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Abstract. We use the generalized theorem of Liapounov to obtain some nec-
essary and sufficient conditions for the stability of the stationary implicit equa-
tion

Ax′(t) = Bx(t), t ≥ 0,

where A and B are bounded operators in Hilbert spaces. The achieved results
can be applied to the stability for the quasi-linear implicit equation

Ax′(t) = Bx(t) + θ(t, x(t)), t ≥ 0.

1. Introduction

Consider the abstract implicit differential equation

Ax′(t) = Bx(t) + θ(t, x(t)), t ≥ 0, (1.1)

where A and B are two linear bounded operators on a Hilbert space H and θ(·, ·)
is a continuous function from [0,∞)×H to H. The operator A is not necessarily
invertible.

The equation (1.1) has been considered in various forms by many authors as
Favini and Yagi [5], Rutkas [6], Vlasenko [7] and others.

In the present paper, we study the stationary implicit equation

Ax′(t) = Bx(t), t ≥ 0, (1.2)

and also the quasi-linear implicit equation (1.1), with the initial condition

x(0) = x0.
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In [2] the authors obtained results concerning the stability of the degenerate
difference systems that is similar to (1.1).

Some practical examples of (1.1) can be found in [5, 6, 7]. The organization
of this paper is as follows: in Section 2, we introduce some preliminaries and
expand the famous Liapounov general theorem [4], which has an important role
in this paper. In section 3, we present our main results concerning the exponential
stability of the solution for the quasi-linear implicit equation (1.1).

We use the following definitions.

Definition 1.1. The equation (1.2) is called exponentially stable, if there exist
two constants M > 0 and α < 0 such that, for any solution x(t), we have

||x(t)|| ≤Meαt||x0|| for any t ≥ 0. (1.3)

Definition 1.2. The equation (1.2) is said to be well-posed, if it satisfies the
following properties:

(i) for any solution x(.) such that x(0) = x0 = 0, then x(t) = 0 for all t ≥ 0;
(ii) it generates an evolution semigroup of bounded operators S(t) : x0 7→ x(t)

for all t ≥ 0.
The operators S(t) are defined on the set D0 = {x0} of the admissible initial

vectors x0.

Definition 1.3 (see [6]). The complex number λ ∈ C is called a regular value of
the pencil λA−B, if the resolvent (λA−B)−1 exists and is bounded. The set of all
regular values is denoted by ρ(A,B) and its complement σ(A,B) = C\ρ(A,B) is
called the spectrum of the pencil λA−B. The set of all eigenvalues of the pencil
λA−B is denoted by

σp(A,B) =
{
λ ∈ C : ∃v 6= 0; (λA−B)v = 0

}
.

2. Stationary implicit equation

For the stationary implicit equation (1.2), we can obtain the following criterion
for the exponential stability .

Theorem 2.1. The equation (1.2) is exponentially stable if and only if it is well-
posed.

Proof. Suppose that (1.2) is exponentially stable. Then, it has a unique solution
x(t). In fact, if x0 = 0, then by (1.3), we obtain ||x(t)|| ≤ 0, and consequently
x(t) = 0 for all t ≥ 0. On the other hand, we have

||x(t)|| = ||S(t)x0|| ≤Meαt||x0||.
It means that the operator S(t) is bounded and ||S(t)|| ≤ Meαt. So, (1.2) is
well-posed. Conversely, if (1.2) is well-posed, then one obtains

ω = lim
t→∞

ln ||S(t)||
t

<∞

(see [4, p. 26]), where ω is the strict Liapounov exponent of Φ(t) = ||S(t)||. More
precisely, ω is the greatest lower bound of the set of real numbers % for which
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there exists a positive constant N% (see [3, pp. 8–9]) such that

Φ(t) = ||S(t)|| ≤ N%e
%t for all t ≥ 0, ω ≤ % < 0.

Hence

||x(t)|| = ||S(t)x0|| ≤ N%e
%t||x0||,

which achieves the proof . �

Theorem 2.2. If (1.2) is exponentially stable, then all eigenvalues of the pencil
λA−B are in the half-plane Reλ ≤ α, where α is the constant defined in (1.3).

Proof. Suppose that there exists an eigenvalue λ0 ∈ σp(A,B) such that Reλ0 > α.
Then (λ0A − B)v = 0, where v is the corresponding eigenvector. Consequently,
y(t) = eλ0tv is a solution of (1.2) verifying the condition y(0) = v, and we have

||y(t)|| = ||eλ0tv|| = e(Reλ0)t||v|| > eαt||y(0)||.

So, the solution y(t) does not satisfy (1.3) and consequently (1.2) is not exponen-
tially stable. �

Remark 2.3. If (1.2) is exponentially stable, then all the eigenvalues of the pencil
λA−B are inside the left half-plane, that is

σp(A,B) ⊂ {λ ∈ C : Reλ < 0},

since α < 0, where α is given by (1.3).

We can now extend the generalized Liapounov theorem [4] for the spectrum of
the bounded operator T , to the spectrum of the pencil λA − B of the bounded
operators A and B on a Hilbert space H, using the spectral theory of the pencil
of operators and an appropriate conformal mapping as follows.

Theorem 2.4. A necessary condition, for the spectrum σ(A,B) of the pencil
λA− B to lie in the interior of the half-plane Reλ < α (α < 0), is that, for any
uniformly positive operator U � 0 1, there exists an operator W � 0 such that

A∗WB +B∗WA− 2αA∗WA = −2U, (2.1)

and a sufficient condition is that α + 1 is a regular value of the pencil λA − B
and there exists an operator W � 0 such that

A∗WB +B∗WA− 2αA∗WA� 0. (2.2)

Proof. Necessary condition. Suppose that σ(A,B) ⊂ {λ ∈ C : Reλ < α}. Then,
(α + 1) ∈ ρ(A,B) and the operator T = [(α − 1)A− B][(α + 1)A− B]−1 is well
defined and bounded. Now, using the conformal mapping z = ϕ(λ) = λ−α+1

λ−α−1
which transforms the vertical line Reλ = α into the unit circle |z| = 1, we obtain

1It means that U∗ = U and that 〈Ux, x〉 > 0 for all x with ||x|| = 1.
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zI − T = (λ−α+1
λ−α−1)[(α + 1)A−B]

[
(α + 1)A−B]−1

− [(α− 1)A−B][(α + 1)A−B
]−1

= 1
(λ−α−1)

{
(λ− α + 1)[(α + 1)A−B]

− (λ− α− 1)[(α− 1)A−B]
}

[(α + 1)A−B]−1

= 2
(λ−α−1)(λA−B)[(α + 1)A−B]−1.

So, the operator zI − T is invertible if and only if the pencil λA − B is also
invertible. Therefore, ρ(T ) = ρ(I, T ) = ϕ(ρ(A,B)).

Passing to the complement, we conclude that σ(T ) = σ(I, T ) = ϕ(σ(A,B)).
Consequently σ(T ) is in the unit disk. Using [2, Theorem 2], we conclude that
there exists an operator W � 0 such that

T ∗WT −W = −G for all G� 0, (2.3)

which is equivalent to

{[(α− 1)A−B][(α + 1)A−B]−1}∗W

{[(α− 1)A−B][(α + 1)A−B]−1} −W = −G

⇐⇒ [(α + 1)A∗ −B∗]−1[(α− 1)A∗ −B∗]W

[(α− 1)A−B][(α + 1)A−B]−1 −W = −G

⇐⇒ [(α− 1)A∗ −B∗]W [(α− 1)A−B]

− [(α + 1)A∗ −B∗]W [(α + 1)A−B]

= −[(α + 1)A∗ −B∗]G[(α + 1)A−B]

⇐⇒ (2A∗WB + 2B∗WA− 4αA∗WA)

= −[(α + 1)A∗ −B∗]G[(α + 1)A−B]

⇐⇒ A∗WB +B∗WA− 2αA∗WA

= −1
2
[(α + 1)A∗ −B∗]G[(α + 1)A−B]

⇐⇒ A∗WB +B∗WA− 2αA∗WA = −2U,
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where
U = 1

4
[(α + 1)A∗ −B∗]G[(α + 1)A−B]� 0.

In fact,
U∗ = 1

4
[(α + 1)A∗ −B∗]G[(α + 1)A−B] = U,

and for each x ∈ H, we have

〈Ux, x〉 = 1
4
〈[(α + 1)A∗ −B∗]G[(α + 1)A−B]x, x〉

= 1
4
〈G[(α + 1)A−B]x, [(α + 1)A−B]x〉

= 1
4
〈Gy, y〉 ≥ k

4
||y||2, y = [(α + 1)A−B]x,

where k is a positive constant. But,
||x||2 = ||[(α + 1)A−B]−1y||2

≤ ||[(α + 1)A−B]−1||2 ||y||2.
Therefore

||y||2 ≥ ||x||2
||[(α+1)A−B]−1||2 .

Thus
〈Ux, x〉 ≥ 1

4
k

||[(α+1)A−B]−1||2 ||x||
2 > 0.

Consequently U � 0, and (2.2) holds.
Sufficient condition. If α+1 ∈ ρ(A,B) is a regular value for the pencil λA−B,

then the operator T = [(α − 1)A − B][(α + 1)A − B]−1 is bounded and (2.2)
becomes

A∗WB +B∗WA− 2αA∗WA = −1

2
[(α + 1)A∗ −B∗]G[(α + 1)A−B]� 0.

Therefore, G = W−T ∗WT � 0 (see (2.3)). Using again [2, Theorem 2], the spec-
trum σ(T ) will be inside the unit disk. We conclude that σ(A,B) = ϕ−1(σ(T )) ⊂
{λ : Reλ < α}, where λ = ϕ−1(z) = α+ z+1

z−1 is a conformal mapping and Theorem
2.4 is proved. �

Theorem 2.5. If (2.1) is satisfied for the pair of the positive uniform operators
(W,U), then λ = α + 1 is not an eigenvalue for the pencil λA−B.

Proof. Suppose that λ = α + 1 is an eigenvalue. We denote by v 6= 0 the
corresponding eigenvector. Then, [(α + 1)A − B]v = 0 or (α + 1)Av = Bv, and
in the two cases the scalar product becomes

〈Uv, v〉 = −1
2
〈(A∗WB +B∗WA− 2αA∗WA)v, v〉

= −1
2
〈A∗WBv, v〉 − 1

2
〈B∗WAv, v〉+ 〈αA∗WAv, v〉

= −1
2
〈WBv,Av〉 − 1

2
〈WAv,Bv〉+ α〈WAv,Av〉

= −〈WAv,Av〉 < 0.
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We obtain a contradiction, with the hypothesis U � 0, since W � 0. Conse-
quently Theorem 2.5 is proved. �

Corollary 2.6. In the case of a finite-dimensional space H, the following state-
ments are equivalent:

(a) The equation (1.2) is exponentially stable;
(b) σ(A,B) = σp(A,B) ⊂ {λ : Reλ < α};
(c) There exists a positive definite matrix W � 0 such that

A∗WB +B∗WA− 2αA∗WA � 0.

3. Quasi-linear implicit equation

In this section, we give some stability conditions of the quasi-linear implicit
equation of the form (1.1), using the following variation of constants method
(Lemma 3.1) and the Gronwall–Bellman inequality (Lemma 3.2).

Remember that D0 = {x(0)} denotes the initial manifold subspace of H for
the stationary equation (1.2).

Lemma 3.1. Suppose that
(i) the restriction operator A0 = A|D0 on D0 is invertible;2
(ii) for any τ ≥ 0, the space θ(τ, x(τ)) is in the domain of A0 and the function

S(t− τ)A−10 θ(τ, x(τ)) is integrable (with respect to τ), where {S(t)}t≥0
is the semigroup of the operators for (1.2).

Then the quasi-linear equation (1.1) is equivalent to the integral equation

x(t) = S(t)x0 +

∫ t

0

S(t− τ)A−10 θ(τ, x(τ))dτ. (3.1)

Lemma 3.2 (Gronwall–Bellman ). (see [1]). If

g(t) ≤ c+

∫ t

0

g(τ)h(τ)dτ for all t ≥ 0,

where h is a continuous positive real function and c > 0 is an arbitrary constant,
then

g(t) ≤ c exp

[∫ t

0

h(τ)dτ

]
.

For the quasi-linear equation (1.1), we have the next result.

Theorem 3.3. Suppose that
(i) the equation (1.2) is well-posed;
(ii) the quasi-linear operator θ(t, x(t)), for all t ≥ 0, transforms D0 into AD0

such that ∫ ∞
0

||A−10 θ(t, x(t))||dt <∞.

Then the quasi-linear equation (1.1) is exponentially stable .

2In particular, if (1.2) is well-posed, then A0 is invertible.
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Proof. Thanks to Lemma 3.1, equation (1.1) is equivalent to (3.1). According to
the hypothesis (i), we have

||S(t)x0|| ≤Meαt||x0||,
and

||S(t− τ)A−10 θ(τ, x(τ))|| ≤Meα(t−τ)||A−10 θ(τ, x(τ))||.
Considering (i) and (ii), we have A−10 θ(τ, x(τ)) ∈ D0. Using (3.1), we obtain

||x(t)|| ≤Meαt||x0||+M

∫ t

0

eα(t−τ)||A−10 θ(τ, x(τ))|| ||x(τ)||dτ

or

e−αt||x(t)|| ≤M ||x0||+M

∫ t

0

e−ατ ||A−10 θ(τ, x(τ))|| ||x(τ)||dτ.

Applying Lemma 3.2 with g(t) = e−αt||x(t)||, h(τ) = M ||A−10 θ(τ, x(τ))||, and
c = M ||x0||, we obtain

e−αt||x(t)|| ≤ M ||x0|| exp
[
M

∫ t

0

||A−10 θ(τ, x(τ))||dτ
]

≤ M ||x0|| exp
[
M

∫ ∞
0

||A−10 θ(τ, x(τ))||dτ
]
.

Thus,
||x(t)|| ≤M1e

αt||x0||,
where

M1 = M exp

[
M

∫ ∞
0

||A−10 θ(τ, x(τ))||dτ
]
<∞.

�

Corollary 3.4. If the conditions (i) and (ii) of Theorem 3.3 are fulfilled and (1.2)
is exponentially stable, then the quasi-linear equation (1.1) is also exponentially
stable.

Remark 3.5. Theorem 3.3 represents the generalization of the Dini–Hukuhara
theorem [1], where A ≡ I, B ≡ T , θ(t, x(t)) ≡ T (t){x(t)}, and α = 0.

Finally we provide the following example to illustrate our main result.

Example 3.6. Consider (1.1) in the finite-dimensional spaces:

A =

(
1 0
1 0

)
, B =

(
−1 0
−1 −1

)
, θ(t, x(t)) ≡ e−t

(
1 1
1 0

)
, t ≥ 0.

In our case

D0 = {(a, b) ∈ R2 : b = 0}, AD0 = {(a, b) ∈ R2 : a = b},

λA−B =

(
λ+ 1 0
λ+ 1 1

)
, (λA−B)−1 =

1

λ+ 1

(
1 0

−λ− 1 λ+ 1

)
.

It is clear that θ(t, x(t)) : D0 → AD0, t ≥ 0, and A0 is invertible.
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Since σ(A,B) = σp(A,B) = {−1}, then (1.2) is exponentially stable (see
Corollary 2.6). From Corollary 3.4, we conclude that the corresponding quasi-
linear equation (1.1) is also exponentially stable as far as,∫ ∞

0

||A−10 θ(t, x(t))||dt ≤ ||A−10 ||
∫ ∞
0

||θ(t, x(t))||dt

= ||A−10 ||
∫ ∞
0

e−tdt

= ||A−10 || <∞.
Acknowledgement. The authors would like to express their gratitude to the

anonymous referees for their comments and suggestions that improve the last
version of the manuscript.

References

1. R. Bellman and K.L. Cooke, Differential-Difference Equations, Vol 6, Academic Press.,
London, 1963.

2. M. Benabdallah, A.G. Rutkas and A.A. Soloviev, On the stability of degenerate difference
systems in Banach spaces, J. Sov. Math. 57 (1991) 3435–3439.

3. P.L. Butzer and H. Berens, Semigroups of Operators and Approximations, Springer-Verlag,
New York-Berlin, 1967.
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