

Khayyam Journal of Mathematics

emis.de/journals/KJM kjm-math.org

ON T-EXTENSIONS OF ABELIAN GROUPS

ALIAKBAR ALIJANI^{1*} AND HOSSEIN SAHLEH²

Communicated by J. Wu

ABSTRACT. Let \Re be the category of all discrete abelian groups, and let \pounds be the category of all locally compact abelian (LCA) groups. For a group $G \in \pounds$, the maximal torsion subgroup of G is denoted by tG. A short exact sequence $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \Re is said to be a t-extension if $0 \to tA \xrightarrow{\phi} tB \xrightarrow{\psi} tC \to 0$ is a short exact sequence. We show that the set of all t-extensions of A by C is a subgroup of Ext(C,A), which contains Pext(C,A) for discrete abelian groups A and C. We establish conditions under which the t-extensions split and determine those groups in \Re which are t-injective or t-projective in \Re . Finally we determine the compact groups G in \pounds such that every pure extension of G by a compact connected group $C \in \pounds$ splits.

1. Introduction and preliminaries

Throughout, all groups are Hausdorff topological abelian groups and will be written additively. Let \mathcal{L} denote the category of locally compact abelian (LCA) groups with continuous homomorphisms as morphisms, and let \Re be the category of discrete abelian groups. The Pontrjagin dual and the maximal torsion subgroup of a group $G \in \mathcal{L}$ are denoted by \hat{G} and tG, respectively. A morphism is called proper if it is open onto its image, and a short exact sequence $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \mathcal{L} is said to be proper exact if ϕ and ψ are proper morphisms. In this case the sequence is called an extension of A by C (in \mathcal{L}). Following [4], let Ext(C, A) denote the (discrete) group of extensions of A by C. Some of the subgroups of Ext(C, A) such as Pext(C, A),*Pext(C, A), Tpext(C, A), and Apext(C, A) have been studied in [2, 7, 8, 9, 11]. In this paper, we introduce

Date: Received: 12 June 2018; Revised: 25 September 2018; Accepted: 15 October 2018.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 20K35; Secondary 22B05.

Key words and phrases. T-extensions, extensions, pure extensions, locally compact abelian groups.

a new subgroup of Ext(C,A) whenever A and C are discrete abelian groups. In Sections 2 and 3, all groups are discrete abelian groups. An extension $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ in \Re will be called a t-extension if $0 \to tA \xrightarrow{\phi|_{tA}} tB \xrightarrow{\psi|_{tB}} tC \to 0$ is an extension. Let $Ext_t(C,A)$ denote the set of all elements in Ext(C,A) represented by t-extensions. In Section 2, we show that $Ext_t(C,A)$ is a subgroup of Ext(C,A) which contains Pext(C,A) (see Theorem 2.5 and Lemma 2.6). In Section 3, we establish some results on splitting of t-extensions (see Lemma 3.1, Theorem 3.11, and Theorem 3.13). Assume that \Im is any subcategory of \pounds . The Section 4 is a part of an investigation which answers the following question:

Under what conditions on $G \in \mathcal{L}$, Ext(X,G) = 0 or Pext(X,G) = 0 for all $X \in \mathcal{F}$? In [2, 3, 4, 5, 8, 10] the question is answered in some subcategories of \mathcal{L} such as the category of divisible locally compact abelian groups. In [5, Corollary 3.4], Fulp and Griffith proved that a compact group G satisfies Ext(C,G) = 0 for all compact connected groups C if and only if $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma}$ where σ is a cardinal. It may happen that $Ext(X,G) \neq 0$ but Pext(X,G) = 0. For example, $Ext(\mathbb{Z}(n),\mathbb{Z}) \neq 0$ but $Pext(\mathbb{Z}(n),\mathbb{Z}) = 0$, where \mathbb{Z} is the group of integers and $\mathbb{Z}(n)$ is the cyclic group of order n. In this paper, we show that a compact group G satisfies Pext(C,G) = 0 for all compact connected groups C if and only if $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$, where H is a compact totally disconnected group (see Theorem 4.2). For the characterization of compact groups G which Pext(C,G) = 0 for all compact connected groups C, we need to show that Pext(X,A) = 0 for a discrete torsion group X and a discrete torsion-free group A (see Corollary 3.2).

The additive topological group of real numbers is denoted by \mathbb{R} , and \mathbb{Q} is the group of rationals with the discrete topology. We denote the identity component of a group $G \in \mathcal{L}$ by G_0 . For more on locally compact abelian groups, see [6].

2. T-EXTENSIONS

In this section, we define the concept of a t-extension of A by C. We show that the set of all t-extensions of A by C forms a subgroup of Ext(C, A) which contains Pext(C, A).

Lemma 2.1. A pushout or a pullback of a t-extension is a t-extension.

Proof. Suppose that $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ is a t-extension and that

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

$$\downarrow^{\mu} \qquad \downarrow^{1_{C}}$$

$$0 \longrightarrow A' \longrightarrow^{\phi'} (A' \bigoplus B)/H^{\psi'} \longrightarrow C \longrightarrow 0$$

is a standard pushout diagram (see [1]). Then

$$H = \{(\mu(a), -\phi(a)), a \in A\}$$

and

$$\phi':a'\longmapsto (a',0)+H,\ \psi':(a',b)+H\longmapsto \psi(b).$$

We show that $0 \to tA' \xrightarrow{\phi'} t((A' \bigoplus B)/H) \xrightarrow{\psi'} tC \to 0$ is exact. First, we show that $\psi': t((A' \bigoplus B)/H) \to tC$ is surjective. Let $c \in tC$. Since $0 \to tA \xrightarrow{\phi} tB \xrightarrow{\psi} tC \to 0$ is exact, so there exists $b \in tB$ such that $\psi(b) = c$. Clearly, $(0,b) + H \in t((A' \bigoplus B)/H)$. On the other hand, $\psi'((0,b) + H) = \psi(b) = c$. Hence ψ' is surjective. Now, we show that $\ker \psi'|_X \subseteq Im\phi'|_{tA'}$ where $X = t((A' \bigoplus B)/H)$. Let $(a',b)+H \in X$, and let $\psi'((a',b)+H)=0$. So, $\psi(b)=0$. Hence, there exists $a \in A$ such that $\phi(a) = -b$. On the other hand, there exists a positive integer n such that $(na',nb) \in H$. So, there exists $a_1 \in A$ such that $\mu(a_1) = na'$ and $-\phi(a_1) = nb$. Now, we have

$$\phi(a_1 - na) = \phi(a_1) - n\phi(a) = 0.$$

So $a_1 = na$ and $n(a' - \mu(a)) = 0$. It follows that $a' - \mu(a) \in tA'$ and $\phi'(a' - \mu(a)) = (a' - \mu(a), 0) + H = (a', b) + H$ (since $(a' - \mu(a), 0) - (a', b) = (-\mu(a), -b) = (\mu(-a), -\phi(-a)) \in H$). Now, suppose that

$$0 \longrightarrow A \xrightarrow{\phi'} B' \xrightarrow{\psi'} C' \longrightarrow 0$$

$$\downarrow^{1_A} \qquad \qquad \downarrow^{\gamma} \qquad \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0$$

is a standard pullback diagram. Then

$$B' = \{(b, c'); \psi(b) = \gamma(c')\}\$$

and

$$\phi': a \longmapsto (\phi(a), 0), \ \psi': (b, c') \longmapsto c'.$$

We show that $0 \to tA \xrightarrow{\phi'} tB' \xrightarrow{\psi'} tC' \to 0$ is exact. Let $c' \in tC'$. Then, there exists a positive integer n such that nc' = 0. Since ψ is surjective, $\psi(b) = \gamma(c')$ for some $b \in B$. Now, $n\psi(b) = \gamma(nc') = 0$. Hence, $\psi(b) \in tC$. Since $0 \to tA \xrightarrow{\phi} tB \xrightarrow{\psi} tC \to 0$ is exact, so $\psi(b_1) = \psi(b)$ for some $b_1 \in tB$. Hence, $(b_1, c') \in tB'$ and $\psi'(b_1, c') = c'$. Therefore, $\psi' : tB' \to tC'$ is surjective. Now, suppose that $(b, c') \in tB'$ and $\psi'(b, c') = 0$. Then c' = 0 and nb = 0 for some positive integer n. So $b \in tB$. Since $\psi(b) = \gamma(c') = 0$ and $0 \to tA \xrightarrow{\phi} tB \xrightarrow{\psi} tC \to 0$ is exact, there exists $a \in tA$ such that $\phi(a) = b$. Now, we have

$$\phi'(a) = (\phi(a), 0) = (b, 0) = (b, c').$$

It follows that $\ker \psi' \mid_{tB'} \subseteq Im \phi' \mid_{tA}$.

Remark 2.2. Let $\beta: B \to X$ be an isomorphism, and let $x \in tX$. Then nx = 0 for some positive integer n. Since β is surjective, so there exist $b \in B$ such that $\beta(b) = x$. Hence, $\beta(nb) = 0$. Since β is injective, so nb = 0. Therefore, $\beta|_{tB}: tB \to tX$ is an isomorphism.

Recall that two extensions $0 \to A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \to 0$ and $0 \to A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \to 0$ are said to be equivalent if there is an isomorphism $\beta: B \to X$ such that the

following diagram

$$0 \longrightarrow A \xrightarrow{\phi_1} B \xrightarrow{\psi_1} C \longrightarrow 0$$

$$\downarrow^{1_A} \qquad \downarrow^{\beta} \qquad \downarrow^{1_C}$$

$$0 \longrightarrow A \xrightarrow{\phi_2} X \xrightarrow{\psi_2} C \longrightarrow 0$$

is commutative.

Lemma 2.3. An extension, being equivalent to a t-extension, is a t-extension.

Proof. Let

$$E_1: 0 \to A \stackrel{\phi_1}{\to} B \stackrel{\psi_1}{\to} C \to 0$$

and

$$E_2: 0 \to A \stackrel{\phi_2}{\to} X \stackrel{\psi_2}{\to} C \to 0$$

be two equivalent extensions such that E_1 is a t-extension. Then, there is an isomorphism $\beta: B \to X$ such that $\beta \phi_1 = \phi_2$ and $\psi_2 \beta = \psi_1$. Let $x \in tC$. Since E_1 is a t-extension, so $\psi_1(b) = x$ for some $b \in tB$. Hence, $\psi_2(\beta(b)) = \psi_1(b) = x$. So, $\psi_2: tX \to tC$ is surjective. Now, let $\psi_2(x) = 0$ for some $x \in tX$. By Remark 2.2, there exists $b \in tB$ such that $\beta(b) = x$. Hence, $\psi_1(b) = \psi_2(\beta(b)) = 0$. Since E_1 is t-extension, so $\phi_1(a) = b$ for some $a \in tA$. Consequently, $\phi_2(a) = \beta(\phi_1(a)) = x$.

Remark 2.4. Let C and A be two groups, and let $0 \to A \xrightarrow{\phi_1} B_1 \xrightarrow{\psi_1} C \to 0$ and $0 \to A \xrightarrow{\phi_2} B_2 \xrightarrow{\psi_2} C \to 0$ be two t-extensions of A by C. An easy calculation shows that $0 \to A \bigoplus A \xrightarrow{(\phi_1 \bigoplus \phi_2)} B_1 \bigoplus B_2 \xrightarrow{(\psi_1 \bigoplus \psi_2)} C \bigoplus C \to 0$ is a t-extension where $(\phi_1 \bigoplus \phi_2)(a_1, a_2) = (\phi_1(a_1), \phi_2(a_2))$ and $(\psi_1 \bigoplus \psi_2)(b_1, b_2) = (\psi_1(b_1), \psi_2(b_2))$.

Theorem 2.5. Let A and C be two groups. Then, the class $Ext_t(C, A)$ of all equivalence classes of t-extensions of A by C is an subgroup of Ext(C, A) with respect to the operation defined by

$$[E_1] + [E_2] = [\nabla_A(E_1 \bigoplus E_2) \triangle_C],$$

where E_1 and E_2 are t-extensions of A by C and ∇_A and \triangle_C are the diagonal and codiagonal homomorphisms.

Proof. Clearly, $0 \to A \to A \bigoplus C \to C \to 0$ is a t-extension. By Remark 2.4 and Lemma 2.1, $[E_1] + [E_2] \in Ext_t(C, A)$ for two t-extensions E_1 and E_2 of A by C. So, $Ext_t(C, A)$ is a subgroup of Ext(C, A).

Lemma 2.6. Let A and C be two groups. Then, $Pext(C, A) \subseteq Ext_t(C, A)$.

Proof. Let $0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be an element of Pext(C, A). It is sufficient to show that $tB/t\phi(A) \cong t(B/\phi(A))$. Consider the map $\varphi : tB \to t(B/\phi(A))$ given by $b \mapsto b + \phi(A)$. Clearly, φ is a homomorphism. We show that φ is surjective. Let $b + \phi(A) \in t(B/\phi(A))$. Then, there exists a positive integer n such that $nb \in \phi(A)$. Since $\phi(A)$ is pure in B, so $nb = n\phi(a)$ for some $a \in A$. Hence,

 $n(b-\phi(a))=0$. This shows that $b-\phi(a)\in tB$ and $\varphi(b-\phi(a))=b+\phi(A)$. So φ is surjective. We have

$$\ker \varphi = \{b \in tB; b \in \phi(A)\} = \phi(A) \cap tB = t\phi(A).$$

Hence $tB/t\phi(A) \cong t(B/\phi(A))$.

Corollary 2.7. If A is a divisible group or C is a torsion-free group, then $Pext(C, A) = Ext_t(C, A) = Ext(C, A)$.

Proof. It is clear. \Box

3. Splitting of T-extensions

In this section, we establish some conditions on A and C such that $Ext_t(C, A) = 0$. We also determine the t-injective and t-projective groups in \Re .

Lemma 3.1. Let A be a torsion-free group, and let C be a torsion group. Then, $Ext_t(C, A) = 0$.

Proof. Let $E: 0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$ be a t-extension. Then $\psi_{|tB}: tB \to C$ is an isomorphism. Let $b \in B$. Then, $\psi(b) \in C$. So $\psi(b) = \psi(b')$ for some $b' \in tB$. Hence, $b - b' = \phi(a)$ for some $a \in A$. This follows that $B = \phi(A) + tB$. Since $\phi(A)$ is torsion-free and tB torsion, so $\phi(A) \cap tB = 0$. Hence, $B = \phi(A) \bigoplus tB$ and E splits.

Corollary 3.2. Let A be a torsion-free group, and let C be a torsion group. Then, Pext(C, A) = 0.

Proof. It is clear by Lemma 2.6 and Lemma 3.1.

Lemma 3.3. Let A and C be two torsion groups. Then $Ext(C, A) = Ext_t(C, A)$.

Proof. Let A and C be two torsion groups. It is clear that $Ext_t(C, A) \subseteq Ext(C, A)$. Suppose that $E: 0 \to A \to B \to C \to 0$ is an extension. Then, B is a torsion group. Hence, E is a t-extension.

Lemma 3.4. Let C be a torsion group. Then, $Ext(C, tA) \cong Ext_t(C, A)$ for every group A.

Proof. The exact sequence $0 \to tA \xrightarrow{i} A \xrightarrow{\pi} A/tA \to 0$ induces the following exact sequence

$$Hom(C, A/tA) \to Ext(C, tA) \xrightarrow{i_*} Ext(C, A) \xrightarrow{\pi_*} Ext(C, A/tA) \to 0.$$

Note that Hom(C, A/tA) = 0. By Lemma 3.1, $Ext_t(C, A/tA) = 0$. Since $\pi_*(Ext_t(C, A)) \subseteq Ext_t(C, A/tA)$, so $\pi_*(Ext_t(C, A)) = 0$. Hence, $Ext_t(C, A) \subseteq \ker \pi_* = i_*(Ext(C, tA))$. By Lemma 3.3, $Ext(C, tA) = Ext_t(C, tA)$. Therefore, $i_*(Ext(C, tA)) \subseteq Ext_t(C, A)$. Hence, $Ext(C, tA) \cong Ext_t(C, A)$.

Corollary 3.5. Let A be a group. Then, $Ext_t(\mathbb{Z}(m), A) \cong tA/m(tA)$ for every positive integer m.

Proof. It is clear by Lemma 3.4 and [1, p. 222].

Corollary 3.6. Let C be a torsion group, and let $\{A_i : i \in I\}$ be a collection of groups. If I is finite, then $Ext_t(C, \Pi_{i \in I}A_i) \cong \Pi_{i \in I}Ext_t(C, A_i)$.

Proof. Let $I = \{1, ..., n\}$ for some positive integer n. Lemma 3.4 implies that $Ext_t(C, \Pi_{i=1}^n A_i) \cong Ext(C, t(\Pi_{i=1}^n A_i))$. Since $t(\Pi_{i=1}^n A_i) = \Pi_{i=1}^n t(A_i)$, therefore $Ext_t(C, \Pi_{i=1}^n A_i) \cong \Pi_{i \in I} Ext(C, tA_i) \cong \Pi_{i \in I} Ext_t(C, A_i)$.

Remark 3.7. In general, $Ext_t(C, \Pi_{i \in I}A_i) \ncong \Pi_{i \in I}Ext_t(C, A_i)$.

Example 3.8. Let p be a prime, and let $H = \prod_{n=1}^{\infty} \mathbb{Z}(p^n)$. By Lemma 3.4, $Ext_t(\mathbb{Q}/\mathbb{Z}, H) \cong Ext(\mathbb{Q}/\mathbb{Z}, tH)$. Consider the following exact sequence

$$0 \to Ext(\mathbb{Q}/\mathbb{Z}, tH) \to Ext(\mathbb{Q}/\mathbb{Z}, H) \to Ext(\mathbb{Q}/\mathbb{Z}, H/tH) \to 0. \tag{3.1}$$

By [1, Theorem 52.2] and Lemma 3.3,

$$Ext(\mathbb{Q}/\mathbb{Z}, H) \cong \prod_{n=1}^{\infty} Ext(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^n)) \cong \prod_{n=1}^{\infty} Ext_t(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^n)).$$

If $Ext_t(\mathbb{Q}/\mathbb{Z}, H) \cong \prod_{n=1}^{\infty} Ext_t(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p^n))$, then $Ext(\mathbb{Q}/\mathbb{Z}, H) \cong Ext(\mathbb{Q}/\mathbb{Z}, tH)$. It follows from (3.1) that, $Ext(\mathbb{Q}/\mathbb{Z}, H/tH) = 0$ which is a contradiction, since H/tH is not divisible.

Lemma 3.9. Let A be a torsion-free group. Then, $Ext(C/tC, A) \cong Ext_t(C, A)$ for every group C.

Proof. The exact sequence $0 \to tC \xrightarrow{i} C \xrightarrow{\pi} C/tC \to 0$ induces the following exact sequence

$$Hom(tC,A) \to Ext(C/tC,A) \xrightarrow{\pi_*} Ext(C,A) \xrightarrow{i_*} Ext(tC,A) \to 0.$$

Note that Hom(tC, A) = 0. By Lemma 3.1, $Ext_t(tC, A) = 0$. Therefore, $i_*(Ext_t(C, A)) \subseteq Ext_t(tC, A) = 0$. So, $Ext_t(C, A) \subseteq \ker i_* = \pi_*(Ext(C/tC, A))$. By Corollary 2.7, $Ext(C/tC, A) = Ext_t(C/tC, A)$. So, $\pi_*(Ext(C/tC, A)) \subseteq Ext_t(C, A)$. Hence, $Ext(C/tC, tA) \cong Ext_t(C, A)$.

Definition 3.10. Let G be a group. We call G a t-injective group in \Re if for every t-extension

$$0 \to A \stackrel{\phi}{\to} B \to C \to 0$$

and a homomorphism $f: A \to G$, there is a homomorphism $\bar{f}: B \longrightarrow G$ such that $\bar{f}\phi = f$.

We call G a t-projective group in \Re if for every t-extension

$$0 \to A \to B \xrightarrow{\psi} C \to 0$$

and a homomorphism $f: G \to C$, there is a homomorphism $\bar{f}: G \to B$ such that $\psi \bar{f} = f$.

Recall that a group A is said to be cotorsion if $Ext(\mathbb{Q}, A) = 0$ (see [1]).

Theorem 3.11. Let A be a group. The following statements are equivalent:

- (1) A is t-injective in \Re .
- (2) $Ext_t(C, A) = 0$ for all $C \in \Re$.

- (3) $A \cong B \bigoplus D$ where B is a torsion divisible group and D a torsion-free cotorsion group.
- *Proof.* (1) \Rightarrow (2): Let A be a t-injective in \Re , and let $E: 0 \to A \xrightarrow{\phi} B \to C \to 0$ be a t-extension of A by C. Then, there is a homomorphism $\bar{\phi}: B \to G$ such that $\bar{\phi}\phi = 1_G$. Consequently, E splits.
- $(2)\Rightarrow (3)$: Let $Ext_t(C,A)=0$ for every group C. So $Ext_t(\mathbb{Z}(m),A)=0$ for every positive integer m. By Corollary 3.5, m(tA)=tA for every positive integer m. So, tA is divisible. Hence, $A\cong tA\bigoplus A/tA$. Therefore, $Ext(\mathbb{Q},A)\cong Ext(\mathbb{Q},tA)\bigoplus Ext(\mathbb{Q},A/tA)$. Since $Ext(\mathbb{Q},A)=Ext_t(\mathbb{Q},A)=0$, then $Ext(\mathbb{Q},A/tA)=0$. Hence, A/tA is cotorsion. Now, we set tA=B and A/tA=D.
- $(3) \Rightarrow (2)$: Suppose that $A \cong B \bigoplus D$ where B is a torsion divisible group and D a torsion-free cotorsion group. Let C be a group. Since Ext(C,B) = 0, so $p_2^* : Ext(C,B \bigoplus D) \to Ext(C,D)$ is an isomorphism, where $p_2 : B \bigoplus D \to D$ is the projection map. By Lemma 3.9, $Ext_t(C,D) \cong Ext(C/tC,D)$. Since D is a cotorsion group, so Ext(C/tC,D) = 0. Hence, $Ext_t(C,D) = 0$. So, $p_2^*(Ext_t(C,B \bigoplus D)) \subseteq Ext_t(C,D) = 0$. Since p_2^* is an isomorphism, therefore $Ext_t(C,B \bigoplus D) = 0$ or $Ext_t(C,A) = 0$.
- $(2) \Longrightarrow (1)$: Let $E: 0 \to G \xrightarrow{\phi} B \to C \to 0$ be a t-extension and let $f: G \to A$ be a homomorphism. Then f induces a pushout diagram

where $H = \{(-f(a), \phi(a)); a \in A\}$ and $\mu : a \longmapsto (a, 0) + H$. By Lemma 2.1, fE is a t-extension and by assumption it splits. Hence A is t-injective. \square

Recall that a group A is called algebraically compact if and only if Pext(X, A) = 0 for every group X (see [1]).

Corollary 3.12. A torsion-free, cotorsion group is algebraically compact.

Proof. Let A be a torsion-free, cotorsion group. By Theorem 3.11, $Ext_t(C, A) = 0$ for every group C. Hence, Pext(C, A) = 0 for every group C.

Theorem 3.13. Let C be a group. Consider the following conditions for C:

- (1) C is t-projective in \Re .
- (2) $Ext_t(C, A) = 0$ for all $A \in \Re$.
- (3) C is a direct sum of cyclic groups.

Then: $(1) \Leftrightarrow (2) \Rightarrow (3)$ and $(3) \not\Rightarrow (2)$.

Proof. (1) \Rightarrow (2): Let C be t-projective in \Re , and let $E: 0 \to A \to B \xrightarrow{\psi} C \to 0$ be a t-extension of A by C. Then there is a homomorphism $\bar{\psi}: C \to B$ such that $\psi \bar{\psi} = 1_C$. Consequently, E splits.

- $(2) \Rightarrow (3)$: Let $Ext_t(C, A) = 0$ for every group A. By Lemma 2.6, Pext(C, A) = 0 for every group A. Hence, C is a direct sum of cyclic groups (see [1, Theorem 30.2]).
- $(2)\Rightarrow (1)$: Let $E:0\to A\to B\stackrel{\psi}{\to} G\to 0$ be a t-extension, and let $f:C\to G$ be a homomorphism. Then f induces a pullback diagram

$$0 \longrightarrow A \longrightarrow B' \xrightarrow{\psi'} C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow f$$

$$0 \longrightarrow A \longrightarrow B \xrightarrow{\psi} G \longrightarrow 0$$

Where $B' = \{(b, c); \psi(b) = f(c)\}$ and $\psi' : (b, c) \mapsto c$. By Lemma 2.1, Ef is a t-extension and by assumption, it splits. Hence C is t-projective.

$$(3) \not\Rightarrow (2)$$
: By Corollary 3.5, $Ext_t(\mathbb{Z}_2, \mathbb{Z}_4) \cong \mathbb{Z}_2 \neq 0$.

4. Splitting pure extensions by compact connected abelian groups

In this section, we determine the structure of a compact group G such that Pext(C, G) = 0 for all compact connected groups C.

Lemma 4.1. If A is a compact totally disconnected group and C a compact connected group, then Pext(C, A) = 0.

Proof. By [8, Lemma 2.3], $Pext(C, A) \cong Pext(\hat{A}, \hat{C})$. On the other hand, by [6, Theorems 24.25 and 24.26], \hat{A} and \hat{C} are a discrete, torsion group and a discrete, torsion-free group, respectively. Hence, by Corollary 3.2, $Pext(\hat{A}, \hat{C}) = 0$. So Pext(C, A) = 0.

Let G be a compact group. Then, Ext(C,G)=0 for every compact connected group C if and only if $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma}$ (see [5, Corollary 3.4]). In the next Theorem, we show that Pext(C,G)=0 for every compact connected group C if and only if $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$, where H is a compact totally disconnected group.

Theorem 4.2. Let G be a compact group. Then, Pext(C,G) = 0 for all compact connected groups C if and only if $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$, where H is a compact totally disconnected group.

Proof. Let G be a compact group, and let C be a compact connected group. Consider the exact sequence $0 \to G_0 \to G \to G/G_0$. By [2, Proposition 4], we have the exact sequence

$$Hom(C, G/G_0) \to Pext(C, G_0) \to Pext(C, G) \to Pext(C, G/G_0).$$

By Lemma 4.1, $Pext(C, G/G_0) = 0$. Since G/G_0 is totally disconnected, so $Hom(C, G/G_0) = 0$. It follows that $Pext(C, G) \cong Pext(C, G_0)$. But, G_0 is a divisible group. So, $Pext(C, G) \cong Ext(C, G_0)$. Now, Let Pext(C, G) = 0 for all compact connected groups C. Then $Ext(C, G_0) = 0$ for all compact connected groups C. By [5, Corollary 3.4], $G_0 \cong (\mathbb{R}/\mathbb{Z})^{\sigma}$. So, the extension $0 \to G_0 \to G \to G/G_0 \to 0$ splits. This shows that $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus G/G_0$. The converse is clear.

Remark 4.3. Let G be a compact group such that Ext(C, G) = 0 for every compact connected group C. Then Pext(C, G) = 0 for every compact connected group C. So by Theorem 4.2, $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma} \bigoplus H$, where H is a compact totally disconnected group. Since \mathbb{R}/\mathbb{Z} is a compact connected group, so $Ext(\mathbb{R}/\mathbb{Z}, H) = 0$. Consider the following exact sequence

$$Hom(\mathbb{R}, H) \to Hom(\mathbb{Z}, H) \to Ext(\mathbb{R}/\mathbb{Z}, H) = 0.$$

Since \mathbb{R} is a connected group and H is a totally disconnected group, therefore $Hom(\mathbb{R}, H) = 0$. Hence, H = 0 and $G \cong (\mathbb{R}/\mathbb{Z})^{\sigma}$.

Acknowledgement. The authors sincerely thank the referee for his or her helpful comments and suggestions.

References

- 1. L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
- 2. R.O. Fulp, *Homological study of purity in locally compact groups*, Proc. Lond. Math. Soc. **21** (1970) 501–512.
- 3. R.O. Fulp, Splitting locally compact abelian groups, Michigan Math. J. 19 (1972) 47–55.
- 4. R.O. Fulp, P. Griffith, Extensions of locally compact abelian groups I, Trans. Amer. Math. Soc. 154 (1971), 341–356.
- R.O. Fulp, P. Griffith, Extensions of locally compact abelian groups II, Trans. Amer. Math. Soc. 154 (1971), 357–363.
- E. Hewitt, K. Ross, Abstract Harmonic Analysis, Vol I, Second Edition, Springer-Verlag, Berlin, 1979.
- P. Loth, Topologically pure extensions Abelian Groups, Rings and Modules, Proceedings of the AGRAM 2000 Conference in Perth, (Western Australia, July 9-15, 2000), pp. 191–201. Contemp. Math. 273, Amer. Math. Soc. Providence, RI, 2001.
- 8. P. Loth, *Pure extensions of locally compact abelian groups*, Rend. Sem. Mat. Univ. Padova. **116** (2006) 31–40.
- 9. P. Loth, On t-pure and almost pure exact sequences of LCA groups, J. Group Theory. 9 (2006) 799-808.
- 10. H. Sahleh, A.A. Alijani, Splitting of extensions in the category of locally compact abelian groups, Int. J. Group Theory. 3 (2014), 39–45.
- 11. H. Sahleh, A.A. Alijani, S-pure extensions of locally compact abelian groups, Hacet. J. Math. Stat. 44 (2016) 1–11.
- 1 Mollasadra Technical and Vocational College, Technical and Vocational University, Ramsar, Iran.

E-mail address: alijanialiakbar@gmail.com

 2 Department of Mathematics, University of Guilan, P. O. Box 1914, Rasht, Iran.

E-mail address: sahleh@guilan.ac.ir