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Abstract. Let < be the category of all discrete abelian groups, and let £ be
the category of all locally compact abelian (LCA) groups. For a group G ∈ £,
the maximal torsion subgroup of G is denoted by tG. A short exact sequence

0 → A
φ→ B

ψ→ C → 0 in < is said to be a t-extension if 0 → tA
φ→ tB

ψ→
tC → 0 is a short exact sequence. We show that the set of all t-extensions
of A by C is a subgroup of Ext(C,A), which contains Pext(C,A) for discrete
abelian groups A and C. We establish conditions under which the t-extensions
split and determine those groups in < which are t-injective or t-projective in
<. Finally we determine the compact groups G in £ such that every pure
extension of G by a compact connected group C ∈ £ splits.

1. Introduction and preliminaries

Throughout, all groups are Hausdorff topological abelian groups and will be writ-
ten additively. Let £ denote the category of locally compact abelian (LCA)
groups with continuous homomorphisms as morphisms, and let < be the cate-
gory of discrete abelian groups. The Pontrjagin dual and the maximal torsion
subgroup of a group G ∈ £ are denoted by Ĝ and tG, respectively. A mor-
phism is called proper if it is open onto its image, and a short exact sequence

0 → A
φ→ B

ψ→ C → 0 in £ is said to be proper exact if φ and ψ are proper
morphisms. In this case the sequence is called an extension of A by C ( in £ ).
Following [4], let Ext(C,A) denote the (discrete) group of extensions of A by C.
Some of the subgroups of Ext(C,A) such as Pext(C,A),∗Pext(C,A),Tpext(C,A),
and Apext(C,A) have been studied in [2, 7, 8, 9, 11]. In this paper, we introduce
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a new subgroup of Ext(C,A) whenever A and C are discrete abelian groups. In

Sections 2 and 3, all groups are discrete abelian groups. An extension 0→ A
φ→

B
ψ→ C → 0 in < will be called a t-extension if 0→ tA

φ|tA→ tB
ψ|tB→ tC → 0 is an

extension. Let Extt(C,A) denote the set of all elements in Ext(C,A) represented
by t-extensions. In Section 2, we show that Extt(C,A) is a subgroup of Ext(C,A)
which contains Pext(C,A) (see Theorem 2.5 and Lemma 2.6). In Section 3, we
establish some results on splitting of t-extensions (see Lemma 3.1, Theorem 3.11,
and Theorem 3.13). Assume that = is any subcategory of £. The Section 4 is a
part of an investigation which answers the following question:
Under what conditions on G ∈ £, Ext(X,G) = 0 or Pext(X,G) = 0 for all
X ∈ =? In [2, 3, 4, 5, 8, 10] the question is answered in some subcategories of £
such as the category of divisible locally compact abelian groups. In [5, Corollary
3.4], Fulp and Griffith proved that a compact group G satisfies Ext(C,G) = 0
for all compact connected groups C if and only if G ∼= (R/Z)σ where σ is a car-
dinal. It may happen that Ext(X,G) 6= 0 but Pext(X,G) = 0. For example,
Ext(Z(n),Z) 6= 0 but Pext(Z(n),Z) = 0, where Z is the group of integers and
Z(n) is the cyclic group of order n. In this paper, we show that a compact group
G satisfies Pext(C,G) = 0 for all compact connected groups C if and only if
G ∼= (R/Z)σ

⊕
H, where H is a compact totally disconnected group (see Theo-

rem 4.2). For the characterization of compact groups G which Pext(C,G) = 0
for all compact connected groups C, we need to show that Pext(X,A) = 0 for
a discrete torsion group X and a discrete torsion-free group A (see Corollary 3.2).

The additive topological group of real numbers is denoted by R, and Q is the
group of rationals with the discrete topology. We denote the identity component
of a group G ∈ £ by G0. For more on locally compact abelian groups, see [6].

2. t-extensions

In this section, we define the concept of a t-extension of A by C. We show
that the set of all t-extensions of A by C forms a subgroup of Ext(C,A) which
contains Pext(C,A).

Lemma 2.1. A pushout or a pullback of a t-extension is a t-extension.

Proof. Suppose that 0→ A
φ→ B

ψ→ C → 0 is a t-extension and that

0 // A
φ //

µ

��

B
ψ //

��

C //

1C
��

0

0 // A′
φ′// (A′

⊕
B)/H

ψ′ // C // 0

is a standard pushout diagram (see [1]). Then

H = {(µ(a),−φ(a)), a ∈ A}
and

φ′ : a′ 7−→ (a′, 0) +H, ψ′ : (a′, b) +H 7−→ ψ(b).
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We show that 0 → tA′
φ′→ t((A′

⊕
B)/H)

ψ′→ tC → 0 is exact. First, we show

that ψ′ : t((A′
⊕

B)/H) → tC is surjective. Let c ∈ tC. Since 0 → tA
φ→ tB

ψ→
tC → 0 is exact, so there exists b ∈ tB such that ψ(b) = c. Clearly, (0, b) +H ∈
t((A′

⊕
B)/H). On the other hand, ψ′((0, b) + H) = ψ(b) = c. Hence ψ′ is

surjective. Now, we show that kerψ′ |X⊆ Imφ′ |tA′ where X = t((A′
⊕

B)/H).
Let (a′, b) +H ∈ X, and let ψ′((a′, b) +H) = 0. So, ψ(b) = 0. Hence, there exists
a ∈ A such that φ(a) = −b. On the other hand, there exists a positive integer
n such that (na′, nb) ∈ H. So, there exists a1 ∈ A such that µ(a1) = na′ and
−φ(a1) = nb. Now, we have

φ(a1 − na) = φ(a1)− nφ(a) = 0.

So a1 = na and n(a′−µ(a)) = 0. It follows that a′−µ(a) ∈ tA′ and φ′(a′−µ(a)) =
(a′ − µ(a), 0) + H = (a′, b) + H (since (a′ − µ(a), 0) − (a′, b) = (−µ(a),−b) =
(µ(−a),−φ(−a)) ∈ H). Now, suppose that

0 // A
φ′ //

1A
��

B′
ψ′ //

��

C ′ //

γ

��

0

0 // A
φ // B

ψ // C // 0

is a standard pullback diagram. Then

B′ = {(b, c′);ψ(b) = γ(c′)}

and

φ′ : a 7−→ (φ(a), 0), ψ′ : (b, c′) 7−→ c′.

We show that 0 → tA
φ′→ tB′

ψ′→ tC ′ → 0 is exact. Let c′ ∈ tC ′. Then, there
exists a positive integer n such that nc′ = 0. Since ψ is surjective, ψ(b) = γ(c′)

for some b ∈ B . Now, nψ(b) = γ(nc′) = 0. Hence, ψ(b) ∈ tC. Since 0 → tA
φ→

tB
ψ→ tC → 0 is exact, so ψ(b1) = ψ(b) for some b1 ∈ tB. Hence, (b1, c

′) ∈ tB′
and ψ′(b1, c

′) = c′. Therefore, ψ′ : tB′ → tC ′ is surjective. Now, suppose that
(b, c′) ∈ tB′ and ψ′(b, c′) = 0. Then c′ = 0 and nb = 0 for some positive integer

n. So b ∈ tB. Since ψ(b) = γ(c′) = 0 and 0 → tA
φ→ tB

ψ→ tC → 0 is exact,
there exists a ∈ tA such that φ(a) = b. Now, we have

φ′(a) = (φ(a), 0) = (b, 0) = (b, c′).

It follows that kerψ′ |tB′⊆ Imφ′ |tA. �

Remark 2.2. Let β : B → X be an isomorphism, and let x ∈ tX. Then nx = 0
for some positive integer n. Since β is surjective, so there exist b ∈ B such
that β(b) = x. Hence, β(nb) = 0. Since β is injective, so nb = 0. Therefore,
β |tB: tB → tX is an isomorphism.

Recall that two extensions 0→ A
φ1→ B

ψ1→ C → 0 and 0→ A
φ2→ X

ψ2→ C → 0
are said to be equivalent if there is an isomorphism β : B → X such that the
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following diagram

0 // A
φ1 //

1A
��

B
ψ1 //

β
��

C //

1C
��

0

0 // A
φ2 // X

ψ2 // C // 0

is commutative.

Lemma 2.3. An extension, being equivalent to a t-extension, is a t-extension.

Proof. Let

E1 : 0→ A
φ1→ B

ψ1→ C → 0

and

E2 : 0→ A
φ2→ X

ψ2→ C → 0

be two equivalent extensions such that E1 is a t-extension. Then, there is an
isomorphism β : B → X such that βφ1 = φ2 and ψ2β = ψ1. Let x ∈ tC. Since
E1 is a t-extension, so ψ1(b) = x for some b ∈ tB. Hence, ψ2(β(b)) = ψ1(b) = x.
So, ψ2 : tX → tC is surjective. Now, let ψ2(x) = 0 for some x ∈ tX. By Remark
2.2, there exists b ∈ tB such that β(b) = x. Hence, ψ1(b) = ψ2(β(b)) = 0.
Since E1 is t-extension, so φ1(a) = b for some a ∈ tA. Consequently, φ2(a) =
β(φ1(a)) = x. �

Remark 2.4. Let C and A be two groups, and let 0 → A
φ1→ B1

ψ1→ C → 0 and

0→ A
φ2→ B2

ψ2→ C → 0 be two t-extensions of A by C. An easy calculation shows

that 0 → A
⊕

A
(φ1

⊕
φ2)→ B1

⊕
B2

(ψ1
⊕
ψ2)→ C

⊕
C → 0 is a t-extension where

(φ1

⊕
φ2)(a1, a2) = (φ1(a1), φ2(a2)) and (ψ1

⊕
ψ2)(b1, b2) = (ψ1(b1), ψ2(b2)).

Theorem 2.5. Let A and C be two groups. Then, the class Extt(C,A) of all
equivalence classes of t-extensions of A by C is an subgroup of Ext(C,A) with
respect to the operation defined by

[E1] + [E2] = [∇A(E1

⊕
E2)4C ],

where E1 and E2 are t-extensions of A by C and ∇A and 4C are the diagonal
and codiagonal homomorphisms.

Proof. Clearly, 0→ A→ A
⊕

C → C → 0 is a t-extension. By Remark 2.4 and
Lemma 2.1 , [E1] + [E2] ∈ Extt(C,A) for two t-extensions E1 and E2 of A by C.
So, Extt(C,A) is a subgroup of Ext(C,A). �

Lemma 2.6. Let A and C be two groups. Then, Pext(C,A) ⊆ Extt(C,A).

Proof. Let 0→ A
φ→ B

ψ→ C → 0 be an element of Pext(C,A). It is sufficient to
show that tB/tφ(A) ∼= t(B/φ(A)). Consider the map ϕ : tB → t(B/φ(A)) given
by b 7−→ b+ φ(A). Clearly, ϕ is a homomorphism. We show that ϕ is surjective.
Let b + φ(A) ∈ t(B/φ(A)). Then, there exists a positive integer n such that
nb ∈ φ(A). Since φ(A) is pure in B, so nb = nφ(a) for some a ∈ A. Hence,
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n(b− φ(a)) = 0. This shows that b− φ(a) ∈ tB and ϕ(b− φ(a)) = b+ φ(A). So
ϕ is surjective. We have

kerϕ = {b ∈ tB; b ∈ φ(A)} = φ(A) ∩ tB = tφ(A).

Hence tB/tφ(A) ∼= t(B/φ(A)). �

Corollary 2.7. If A is a divisible group or C is a torsion-free group, then
Pext(C,A) = Extt(C,A) = Ext(C,A).

Proof. It is clear. �

3. Splitting of t-extensions

In this section, we establish some conditions on A and C such that Extt(C,A) =
0. We also determine the t-injective and t-projective groups in <.

Lemma 3.1. Let A be a torsion-free group, and let C be a torsion group. Then,
Extt(C,A) = 0.

Proof. Let E : 0 → A
φ→ B

ψ→ C → 0 be a t-extension. Then ψ|tB : tB → C is
an isomorphism. Let b ∈ B. Then, ψ(b) ∈ C. So ψ(b) = ψ(b′) for some b′ ∈ tB.
Hence, b − b′ = φ(a) for some a ∈ A. This follows that B = φ(A) + tB. Since
φ(A) is torsion-free and tB torsion, so φ(A)

⋂
tB = 0. Hence, B = φ(A)

⊕
tB

and E splits. �

Corollary 3.2. Let A be a torsion-free group, and let C be a torsion group. Then,
Pext(C,A) = 0.

Proof. It is clear by Lemma 2.6 and Lemma 3.1. �

Lemma 3.3. Let A and C be two torsion groups. Then Ext(C,A) = Extt(C,A).

Proof. LetA and C be two torsion groups. It is clear thatExtt(C,A) ⊆ Ext(C,A).
Suppose that E : 0 → A → B → C → 0 is an extension. Then, B is a torsion
group. Hence, E is a t-extension. �

Lemma 3.4. Let C be a torsion group. Then, Ext(C, tA) ∼= Extt(C,A) for every
group A.

Proof. The exact sequence 0→ tA
i→ A

π→ A/tA→ 0 induces the following exact
sequence

Hom(C,A/tA)→ Ext(C, tA)
i∗→ Ext(C,A)

π∗→ Ext(C,A/tA)→ 0.

Note that Hom(C,A/tA) = 0. By Lemma 3.1, Extt(C,A/tA) = 0. Since
π∗(Extt(C,A)) ⊆ Extt(C,A/tA), so π∗(Extt(C,A)) = 0. Hence, Extt(C,A) ⊆
kerπ∗ = i∗(Ext(C, tA)). By Lemma 3.3, Ext(C, tA) = Extt(C, tA). Therefore,
i∗(Ext(C, tA)) ⊆ Extt(C,A). Hence, Ext(C, tA) ∼= Extt(C,A). �

Corollary 3.5. Let A be a group. Then, Extt(Z(m), A) ∼= tA/m(tA) for every
positive integer m.

Proof. It is clear by Lemma 3.4 and [1, p. 222]. �
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Corollary 3.6. Let C be a torsion group, and let {Ai : i ∈ I} be a collection of
groups. If I is finite, then Extt(C,Πi∈IAi) ∼= Πi∈IExtt(C,Ai).

Proof. Let I = {1, . . . , n} for some positive integer n. Lemma 3.4 implies that
Extt(C,Π

n
i=1Ai)

∼= Ext(C, t(Πn
i=1Ai)). Since t(Πn

i=1Ai) = Πn
i=1t(Ai), therefore

Extt(C,Π
n
i=1Ai)

∼= Πi∈IExt(C, tAi) ∼= Πi∈IExtt(C,Ai). �

Remark 3.7. In general, Extt(C,Πi∈IAi) 6∼= Πi∈IExtt(C,Ai).

Example 3.8. Let p be a prime, and let H =
∏∞

n=1 Z(pn). By Lemma 3.4,
Extt(Q/Z, H) ∼= Ext(Q/Z, tH). Consider the following exact sequence

0→ Ext(Q/Z, tH)→ Ext(Q/Z, H)→ Ext(Q/Z, H/tH)→ 0. (3.1)

By [1, Theorem 52.2] and Lemma 3.3,

Ext(Q/Z, H) ∼=
∞∏
n=1

Ext(Q/Z,Z(pn)) ∼=
∞∏
n=1

Extt(Q/Z,Z(pn)).

If Extt(Q/Z, H) ∼=
∏∞

n=1Extt(Q/Z,Z(pn)),then Ext(Q/Z, H) ∼= Ext(Q/Z, tH).
It follows from (3.1) that, Ext(Q/Z, H/tH) = 0 which is a contradiction, since
H/tH is not divisible.

Lemma 3.9. Let A be a torsion-free group. Then, Ext(C/tC,A) ∼= Extt(C,A)
for every group C.

Proof. The exact sequence 0 → tC
i→ C

π→ C/tC → 0 induces the following
exact sequence

Hom(tC,A)→ Ext(C/tC,A)
π∗→ Ext(C,A)

i∗→ Ext(tC,A)→ 0.

Note that Hom(tC,A) = 0. By Lemma 3.1, Extt(tC,A) = 0. Therefore,
i∗(Extt(C,A)) ⊆ Extt(tC,A) = 0. So, Extt(C,A) ⊆ ker i∗ = π∗(Ext(C/tC,A)).
By Corollary 2.7, Ext(C/tC,A) = Extt(C/tC,A). So, π∗(Ext(C/tC,A)) ⊆
Extt(C,A). Hence, Ext(C/tC, tA) ∼= Extt(C,A). �

Definition 3.10. Let G be a group. We call G a t-injective group in < if for
every t-extension

0→ A
φ→ B → C → 0

and a homomorphism f : A → G, there is a homomorphism f̄ : B −→ G such
that f̄φ = f .

We call G a t-projective group in < if for every t-extension

0→ A→ B
ψ→ C → 0

and a homomorphism f : G→ C, there is a homomorphism f̄ : G→ B such that
ψf̄ = f .

Recall that a group A is said to be cotorsion if Ext(Q, A) = 0 (see [1]).

Theorem 3.11. Let A be a group. The following statements are equivalent:

(1) A is t-injective in <.
(2) Extt(C,A) = 0 for all C ∈ <.
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(3) A ∼= B
⊕

D where B is a torsion divisible group and D a torsion-free
cotorsion group.

Proof. (1)⇒ (2): Let A be a t-injective in <, and let E : 0→ A
φ→ B → C → 0

be a t-extension of A by C. Then, there is a homomorphism φ̄ : B → G such
that φ̄φ = 1G. Consequently, E splits.

(2) ⇒ (3): Let Extt(C,A) = 0 for every group C. So Extt(Z(m), A) = 0 for
every positive integer m. By Corollary 3.5, m(tA) = tA for every positive inte-
ger m. So, tA is divisible. Hence, A ∼= tA

⊕
A/tA. Therefore, Ext(Q, A) ∼=

Ext(Q, tA)
⊕

Ext(Q, A/tA). Since Ext(Q, A) = Extt(Q, A) = 0, then
Ext(Q, A/tA) = 0. Hence, A/tA is cotorsion. Now, we set tA = B and
A/tA = D.

(3)⇒ (2): Suppose that A ∼= B
⊕

D where B is a torsion divisible group and
D a torsion-free cotorsion group. Let C be a group. Since Ext(C,B) = 0, so
p∗2 : Ext(C,B

⊕
D) → Ext(C,D) is an isomorphism, where p2 : B

⊕
D → D

is the projection map. By Lemma 3.9, Extt(C,D) ∼= Ext(C/tC,D). Since
D is a cotorsion group, so Ext(C/tC,D) = 0. Hence, Extt(C,D) = 0. So,
p∗2(Extt(C,B

⊕
D)) ⊆ Extt(C,D) = 0. Since p∗2 is an isomorphism, therefore

Extt(C,B
⊕

D) = 0 or Extt(C,A) = 0.

(2) =⇒ (1): Let E : 0→ G
φ→ B → C → 0 be a t-extension and let f : G→ A

be a homomorphism. Then f induces a pushout diagram

E : 0 // G
φ //

f
��

B //

��

C //

��

0

fE : 0 // A
µ// (A

⊕
B)/H // C // 0

where H = {(−f(a), φ(a)); a ∈ A} and µ : a 7−→ (a, 0) + H. By Lemma 2.1,
fE is a t-extension and by assumption it splits. Hence A is t-injective. �

Recall that a groupA is called algebraically compact if and only if Pext(X,A) =
0 for every group X (see [1]).

Corollary 3.12. A torsion-free, cotorsion group is algebraically compact.

Proof. Let A be a torsion-free, cotorsion group. By Theorem 3.11, Extt(C,A) = 0
for every group C. Hence, Pext(C,A) = 0 for every group C. �

Theorem 3.13. Let C be a group. Consider the following conditions for C:

(1) C is t-projective in <.
(2) Extt(C,A) = 0 for all A ∈ <.
(3) C is a direct sum of cyclic groups.

Then: (1)⇔ (2)⇒ (3) and (3) 6⇒ (2).

Proof. (1)⇒ (2): Let C be t-projective in <, and let E : 0→ A→ B
ψ→ C → 0

be a t-extension of A by C. Then there is a homomorphism ψ̄ : C → B such that
ψψ̄ = 1C . Consequently, E splits.
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(2)⇒ (3): Let Extt(C,A) = 0 for every group A. By Lemma 2.6, Pext(C,A) =
0 for every group A. Hence, C is a direct sum of cyclic groups (see [1, Theorem
30.2]).

(2)⇒ (1): Let E : 0→ A→ B
ψ→ G→ 0 be a t-extension, and let f : C → G

be a homomorphism. Then f induces a pullback diagram

0 // A //

��

B′
ψ′ //

��

C //

f
��

0

0 // A // B
ψ // G // 0

Where B′ = {(b, c);ψ(b) = f(c)} and ψ′ : (b, c) 7−→ c. By Lemma 2.1, Ef is a
t-extension and by assumption, it splits. Hence C is t-projective.

(3) 6⇒ (2): By Corollary 3.5, Extt(Z2,Z4) ∼= Z2 6= 0. �

4. Splitting pure extensions by compact connected abelian groups

In this section, we determine the structure of a compact group G such that
Pext(C,G) = 0 for all compact connected groups C.

Lemma 4.1. If A is a compact totally disconnected group and C a compact
connected group, then Pext(C,A) = 0.

Proof. By [8, Lemma 2.3], Pext(C,A) ∼= Pext(Â, Ĉ). On the other hand, by [6,

Theorems 24.25 and 24.26], Â and Ĉ are a discrete, torsion group and a discrete,

torsion-free group, respectively. Hence, by Corollary 3.2, Pext(Â, Ĉ) = 0. So
Pext(C,A) = 0. �

Let G be a compact group. Then, Ext(C,G) = 0 for every compact connected
group C if and only if G ∼= (R/Z)σ (see [5, Corollary 3.4]). In the next Theorem,
we show that Pext(C,G) = 0 for every compact connected group C if and only
if G ∼= (R/Z)σ

⊕
H, where H is a compact totally disconnected group.

Theorem 4.2. Let G be a compact group. Then, Pext(C,G) = 0 for all compact
connected groups C if and only if G ∼= (R/Z)σ

⊕
H, where H is a compact totally

disconnected group.

Proof. Let G be a compact group, and let C be a compact connected group.
Consider the exact sequence 0 → G0 → G → G/G0. By [2, Proposition 4], we
have the exact sequence

Hom(C,G/G0)→ Pext(C,G0)→ Pext(C,G)→ Pext(C,G/G0).

By Lemma 4.1, Pext(C,G/G0) = 0. Since G/G0 is totally disconnected, so
Hom(C,G/G0) = 0. It follows that Pext(C,G) ∼= Pext(C,G0). But, G0 is
a divisible group. So, Pext(C,G) ∼= Ext(C,G0). Now, Let Pext(C,G) = 0
for all compact connected groups C. Then Ext(C,G0) = 0 for all compact
connected groups C. By [5, Corollary 3.4], G0

∼= (R/Z)σ. So, the extension
0 → G0 → G → G/G0 → 0 splits. This shows that G ∼= (R/Z)σ

⊕
G/G0. The

converse is clear. �
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Remark 4.3. Let G be a compact group such that Ext(C,G) = 0 for every
compact connected group C. Then Pext(C,G) = 0 for every compact connected
group C. So by Theorem 4.2, G ∼= (R/Z)σ

⊕
H, where H is a compact totally

disconnected group. Since R/Z is a compact connected group, so Ext(R/Z, H) =
0. Consider the following exact sequence

Hom(R, H)→ Hom(Z, H)→ Ext(R/Z, H) = 0.

Since R is a connected group and H is a totally disconnected group, therefore
Hom(R, H) = 0. Hence, H = 0 and G ∼= (R/Z)σ.

Acknowledgement. The authors sincerely thank the referee for his or her
helpful comments and suggestions.
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