Khayyam J. Math. 5 (2019), no. 1, 105-112 DOI: 10.22034/kjm.2019.81222

ON THE STABILITY OF THE QUASI-LINEAR IMPLICIT EQUATIONS IN HILBERT SPACES

MEHDI BENABDALLAH¹ AND MOHAMED HARIRI^{2*}

Communicated by J. Brzdęk

ABSTRACT. We use the generalized theorem of Liapounov to obtain some necessary and sufficient conditions for the stability of the stationary implicit equation

$$Ax'(t) = Bx(t), \quad t \ge 0$$

where A and B are bounded operators in Hilbert spaces. The achieved results can be applied to the stability for the quasi-linear implicit equation

 $Ax'(t) = Bx(t) + \theta(t, x(t)), \quad t \ge 0.$

1. INTRODUCTION

Consider the abstract implicit differential equation

$$Ax'(t) = Bx(t) + \theta(t, x(t)), \quad t \ge 0,$$
(1.1)

where A and B are two linear bounded operators on a Hilbert space \mathcal{H} and $\theta(\cdot, \cdot)$ is a continuous function from $[0, \infty) \times \mathcal{H}$ to \mathcal{H} . The operator A is not necessarily invertible.

The equation (1.1) has been considered in various forms by many authors as Favini and Yagi [5], Rutkas [6], Vlasenko [7] and others.

In the present paper, we study the stationary implicit equation

$$Ax'(t) = Bx(t), \quad t \ge 0,$$
 (1.2)

and also the quasi-linear implicit equation (1.1), with the initial condition

 $x(0) = x_0.$

Date: Received: 01 May 2018 ; Revised: 10 October 2018; Accepted: 29 November 2018. * Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 34D20; Secondary 47A10, 34K32. Key words and phrases. Exponential stability, operator theory, implicit equations.

In [2] the authors obtained results concerning the stability of the degenerate difference systems that is similar to (1.1).

Some practical examples of (1.1) can be found in [5, 6, 7]. The organization of this paper is as follows: in Section 2, we introduce some preliminaries and expand the famous Liapounov general theorem [4], which has an important role in this paper. In section 3, we present our main results concerning the exponential stability of the solution for the quasi-linear implicit equation (1.1).

We use the following definitions.

Definition 1.1. The equation (1.2) is called exponentially stable, if there exist two constants M > 0 and $\alpha < 0$ such that, for any solution x(t), we have

$$||x(t)|| \le M e^{\alpha t} ||x_0||$$
 for any $t \ge 0.$ (1.3)

Definition 1.2. The equation (1.2) is said to be well-posed, if it satisfies the following properties:

- (i) for any solution x(.) such that $x(0) = x_0 = 0$, then x(t) = 0 for all $t \ge 0$;
- (ii) it generates an evolution semigroup of bounded operators $S(t) : x_0 \mapsto x(t)$ for all $t \ge 0$.

The operators S(t) are defined on the set $D_0 = \{x_0\}$ of the admissible initial vectors x_0 .

Definition 1.3 (see [6]). The complex number $\lambda \in \mathbb{C}$ is called a regular value of the pencil $\lambda A - B$, if the resolvent $(\lambda A - B)^{-1}$ exists and is bounded. The set of all regular values is denoted by $\rho(A, B)$ and its complement $\sigma(A, B) = \mathbb{C} \setminus \rho(A, B)$ is called the spectrum of the pencil $\lambda A - B$. The set of all eigenvalues of the pencil $\lambda A - B$ is denoted by

$$\sigma_p(A, B) = \{ \lambda \in \mathbb{C} : \exists v \neq 0; (\lambda A - B)v = 0 \}.$$

2. STATIONARY IMPLICIT EQUATION

For the stationary implicit equation (1.2), we can obtain the following criterion for the exponential stability.

Theorem 2.1. The equation (1.2) is exponentially stable if and only if it is wellposed.

Proof. Suppose that (1.2) is exponentially stable. Then, it has a unique solution x(t). In fact, if $x_0 = 0$, then by (1.3), we obtain $||x(t)|| \le 0$, and consequently x(t) = 0 for all $t \ge 0$. On the other hand, we have

$$||x(t)|| = ||S(t)x_0|| \le Me^{\alpha t} ||x_0||.$$

It means that the operator S(t) is bounded and $||S(t)|| \leq Me^{\alpha t}$. So, (1.2) is well-posed. Conversely, if (1.2) is well-posed, then one obtains

$$\omega = \lim_{t \to \infty} \frac{\ln ||S(t)||}{t} < \infty$$

(see [4, p. 26]), where ω is the strict Liapounov exponent of $\Phi(t) = ||S(t)||$. More precisely, ω is the greatest lower bound of the set of real numbers ρ for which

there exists a positive constant N_{ϱ} (see [3, pp. 8–9]) such that

$$\Phi(t) = ||S(t)|| \le N_{\varrho} e^{\varrho t} \quad \text{for all } t \ge 0, \omega \le \varrho < 0.$$

Hence

$$||x(t)|| = ||S(t)x_0|| \le N_{\varrho} e^{\varrho t} ||x_0||,$$

which achieves the proof.

Theorem 2.2. If (1.2) is exponentially stable, then all eigenvalues of the pencil $\lambda A - B$ are in the half-plane $\operatorname{Re} \lambda \leq \alpha$, where α is the constant defined in (1.3).

Proof. Suppose that there exists an eigenvalue $\lambda_0 \in \sigma_p(A, B)$ such that $\operatorname{Re}\lambda_0 > \alpha$. Then $(\lambda_0 A - B)v = 0$, where v is the corresponding eigenvector. Consequently, $y(t) = e^{\lambda_0 t}v$ is a solution of (1.2) verifying the condition y(0) = v, and we have

$$||y(t)|| = ||e^{\lambda_0 t}v|| = e^{(\operatorname{Re}\lambda_0)t}||v|| > e^{\alpha t}||y(0)||.$$

So, the solution y(t) does not satisfy (1.3) and consequently (1.2) is not exponentially stable.

Remark 2.3. If (1.2) is exponentially stable, then all the eigenvalues of the pencil $\lambda A - B$ are inside the left half-plane, that is

$$\sigma_p(A,B) \subset \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda < 0\},\$$

since $\alpha < 0$, where α is given by (1.3).

We can now extend the generalized Liapounov theorem [4] for the spectrum of the bounded operator T, to the spectrum of the pencil $\lambda A - B$ of the bounded operators A and B on a Hilbert space \mathcal{H} , using the spectral theory of the pencil of operators and an appropriate conformal mapping as follows.

Theorem 2.4. A necessary condition, for the spectrum $\sigma(A, B)$ of the pencil $\lambda A - B$ to lie in the interior of the half-plane $\operatorname{Re} \lambda < \alpha$ ($\alpha < 0$), is that, for any uniformly positive operator $U \gg 0^{-1}$, there exists an operator $W \gg 0$ such that

$$A^*WB + B^*WA - 2\alpha A^*WA = -2U,$$
(2.1)

and a sufficient condition is that $\alpha + 1$ is a regular value of the pencil $\lambda A - B$ and there exists an operator $W \gg 0$ such that

$$A^*WB + B^*WA - 2\alpha A^*WA \ll 0. \tag{2.2}$$

Proof. Necessary condition. Suppose that $\sigma(A, B) \subset \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda < \alpha\}$. Then, $(\alpha + 1) \in \rho(A, B)$ and the operator $T = [(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1}$ is well defined and bounded. Now, using the conformal mapping $z = \varphi(\lambda) = \frac{\lambda - \alpha + 1}{\lambda - \alpha - 1}$ which transforms the vertical line $\operatorname{Re}\lambda = \alpha$ into the unit circle |z| = 1, we obtain

¹It means that $U^* = U$ and that $\langle Ux, x \rangle > 0$ for all x with ||x|| = 1.

$$zI - T = (\frac{\lambda - \alpha + 1}{\lambda - \alpha - 1})[(\alpha + 1)A - B][(\alpha + 1)A - B]^{-1} - [(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1} = \frac{1}{(\lambda - \alpha - 1)} \{ (\lambda - \alpha + 1)[(\alpha + 1)A - B] - (\lambda - \alpha - 1)[(\alpha - 1)A - B] \} [(\alpha + 1)A - B]^{-1} = \frac{2}{(\lambda - \alpha - 1)} (\lambda A - B)[(\alpha + 1)A - B]^{-1}.$$

So, the operator zI - T is invertible if and only if the pencil $\lambda A - B$ is also invertible. Therefore, $\rho(T) = \rho(I, T) = \varphi(\rho(A, B))$.

Passing to the complement, we conclude that $\sigma(T) = \sigma(I,T) = \varphi(\sigma(A,B))$. Consequently $\sigma(T)$ is in the unit disk. Using [2, Theorem 2], we conclude that there exists an operator $W \gg 0$ such that

$$T^*WT - W = -G \quad \text{for all } G \gg 0, \tag{2.3}$$

which is equivalent to

$$\begin{split} \{[(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1}\}^*W \\ \{[(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1}\} - W &= -G \\ \Longleftrightarrow [(\alpha + 1)A^* - B^*]^{-1}[(\alpha - 1)A^* - B^*]W \\ [(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1} - W &= -G \\ \Leftrightarrow [(\alpha - 1)A^* - B^*]W[(\alpha - 1)A - B] \\ - [(\alpha + 1)A^* - B^*]W[(\alpha + 1)A - B] \\ &= -[(\alpha + 1)A^* - B^*]G[(\alpha + 1)A - B] \\ \Leftrightarrow (2A^*WB + 2B^*WA - 4\alpha A^*WA) \\ &= -[(\alpha + 1)A^* - B^*]G[(\alpha + 1)A - B] \\ \Leftrightarrow A^*WB + B^*WA - 2\alpha A^*WA \\ &= -\frac{1}{2}[(\alpha + 1)A^* - B^*]G[(\alpha + 1)A - B] \end{split}$$

 $\Longleftrightarrow A^*WB + B^*WA - 2\alpha A^*WA = -2U,$

where

$$U = \frac{1}{4} [(\alpha + 1)A^* - B^*]G[(\alpha + 1)A - B] \gg 0.$$

In fact,

$$U^* = \frac{1}{4}[(\alpha+1)A^* - B^*]G[(\alpha+1)A - B] = U,$$

and for each $x \in \mathcal{H}$, we have

$$\begin{aligned} \langle Ux, x \rangle &= \frac{1}{4} \langle [(\alpha+1)A^* - B^*]G[(\alpha+1)A - B]x, x \rangle \\ &= \frac{1}{4} \langle G[(\alpha+1)A - B]x, [(\alpha+1)A - B]x \rangle \\ &= \frac{1}{4} \langle Gy, y \rangle \geq \frac{k}{4} ||y||^2, \ y = [(\alpha+1)A - B]x, \end{aligned}$$

where k is a positive constant. But,

$$\begin{aligned} |x||^2 &= ||[(\alpha+1)A - B]^{-1}y||^2 \\ &\leq ||[(\alpha+1)A - B]^{-1}||^2 ||y||^2. \end{aligned}$$

Therefore

$$||y||^2 \ge \frac{||x||^2}{||[(\alpha+1)A-B]^{-1}||^2}$$

Thus

$$\langle Ux, x \rangle \geq \frac{1}{4} \frac{k}{||[(\alpha+1)A-B]^{-1}||^2} ||x||^2 > 0.$$

Consequently $U \gg 0$, and (2.2) holds.

Sufficient condition. If $\alpha + 1 \in \rho(A, B)$ is a regular value for the pencil $\lambda A - B$, then the operator $T = [(\alpha - 1)A - B][(\alpha + 1)A - B]^{-1}$ is bounded and (2.2) becomes

$$A^*WB + B^*WA - 2\alpha A^*WA = -\frac{1}{2}[(\alpha + 1)A^* - B^*]G[(\alpha + 1)A - B] \ll 0.$$

Therefore, $G = W - T^*WT \gg 0$ (see (2.3)). Using again [2, Theorem 2], the spectrum $\sigma(T)$ will be inside the unit disk. We conclude that $\sigma(A, B) = \varphi^{-1}(\sigma(T)) \subset \{\lambda : \operatorname{Re}\lambda < \alpha\}$, where $\lambda = \varphi^{-1}(z) = \alpha + \frac{z+1}{z-1}$ is a conformal mapping and Theorem 2.4 is proved.

Theorem 2.5. If (2.1) is satisfied for the pair of the positive uniform operators (W, U), then $\lambda = \alpha + 1$ is not an eigenvalue for the pencil $\lambda A - B$.

Proof. Suppose that $\lambda = \alpha + 1$ is an eigenvalue. We denote by $v \neq 0$ the corresponding eigenvector. Then, $[(\alpha + 1)A - B]v = 0$ or $(\alpha + 1)Av = Bv$, and in the two cases the scalar product becomes

$$\begin{aligned} \langle Uv, v \rangle &= -\frac{1}{2} \langle (A^*WB + B^*WA - 2\alpha A^*WA)v, v \rangle \\ &= -\frac{1}{2} \langle A^*WBv, v \rangle - \frac{1}{2} \langle B^*WAv, v \rangle + \langle \alpha A^*WAv, v \rangle \\ &= -\frac{1}{2} \langle WBv, Av \rangle - \frac{1}{2} \langle WAv, Bv \rangle + \alpha \langle WAv, Av \rangle \\ &= -\langle WAv, Av \rangle < 0. \end{aligned}$$

We obtain a contradiction, with the hypothesis $U \gg 0$, since $W \gg 0$. Consequently Theorem 2.5 is proved.

Corollary 2.6. In the case of a finite-dimensional space \mathcal{H} , the following statements are equivalent:

(a) The equation (1.2) is exponentially stable;

(b) $\sigma(A, B) = \sigma_p(A, B) \subset \{\lambda : \operatorname{Re}\lambda < \alpha\};$

(c) There exists a positive definite matrix $W \gg 0$ such that

$$A^*WB + B^*WA - 2\alpha A^*WA \ll 0.$$

3. QUASI-LINEAR IMPLICIT EQUATION

In this section, we give some stability conditions of the quasi-linear implicit equation of the form (1.1), using the following variation of constants method (Lemma 3.1) and the Gronwall–Bellman inequality (Lemma 3.2).

Remember that $D_0 = \{x(0)\}$ denotes the initial manifold subspace of \mathcal{H} for the stationary equation (1.2).

Lemma 3.1. Suppose that

- (i) the restriction operator $A_0 = A|_{D_0}$ on D_0 is invertible;²
- (ii) for any $\tau \ge 0$, the space $\theta(\tau, x(\tau))$ is in the domain of A_0 and the function $S(t-\tau)A_0^{-1}\theta(\tau, x(\tau))$ is integrable (with respect to τ), where $\{S(t)\}_{t\ge 0}$ is the semigroup of the operators for (1.2).

Then the quasi-linear equation (1.1) is equivalent to the integral equation

$$x(t) = S(t)x_0 + \int_0^t S(t-\tau)A_0^{-1}\theta(\tau, x(\tau))d\tau.$$
 (3.1)

Lemma 3.2 (Gronwall–Bellman). (see [1]). If

$$g(t) \le c + \int_0^t g(\tau)h(\tau)d\tau \quad \text{for all } t \ge 0,$$

where h is a continuous positive real function and c > 0 is an arbitrary constant, then

$$g(t) \le c \ exp\left[\int_0^t h(\tau)d\tau\right].$$

For the quasi-linear equation (1.1), we have the next result.

Theorem 3.3. Suppose that

- (i) the equation (1.2) is well-posed;
- (ii) the quasi-linear operator $\theta(t, x(t))$, for all $t \ge 0$, transforms D_0 into AD_0 such that

$$\int_0^\infty ||A_0^{-1}\theta(t,x(t))||dt < \infty.$$

Then the quasi-linear equation (1.1) is exponentially stable.

110

²In particular, if (1.2) is well-posed, then A_0 is invertible.

Proof. Thanks to Lemma 3.1, equation (1.1) is equivalent to (3.1). According to the hypothesis (i), we have

$$||S(t)x_0|| \le M e^{\alpha t} ||x_0||,$$

and

$$||S(t-\tau)A_0^{-1}\theta(\tau, x(\tau))|| \le Me^{\alpha(t-\tau)}||A_0^{-1}\theta(\tau, x(\tau))||$$

Considering (i) and (ii), we have $A_0^{-1}\theta(\tau, x(\tau)) \in D_0$. Using (3.1), we obtain

$$||x(t)|| \le M e^{\alpha t} ||x_0|| + M \int_0^t e^{\alpha (t-\tau)} ||A_0^{-1} \theta(\tau, x(\tau))|| \ ||x(\tau)|| d\tau$$

or

$$e^{-\alpha t}||x(t)|| \le M||x_0|| + M \int_0^t e^{-\alpha \tau} ||A_0^{-1}\theta(\tau, x(\tau))|| \ ||x(\tau)||d\tau$$

Applying Lemma 3.2 with $g(t) = e^{-\alpha t} ||x(t)||$, $h(\tau) = M ||A_0^{-1}\theta(\tau, x(\tau))||$, and $c = M ||x_0||$, we obtain

$$\begin{aligned} e^{-\alpha t}||x(t)|| &\leq M||x_0|| \ \exp\left[M\int_0^t ||A_0^{-1}\theta(\tau, x(\tau))||d\tau\right] \\ &\leq M||x_0|| \ \exp\left[M\int_0^\infty ||A_0^{-1}\theta(\tau, x(\tau))||d\tau\right]. \end{aligned}$$

Thus,

$$||x(t)|| \le M_1 e^{\alpha t} ||x_0||,$$

where

$$M_1 = M \ exp\left[M \int_0^\infty ||A_0^{-1}\theta(\tau, x(\tau))||d\tau\right] < \infty.$$

Corollary 3.4. If the conditions (i) and (ii) of Theorem 3.3 are fulfilled and (1.2) is exponentially stable, then the quasi-linear equation (1.1) is also exponentially stable.

Remark 3.5. Theorem 3.3 represents the generalization of the Dini–Hukuhara theorem [1], where $A \equiv I$, $B \equiv T$, $\theta(t, x(t)) \equiv T(t)\{x(t)\}$, and $\alpha = 0$.

Finally we provide the following example to illustrate our main result.

Example 3.6. Consider (1.1) in the finite-dimensional spaces:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}, \quad \theta(t, x(t)) \equiv e^{-t} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad t \ge 0.$$

In our case

$$D_0 = \{(a,b) \in \mathbb{R}^2 : b = 0\}, \qquad AD_0 = \{(a,b) \in \mathbb{R}^2 : a = b\},\$$
$$\lambda A - B = \begin{pmatrix} \lambda + 1 & 0\\ \lambda + 1 & 1 \end{pmatrix}, \qquad (\lambda A - B)^{-1} = \frac{1}{\lambda + 1} \begin{pmatrix} 1 & 0\\ -\lambda - 1 & \lambda + 1 \end{pmatrix},$$

It is clear that $\theta(t, x(t)) : D_0 \to AD_0, t \ge 0$, and A_0 is invertible.

Since $\sigma(A, B) = \sigma_p(A, B) = \{-1\}$, then (1.2) is exponentially stable (see Corollary 2.6). From Corollary 3.4, we conclude that the corresponding quasilinear equation (1.1) is also exponentially stable as far as,

$$\begin{split} \int_0^\infty ||A_0^{-1}\theta(t,x(t))||dt &\leq ||A_0^{-1}|| \int_0^\infty ||\theta(t,x(t))||dt \\ &= ||A_0^{-1}|| \int_0^\infty e^{-t}dt \\ &= ||A_0^{-1}|| < \infty. \end{split}$$

Acknowledgement. The authors would like to express their gratitude to the anonymous referees for their comments and suggestions that improve the last version of the manuscript.

References

- R. Bellman and K.L. Cooke, Differential-Difference Equations, Vol 6, Academic Press., London, 1963.
- M. Benabdallah, A.G. Rutkas and A.A. Soloviev, On the stability of degenerate difference systems in Banach spaces, J. Sov. Math. 57 (1991) 3435–3439.
- P.L. Butzer and H. Berens, Semigroups of Operators and Approximations, Springer-Verlag, New York-Berlin, 1967.
- J.L. Daleckiĭ and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soci. Providence, RI, 1975.
- A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc. New York-Basel-Hong Kong, 1999.
- A.G. Rutkas, Spectral methods for studying degenerate differential-operator equations, J. Math. Sci. 144 (2007), no. 4, 4246–4263.
- L.A. Vlasenko, Evolutionary models with implicit and degenerate differential equations, Dniepropetrovsk, no. 4885, (Russian), 2006.

 1 Department of Mathematics, Faculty of Math and Computer, USTOran, 31000, Algeria

E-mail address: mehdibufarid@yahoo.fr; mehdi.benabdallah@univ-usto.dz

² Department of Mathematics, University of Djillali Liabes, Sidi Bel-Abbes, 22000, Algeria.

E-mail address: haririmohamed22@yahoo.fr; mohamed.hariri@univ-sba.dz