical
closed forms. The effect of the moving speed of the load and the elasticity
of the elastic layer on the dynamic responses of the double plate systems is
graphically shown and studied in details. The graphs of the plate’s deflections
for different speed parameters were plotted. It is however observed that the
transverse deflections of each of the plates increase with an increase in different
values of velocities for the moving load for a fixed time t.
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1. Introduction and preliminaries

Plates are solid structural elements having the geometry of two dimensions,
whose thickness is very small compared to its planar dimensions. Also, the ef-
fects of load on the plates generate stresses normal to the thickness of the plate. In
practical terms, the vibration analysis of plates have been explored and still being
studied by many researchers in the field of applied mathematics and engineering,
where, different constitutive governing equations with different end conditions
were formulated. In several literature previously written, single beam or double
beam systems, [4, 8, 12, 17, 21, 24] under moving loads acted upon by moving
forces have been studied. But much work have not been carried out on double
or multiplate systems, due to the problems encountered while trying to solve the
coupled fourth order partial differential equations governing the systems. Fryba,
[9] in his excellent monograph discussed the vibration of solids and structures un-
der moving loads. Furthermore, Gbadeyan and Oni [12] considered the dynamic
behavior of beams and rectangular plates under moving loads where it was shown
that the response amplitude of the moving force is greater than that of the moving
mass. Abu-Hilal [2], investigated the response of a double Euler–Bernoulli beams,
due to a moving loads. Moreover, literatures of [5, 8, 10, 14, 15, 16, 19, 20, 22, 24]
are work done on the theory and analysis of vibrations that are still producing
positive development in the field of engineering. However, double-plate systems
are very much applicable in engineering which includes, decking systems for rail-
ways viaducts and bridges, tunnels, anti slides and avalanche guards, industrial
flooring systems, commercial flooring with high loading capacities, construction
of trolleys and girders, and so many other applications. Also, its advantages in-
clude, provision of convenient transport, heavy loading capacity, great stability
and long fatigue life, and so on. Having gone through the work of Gbadeyan
and Hammed [11], where the influence of a moving mass of the dynamic behavior
of a visco-elastically connected prismatic double Raighley beam system having
arbitrary end support, in addition with the work of [3, 12, 13, 17, 18, 23], this
paper considered, the problem of the effect of the influence of the mass of the
moving load of constant magnitude and velocity of the dynamic behavior of the
finite double elastically connected non-mindlin’s plate with simply supported end
conditions. The considered system is governed by a pair of fourth order par-
tial differential equations, which is reduced to a pair of second order ordinary
differential equations by using a pair of assumed series solutions. The reduced
second order differential equation is further simplified, employing the approxi-
mate analytical method of Struble, which is commonly used to solve a weakly
non-linear oscillatory system. The differential transform method (DTM) [1], is
applied to obtain the solutions of the reduced coupled ordinary differential equa-
tions. Hence, a technique referred to as an after treatment (AT) [6, 7], comprising
of the Laplace transform and Pade approximation is applied to the differential
transform series solution, enlarging the convergence domain of the series solution
by truncating it, thereby making the solution oscillatory. The simply supported
end condition is considered as an example. The rest of the paper is organized
into different sections which includes. Section 2 involves the mathematical model
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formulation with the corresponding boundary and initial conditions and defin-
ing the parameters involved in the systems. Section 3 involves the discussion
of the method of solution . Section 4 presents the simplification of the coupled
second order differential equations. Section 5 involves the solution of the two
elastically connected double non-mindlin plate using DTM. Section 6, the simply
supported condition is considered as an example. In section 7, AT technique
is employed to obtain the solutions of upper plate W1(x, y; t) and lower plate
W2(x, y; t) generated with computational software MAPLE ODE solver and nu-
merical computations, is performed, and graphs were presented analytically and
conclusively.

2. Mathematical model formulation

A double plate system modeled as a two finite parallel upper and lower non-
mindlin plates inter-connected by an elastic core is considered. Figure 1, shows
that the upper plate is subjected to a load P1(x, y; t) having a mass Ml

Figure 1. Diagram of the interconnected plate system
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+K1[Ẇ2(x, y; t)− Ẇ1(x, y; t)] = 0.

(2.2)



DYNAMIC RESPONSE OF AN ELASTICALLY 43

The simply supported boundary conditions subjected to the pairs of fourth order
coupled partial differential equations in (2.1) and (2.2) are:

W1(lx, y; t) = W2(x, ly; t) = 0

W1(0, y; t) = W2(0, y; t) = 0

∂2W1(0, y; t)

∂x2
=
∂2W1(x, y; t)

∂x2
= 0

∂2W1(0, y; t)

∂y2
=
∂2W1(x, y; t)

∂x2
= 0.

(2.3)

While the corresponding initial conditions are:{
W1(x, y; t)|t=0 = 0 = Ẇ1(x, y; t)|t=0

W2(x, y; t)|t=0 = 0 = Ẇ2(x, y; t)|t=0.
(2.4)

Several parameters involved in the governing equations presented in (2.1)–(2.2)
are defined as follows:

The concentrated moving load P1(x, y; t) is

P1(x, y; t) =

{
Mlg −Ml

[
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+2V1
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∂t∂y
+ V 2

1
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∂t2

]}
δ(x− vt)(y − s)

(2.5)

The Dirac delta function, being an even function expressed as a Fourier cosine
series, is defined as:
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∞∑
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∞∑
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(2.6)

where

δ(x) =

{
0, x 6= 0,

∞, x = 0.

D is the flexural rigidity of the plate given as D = Eh3

12(1−θ) , and Ml is the mass of

the load P1(x, y; t) moving with a constant velocity V , also E is Young’s modulus,
θ is Poisson’s ratio ( θ < 1), x and y are the position coordinate in x and y
direction, K is the stiffness constant, µ is the constant mass per unit length of
the plates, ε is the fixed length of the plates, and t is the time. W1(x, y; t) is
the traversed displacement of the upper plate and W2(x, y; t) is also the traversed
displacement of the lower plate. Also, from (2.5), g is the acceleration due to
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gravity, V 2
1 W ′′

1 (x, y; t) represents the centrifugal acceleration, 2VW ′
1(x, y; t) is

the Coriolis acceleration, while Ẅ1(x, y; t) represents the local acceleration.

3. Method of solution

To solve the transverse dynamic responses W1(x, y; t) and W2(x, y; t), (2.1)–
(2.2) are transformed into a set of two ordinary differential equations. The method
of solution of employed in this paper, involves assuming the series of the form:

W1(x, y; t) =
∞∑
n=1

∞∑
m=1

φm,n (m,n; t)Vm(x)Vn(y),

W2(x, y; t) =
∞∑
n=1

∞∑
m=1

βm,n (m,n; t)Vm(x)Vn(y),

(3.1)

where

∂4W1(x, y; t)

∂x4
=

∞∑
m=1

∞∑
n=1

φm,n(m,n; t)V iv
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∂4W1(x, y; t)

∂y4
=

∞∑
m=1

∞∑
n=1

φm,n(m,n; t)Vm(x)V iv
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=
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m=1

∞∑
n=1

βm,n(m,n; t)Vm(x)V iv
n (y),

∂4W1(x, y; t)

∂t∂x
=
∞∑
k=1

∞∑
l=1

φ̇k,l(k, l; t)V
′
k(x)Vl(y),

∂2W1(x, y; t)

∂x2
=
∞∑
k=1

∞∑
l=1

φk,l(k, l; t)V
′′
k (x)V ′′l (y).

(3.2)

Substituting (3.2) into (2.1) yields



DYNAMIC RESPONSE OF AN ELASTICALLY 45[
∞∑
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∞∑
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∞∑
m=1

∞∑
n=1

φm,n(m,n; t)V ′′m(x)V ′′n (y)

+
∞∑
m=1

∞∑
n=1

φm,n(m,n; t)Vm(x)V iv
n (y) + µ

∞∑
m=1

∞∑
n=1

φm,n(m,n; t)V ′′m(x)V ′′n (y)

]

+K1

[
∞∑
m=1

∞∑
n=1

φm,n(m,n; t)Vm(x)Vn(y)−
∞∑
m=1

∞∑
n=1

βm,n(m,n; t)Vm(x)Vn(y)

]

= Mlg −Ml

[
∞∑
k=1

∞∑
l=1

φ̈k,l(k, l; t)V
′
k(x)Vl(y) + 2V1

∞∑
k=1

∞∑
l=1

φ̇k,l(k, l; t)V
′
k(x)Vl(y)

+V 2
1

∞∑
k=1

∞∑
l=1

φk,l(k, l; t)V
′′
k (x)V ′′l (y)

]
δ(x− vt)(y − s).

(3.3)
We assume that the load function P1(x, y; t) can also be expressed as

P1(x, y; t) =
∞∑
n=1

∞∑
m=1

φm,n(m,n; t)Vm(x)Vn(y), (3.4)

where, φm,n(m,n; t), βm,n(m,n; t), and ψm,n(m,n; t) are unknown functions of
time t and Vm(x), Vn(y) are the known deflection curves of a vibrating plate. For
the free vibration of a rectangular plate, we have, for the homogeneous part of
the governing equation in terms of the assumed solution,

D
[
V iv
m (x)Vn(y) + 2V ′′m(x)V ′′n (y) + Vm(x)V iv

n (y)
]
− µω2

m,nVm(x)Vn(y) = 0, (3.5)

where the frequency ω2
m,n for a simply supported plate is

ω2
m,n =

[
m4π4

L4
x

+ 2
m2n2π2

L2
xL

2
y

+
n4π4

L4
y

]
. (3.6)

Also, the Kth mode of vibration of a uniform plate in x-direction is given as

Vk(x) = sin
λk
lx

(x) + Ak cos
λk
lx

(x) +Bk sinh
λk
lx

(x) + Ck cosh
λk
lx

(x).

While the corresponding Lth mode of vibration of a uniform plate in x and also
y direction are

Vl(x) = sin
λy
ly

(y) + Ak cos
λy
ly

(y) +Bk sinh
λy
ly

(y) + Ck cosh
λy
ly

(y)

Vl(y) = sin
λy
ly

(y) + Ak cos
λy
ly

(y) +Bk sinh
λy
ly

(y) + Ck cosh
λy
ly

(y), (3.7)

where the constants Ak, Bk, Ck, and λk in (3.7) are determined by the simply
supported boundary conditions.
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After rearrangement, simplification and modification, (2.1) reduces to

φ̈m,n(m,n; t) + ω2
m,n(m,n; t)φm,n(m,n; t) +

K1

µ
φm,n(m,n; t)

+
K1

µ
βm,n(m,n; t) +

∞∑
k=1

∞∑
l=1

[q∗l (a, b; t) + V q∗2(a, b; t) + V q∗3(a, b; t)]

=
MgVmvtVmS

µ
.

(3.8)

Following the same procedure for the lower plate W2(x, y; t), (2.2) becomes

β̈m,n(m,n; t)+ω2
m,n(m,n; t)βm,n(m,n; t)+

K1

µ
φm,n(m,n; t)−K1

µ
βm,n(m,n; t) = 0,

(3.9)
where

q∗l (a, b; t) =4ε
∞∑
k=1

∞∑
l=1

φ̈k,l(m,n; t) cos
nπvt

lx
cos

mπs

ly
∆q(R, S)∆t(U, V )

+ 2ε
∞∑
k=1

φ̈k,l(m,n; t) cos
nπvt

lx
∆q(R, S)∇1(U, V )

+ 2ε
∞∑
m=1

φ̈k,l(m,n; t) cos
mπs

lx
∆t(U, V )∇1(J,K)

+ cos
mπs

lx
∆t(U, V )∇1(J,K) + εφ̈k,l∆1(J,K)∇1(U, V ),

(3.10)

q∗2(a, b; t) =8ε
∞∑
k=1

∞∑
l=1

φk,l(m,n; t) cos
nπvt

lx
cos

mπs

ly
∆2c(J,K)∆t(U, V )

+ 4ε
∞∑
k=1

φk,l(m,n; t) cos
nπvt

lx
∆2c(J,K)∇t(U, V )

+ 4ε
∞∑
m=1

φk,l(m,n; t) cos
mπs

ly
∆t(U, V )∇2(J,K)

+ cos
mπs

lx
∆t(U, V )∇1(J,K) + εφk,l∆1(J,K)∇1(U, V ),

(3.11)

q∗3(a, b; t) =4ε
∞∑
k=1

∞∑
l=1

φk,l(m,n; t) cos
nπvt

lx
cos

mπs

ly
∆3c(J,K)∆k(U, V )

+ 2ε
∞∑
k=1

φk,l(m,n; t) cos
nπvt

lx
∆3c(J,K)∇1(U, V )

+ 2ε
∞∑
m=1

φk,l(m,n; t) cos
mπs

ly
∆t(U, V )∇3(J,K) + εφk,l∆1(J)∇1(P ).

(3.12)
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The following are defined as

∆q(R, S) =

∫ lx

0

cos
nπx

lx
Vk(x)Vj(x)dx,

∆t(U, V ) =

∫ ly

0

cos
mπy

lx
Vl(y)Vp(y)dy,

∆1(J,K) =

∫ lx

0

Vk(x)Vj(x)dx,

∇1(U, V ) =

∫ ly

0

Vl(x)Vp(x)dy,

∆2c(J,K) =

∫ lx

0

cos
nπx

lx
V ′k(x)Vj(x)dx,

∆2(J,K) =

∫ lx

0

V ′k(x)Vj(x)dx,

∆3c(J,K) =

∫ lx

0

cos
nπx

lx
V ′′k (x)Vj(x)dx,

∆3(J,K) =

∫ lx

0

V ′′k (x)Vj(x)dx,

and

∆k(J) =

∫ lx

0

cos
nπx

lx
Vj(x)dx,

∇k(P ) =

∫ ly

0

cos
mπy

lx
Vp(y)dy,

∆1(J) =

∫ lx

0

Vj(x)dx,

∇1(P ) =

∫ ly

0

Vp(y)dy.

(3.13)

.

Equations (3.8)–(3.13) are the coupled transformed second order ordinary dif-
ferential equations governing the behavior of a double non-mindlin plate system
interconnected by an elastic core traversed by a moving load. To be able to sim-
plify further, by (3.8) and (3.9), we assume, for the time being, that the plate is
disconnected. That is, we set the connecting elastic core term to zero, to become;

K1

µ
[φm,n(m,n; t)− βm,n(m,n; t)] = 0. (3.14)

So that the resulting equations for the upper and lower plates are such that
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φ̈m,n(m,n; t) + ω2
m,n(m,n; t)φm,n(m,n; t)

+ ε1

∞∑
k=1

∞∑
l=1

[q∗l (a, b; t) + V q∗2(a, b; t) + V q∗3(a, b; t)] =
MgVmvtVmS

µ

(3.15)
and

β̈m,n(m,n; t) + ω2
m,n(m,n; t)βm,n(m,n; t) = 0, (3.16)

respectively.

4. Simplification of the coupled second order differential
equations

We have been able to reduce the coupled fourth order partial differential equa-
tion to a second order differential equations, using an assumed series solution
method. However, it is still observed that while the reduced lower plate equation
can be solved analytically, the upper plate has no exact analytical solution, and to
this effect, an approximate analytical method, which is the modified asymptotic
technique developed by Struble was employed. We set

λ =
ε1

1 + ε1
< 1, (4.1)

and it can also be shown that

ε1 = λ+ 0(λ2) (4.2)

and

1

1 + ε1Rat
= [1 + λRat]

−1 = 1− λRat+ (λ)2. (4.3)

Substituting (4.3) into the homogeneous part of (3.15), we obtain
.
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φ̈m,n(m,n; t) + ε1Rat(1− λRat)φ̈m,n(m,n; t)

+ (ω2
m,n + ε1Rct)(1− λRat)φm,n(m,n; t)

+ λ(1− λRat)
∞∑

k=1k 6=m

∞∑
l=1l 6=n

4 cos
nπvt

lx
cos

mπs

ly
∆q(R, S)∇1(U, V )

+ 2
∞∑
n=1

cos
nπvt

lx
∆q(R, S)∇1(U, V )

+ 2
∞∑
m=1

cos
nπvt

lx
∆t(U, V )∇1(J,K)

+
∞∑
k=1

∆1(J,K)∇1(U, V )φ̈k,l(k, l; t)

+ 8V
∞∑
m=1

∞∑
n=1

cos
nπvt

lx
cos

mπs

ly
∆2c(J,K)∇t(U, V )

+ 4V
∞∑
k=1

cos
nπvt

lx
∆2c(J,K)∇t(U, V )

+ 4V
∞∑
k=1

cos
mπs

ly
∆t(U, V )∇2(J,K)

+ 2V∆2(J,K)∇1(U, V )φ̇k,l(k, l; t)

+ 4V 2

∞∑
n=1

∞∑
m=1

cos
nπvt

lx
cos

mπs

ly
∆3c(J,K)∇k(P )

+ 2V 2

∞∑
n=1

cos
nπvt

lx
∆3c(J,K)∇1(U, V )

+ 2V 2

∞∑
m=1

cos
nπvt

ly
cos

mπs

ly
∆3c(U, V )∇2(J,K)

+∇1(P )∆1(J)φ̇k,l(k, l; t) = 0.
(4.4)

Setting λ = 0 in (4.4), we obtain a case corresponding to that when the mass
ratio effect of the plates is regarded negligible. In this case we have

φ̈m,n(m,n; t) + ε1Ratφ̇m,n(m,n; t)

+ ω2
m,n(m,n; t)βm,n(m,n; t) + [ε1Rct]φ̇m,n(m,n; t) = 0,

(4.5)

whose solution is of the form

φ̈m,n(m,n; t) = D0[ωm,nt− αm,n], (4.6)

where D0, ω(m,n), and α(m,n) in (4.6) are all constants. Since λ = 1, for any
arbitrary mass ratio ε1, Struble’s method requires that the asymptotic solution
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of the (4.4) is of the form

φm,n(t) = θ(m,n; t) cos[ωm,nt− αm,n] +
N∑
n=1

λrφr(m,n; t) + 0(λN), (4.7)

where N is any positive number less than infinity and θ(m,n; t) and α(m,n; t)
are slowly varying time functions, which implies that,

θ̇(m,n; t)→ 0(λ),

θ̈(m,n; t)→ 0(λ2),

α̇(m,n; t)→ 0(λ),

α̈(m,n; t)→ 0(λ2).

(4.8)

Substituting, without loss of generality, N = 1, it becomes

φm,n(t) = θ(m,n; t) cos[ωm,nt− αm,n] + λφ1(m,n; t) + 0(λ2). (4.9)

Hence

φm,n(t) = θ(m,n; t) cos[ωm,nt− αm,n] + λφ1(m,n; t) + 0(λ2) (4.10)

such that

φ̇m,n(t) =θ̇(m,n; t) cos[ωm,nt− αm,n]

− θ(m,n; t) sin[ωm,nt− αm,n] + λφ̇1(m,n; t)

+ 0(λ2)φ̇1(m,n; t)

(4.11)

and

φ̈m,n(t) =[θ̈(m,n; t)− ω2
m,n(m,n; t) + 2ωm,nθ(m,n; t)α̇(m,n; t)

− ωm,n(t)− α̇2
m,n(m,n; t)] cos[ωm,nt− αm,n]− 2ωm,nθ̇(m,n; t)α̇(m,n; t)

− 2θ̇(m,n; t)α̈(m,n; t)− θ(m,n; t)α̈(m,n; t)] sin[ωm,nt− αm,n]

+ 0(λ2)φ̇1(m,n; t).
(4.12)

The variational equations are obtained, by equating the coefficients of sin [ωm,nt−
αm,n(m,n; t)] and cos [ωm,nt− αm,n(m,n; t)] terms on both sides of the (4.12) to
zero. Neglecting those terms that do not contribute to the variational equations,
we obtain

−2ωm,nθ̇(m,n; t) sin[ωm,nt− αm,n]

+ 2ωm,nθ(m,n; t)α̇(m,n; t) cos[ωm,nt− αm,n]

− 2λV ωm,nθ(m,n; t)∆2(J,K)∇1(U, V ) sin[ωm,nt− αm,n]

− λω2
m,n∆1(J,K)∇1(U, V )θ(m,n; t) cos[ωm,nt− αm,n]

− λV 2∆2c(J,K)∇t(U, V )θ(m,n; t) cos[ωm,nt− αm,n(m,n; t)] = 0,
(4.13)

where the variational equations are

− 2ωm,nθ̇ − 2λV ωm,nθ(m,n; t)∆2(J,K)∇1(U, V ) = 0 (4.14)
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and
2ωm,nθα̇(m,n; t)− λα2ωm,n∆2(J,K)∇1(U, V )θ(m,n; t)

+ λV 2∆2c(J,K)∇t(U, V )θ(m,n; t) = 0
(4.15)

solving (4.14) and (4.15), we obtain

θ̇(m,n; t) = −λθ(m,n; t)∆2(J,K)∇1(U, V ), (4.16)

That is,
dθ(m,n; t)

θ
= λ∆2(J,K)∇1(U, V )θ, (4.17)

which implies that,

θ(m,n; t) = ε−λV∆2(J,K)∇1(U,V ) = A0ε−r
0t, (4.18)

where
r0 = λV∆2(J,K)∇1(U, V ) (4.19)

and A0 is constant.
Equation (4.18) implies that,

dα(m,n; t)

dt

=
λωm,nθ(m,n; t)

2

[
∆1(J,K)∇1(U, V )− λ

V 2
2α(m,n)∆3(J,K)∇1(U, V )

]
t+ φm,n,

(4.20)

where φ is constant. The first approximation to the homogeneous system is from
(4.6)

φm,n(m,n; t) = D0 cos[ωm,nt− αm,n(m,n; t)]. (4.21)

That is,

φm,n(m,n; t) = A0ε−r
0t cos[δm,nt− ψm,n(m,n; t)], (4.22)

where

δm,n =

[
1− λ

2
∆1(J,K)∇1(U, V )− V 2

ω2
m,n

∆3(J,K)∇1(U, V )

]
. (4.23)

Equation (4.23) is the desired modified frequency corresponding to the frequency
of free system involving moving mass effect. Hence, according to Struble’s tech-
nique, (3.15) is reduced to

φ̈m,n(m,n; t) + δ2
m,nφm,n(m,n; t) = PRTVm(vt)Vn(s), (4.24)

where PRT = gε1lxly(1− ε1Ra(t)).

5. Solution of two elastically connected double non-mindlin
plates

At this juncture, the connecting elastic core is restored and the reduced pair
of coupled second order differential equation for the non-mindlin plates

φ̈m,n(m,n; t) + ω2
m,nφm,n(m,n; t)

[
K1

µ
φm,n(m,n; t)− K1

µ
βm,n(m,n; t)

]
= PRTVm(vt)Vn(s)

(5.1)
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and

φ̈m,n(m,n; t) + δ2
m,nφm,n(m,n; t)

[
K1

µ
φm,n(m,n; t)− K1

µ
βm,n(m,n; t)

]
= 0 (5.2)

in terms of the modified frequencies δ2
m,n and ω2

m,n are considered, respectively.
A semi analytical method known as DTM is now employed. To this end, we will
state briefly, the basic theory of method as follows. The transform of the mth
derivative of a function W (t) is given as

W (m) =
1

m!

[
dmW (t)

dt2

]
(5.3)

and the corresponding inverse transformation is defined as

W (t) =
∞∑
m=1

(t− t0)W (m). (5.4)

Hence, the above equations will yield

W (t) =
∞∑
m=1

t− t0
m!

[
dmW (t)

dt2

]
. (5.5)

Table 1. Basic properties of DTM for equations of motion

.
Original Function Transformed Function
w(t) = c1u(t)± c2v(t) W (k) = c1U(k)± c2V (k)

w(t) =
du(t)

dt
W (k) = (k + 1)U(k + 1)

w(t) =
dru(t)

dtr
W (k) = (k + 1)(k + 2) · · · (k + n)U(k + n)

w(t) = u(t)v(t) W (k) =
k∑
r=0

U(n)V (k − n)

w(t) = u(t)v(t)y(t) W (k) =
k∑

n=0

k−n∑
r=0

U(n)V (r)V (k − n− r)

w(t) = tm W (k) = δ(k −m) =

{
1
0

k = m and k 6= m

w(t) = sin at W (k) =
1

k!
ak sin

(
kπ

2

)
w(t) = cos at W (k) =

1

k!
ak cos

(
kπ

2

)
w(t) = sinh at W (k) =

1

2k!

[
ak − (−(a)k)

]
w(t) = cosh at W (k) =

1

2k!

[
ak + (−(a)k)

]
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It is well known that in application the series in (5.4) is finite and usually
written as

W (t) =

p∑
m=1

(t− t0)mW (m), (5.6)

such that the series
.

W (t) =

p+1∑
m=1

(t− t0) (5.7)

is considered unimportantly small. Furthermore, it can be readily shown that the
relationships in Table 1 between the original function W (t) and the transformed
function W (m), for t0 = 0, hold. Applying the DTM on (5.1) and (5.2), gives

φm,n(k + 2) =
1

(k + 1)(k + 2)
PrtVn(s)

×

[
1

k!

(
λmV

L

)k
sin

(
kπ

2

)
Am
k!

(
λmV

L

)k
cos

(
kπ

2

)

+
Bm

2k!

(
λmV

L

)k]

−

[
−
(
λmV

L

)k]
+
Cm
2k!

(
λmV

L

)k
−

[
−
(
λmV

L

)k]
− δ2

m,nφ(k)

− K1

µ
φm,n(m,n; t) +

K1

µ
βm,n(m,n; t)

(5.8)

βm,n(k + 2) =
1

(k + 1)(k + 2){
ω2
m,n − βm,n(m,n; t)− K1

µ
βm,n(m,n; t) +

K1

µ
φm,n(m,n; t)

}
(5.9)
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Subjecting (5.8) and (5.9) to the transformed form of the initial conditions earlier
stated in (2.4), our assumed solutions earlier stated in (3.2) will become

W 1(x, y; t) =
∞∑
p=1

∞∑
q=1

PRTVn(s)

α2
m − δ2

m,n

1

2!
(Am + Cm)

(
α2
m − δ2

m,n

)
t2

+
1

3!

(
α2
m − δ2

m,n

)
(α(1 +Bm)) t3

+
1

4!

[
(Am + Cm)

(
α2
m − δ2

m,n

K1

µ

)]
t4

+
1

5!

[
(Am + Cm)

(
α2
m − δ2

m,n

K1

µ

)]
(αm1 +BmVns)t

5

×
[
sin

λmx

lx
+ Am cos

λmx

lx
+Bm sinh

λmx

lx
+ Cm cosh

λmx

lx

]
×
[
sin

λny

ly
+ An cos

λnx

ln
+Bn sinh

λny

ly
+ Cn cosh

λny

ly

]
,

(5.10)

.

W 1(x, y; t) =
∞∑
p=1

∞∑
q=1

PRTVn(s)

α2
m − δ2

m,n

[
1

4!

K1

µ
(Am + Cm)

(
α2
m − δ2

m,n

K1

µ

)]
t4

+
1

5!

K1

µ

[
α(1 +Bm)

(
α2
m − δ2

m,n

)]
(αm1 +BmVns)t

5

×
[
sin

λmx

lx
+ Am cos

λmx

lx
+Bm sinh

λmx

lx
+ Cm cosh

λmx

lx

]
×
[
sin

λny

ly
+ An cos

λnx

ln
+Bn sinh

λny

ly
+ Cn cosh

λny

ly

]
.

(5.11)
Therefore, (5.10) and (5.11) represent the transverse displacement of the non-

.
mindlin’s plates interconnected by an elastic layer and traversed by a moving
mass and having arbitrary end supports.

6. Simply-supported boundary condition as illustrative example

The considered system is made up of two plates interconnected by an elastic
core. The eigen functions or normal modes are:

Vm(0) = 0 = Vm(lx),

V ′′m(0) = 0 = V ′′m(lx),
(6.1)

as well as,

Vn(0) = 0 = Vn(lx),

V ′′n (0) = 0 = V ′′n (lx).
(6.2)
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Using the boundary conditions earlier stated in (2.4), we obtain

Am = Bm = Cm = An = Bn = Cn,

Ak = Bk = Ck = Al = Bl = Cl,
(6.3)

and

sinλm = 0 = sinλn,

sinλk = 0 = sinλl,
(6.4)

so that, λm = mπ and λn = nπ, where (m,n = 1, 2, . . . ), λk = kπ, λl = lπ.
Following the same procedure from the generalized equation, the resulting varia-
tional equation on applying Struble’s technique gives

− 2ωm,nA(m,n; t) sin[ωm,nt− αm,n(m,n; t)] + 2ωm,nA(m,n; t)α̇m,n

cos[ωm,nt− αm,n(m,n; t)]− λ
[
lxly sin2 nπs

ly
+
lxly
4

]
ω2
m,n

A(m,n; t) cos[ωm,nt− αm,n(m,n; t)]− λv
2m2π2

l2x

[
lxly sin2 nπs

ly
+
lxly
4

]
A(m,n; t) cos[ωm,nt− αm,n(m,n; t)]

(6.5)

On further simplification,

ωm,nA(m,n; t) = 0 (6.6)

and

−2ωm,nA(m,n; t)α̇m,n−λlxlyω2
m,n

[
sin2 nπs

ly
+

1

4
+
v2m2π2

l2xω
2
m,n

(
sin2 nπs

ly
+

1

4

)]
= 0.

(6.7)
Therefore the modified frequency corresponding to the frequency of system, due
to the presence of moving mass, will be

φm,n = ωm,n

[
1− λlxly

2

(
sin2 nπs

ly
+

1

4
+
v2m2π2

l2xω
2
m,n

(
sin2 nπs

ly
+

1

4

))]
= 0, (6.8)

and the reduced pair of second order coupled differential equations is

φm,n(m,n; t) + ψ2
m,nφm,n(m,n; t) +

[
K1

µ
φm,n(m,n; t)− K1

µ
βm,n(m,n; t)

]
=

ε1lxly
1 + ε1Rat

sin
mπvt

lx

nπs

ly

(6.9)

and

β̈m,n(m,n; t) + ω2
m,nφm,n(m,n; t) +

[
K1

µ
φm,n(m,n; t)− K1

µ
βm,n(m,n; t)

]
= 0.

(6.10)
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Applying DTM on (6.6) and (6.9) above gives a resulting recurrence series relation
as

φm,n(k + 2) =
1

(k + 1)(k + 2)

[
ε1lxlyg sin

nπs

ly

(
1

k!

(
nπs

ly

))k
sin

(
kπ

2

)
− ψ2

m,nφm,n(k)− K1

µ
φm,n(k)− K1

µ
βm,n(k)

]
(6.11)

and

βm,n(k + 2) =
1

(k + 1)(k + 2){
−ω2

m,nβm,n(k)− K1

µ
βm,n(k) +

K1

µ
φm,n(k)

}
.

(6.12)

7. Concluding remarks

The numerical results for the dynamic response of W1(x, y; t) and W2(x, y; t)
were generated and presented in plotted curves with the aid of mathematical
software (MAPLE V). The following values were used in the computation: lx =
0.457, ly = 0.914, D = 5751, µ = 0.075, Ml = 2, x = 0.2285, y = 0.457, K = 10,
g = 10, s = 0.4, π = 22

7
, t = 0.5, ε1 = 0.5 h = 0.12.

Figure 2 shows the deflection profile of a finite simply supported non-mindlins
plate, due to moving loads, where the amplitude of the plates increases as the
speed increases at different times t by varying K (layer stiffness) (i.e., K = 40,
K = 400, K = 4000).

Figure 2.
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Figure 3. deflection profile of a finite simply supported plate. The
amplitude increases with time t at v = 5

Figure 4. deflection profile of a finite simply supported plate. The
amplitude increases with time t at v = 7
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Figure 5. Deflection profile of a finite simply supported plate.
The amplitude increases with time t at v = 6
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