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Abstract. A finite group G is said to be (l,m, n)-generated, if it is a quotient
group of the triangle group T (l,m, n) =

〈
x, y, z|xl = ym = zn = xyz = 1

〉
. In

[Nova J. Algebra and Geometry, 2 (1993), no. 3, 277–285], Moori posed
the question of finding all the (p, q, r) triples, where p, q, and r are prime
numbers, such that a nonabelian finite simple group G is (p, q, r)-generated.
Also for a finite simple group G and a conjugacy class X of G, the rank of
X in G is defined to be the minimal number of elements of X generating
G. In this paper, we investigate these two generational problems for the group
PSL(3, 5), where we will determine the (p, q, r)-generations and the ranks of the
classes of PSL(3, 5). We approach these kind of generations using the structure
constant method. GAP [The GAP Group, GAP – Groups, Algorithms, and
Programming, Version 4.9.3; 2018. (http://www.gap-system.org)] is used in
our computations.

1. Introduction

The problem of generation of finite groups has great interest and has many
applications to groups and their representations. The classification of finite simple
groups is involved heavily and plays a pivotal role in most general results on the
generation of finite groups. The study of generating sets in finite groups has
a rich history, with numerous applications. We are interested in two kinds of
generations of a finite simple group G, namely, the (p, q, r)-generation and the
ranks of conjugacy classes of G.

A finite group G is said to be (l,m, n)-generated, if G = 〈x, y〉 , with o(x) =
l, o(y) = m and o(z) = n, where z = (xy)−1. Here [x] = lX is the conjugacy
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class of x in G, and the elements in this class are of order l; similarly for the
classes [y] = mY and [z] = nZ. In this case, G is also a quotient group of the
triangular group T (l,m, n), and by definition of the triangular group, G is also
a (σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may assume
that l ≤ m ≤ n. In a series of papers [14, 15, 16, 17, 18, 21, 24], Moori and Ganief
established all possible (p, q, r)-generations, p, q, and r are distinct primes, of the
sporadic groups J1, J2, J3, HS, McL, Co3, Co2, and F22. Ashrafi in [1, 2] did the
same for the sporadic groups He and HN. Also Darafsheh and Ashrafi established
in [11, 10, 13, 12], the (p, q, r)-generations of the sporadic groups Co1, Ru, O

′
N

and Ly. The authors in [6] and [7] established the (p, q, r)-generations of the
Mathieu sporadic group M22 and the alternating group A10, respectively.

From another side, for a finite simple group G and nontrivial class nX of G,
the rank of nX in G, denoted by rank(G : nX), is defined to be the minimal
number of elements of nX generating G. One of the applications of ranks of
conjugacy classes of a finite group is that they are involved in the computations
of the covering number of the finite simple group. We recall from Zisser [26] that
for a finite simple group G, the covering number of G is the smallest integer n
such that Cn = G, for all nontrivial conjugacy classes C of G and by Cn we
mean {c1c2 · · · cn| c1, c2, . . . , cn ∈ C}. In [22, 23, 25], Moori computed the ranks
of the involutry classes of the Fischer sporadic simple group Fi22. He found that
rank(Fi22:2B) = rank(Fi22:2C) = 3, while rank(Fi22:2A) ∈ {5, 6}. The work
of Hall and Soicher [20] implies that rank(Fi22:2A) = 6. Then in a considerable
number of publications (see the list of references of [4]) various authors explored
the ranks for many of the sporadic simple groups.

The motivation for studying the (p, q, r)-generations and the ranks of classes in
a finite simple group G is outlined in the above mentioned papers and the reader
is encouraged to consult these papers for background material as well as basic
computational techniques.

This paper intends to be a continuation to the above series on simple groups,
where we will establish all the (p, q, r)-generations together with the ranks of
the conjugacy classes of the projective special linear group PSL(3, 5). Note that,
in general, if G is a (2, 2, n)-generated group, then G is a dihedral group and
therefore G is not simple. Also by [8], if G is a nonabelian (l,m, n)-generated
group, then either G ∼= A5 or 1

l
+ 1

m
+ 1

n
< 1. Thus for our purpose of establishing

the (p, q, r)-generations of G = PSL(3, 5), the only cases we need to consider
are when 1

p
+ 1

q
+ 1

r
< 1. Therefore excluding the triples (2, 2, p) and those that

do not satisfy the condition 1
p

+ 1
q

+ 1
r
< 1, we remain with 544 triples (p, q, r),

p ≤ q ≤ r to consider. We found that out of these 544 triples, 490 of them
generate PSL(3, 5). The main result on the (p, q, r)-generations of the projective
special linear group PSL(3, 5) can be summarized in the following theorem.

Theorem 1.1. Let T := {A,B,C,D,E, F,G,H, I, J}. The projective special lin-
ear group PSL(3, 5) is generated by all the triples (pX, qY, rZ), where p, q, and r
are primes dividing |PSL(3, 5)| if and only if (pX, qY, rZ) is one of the following
triples:

(1) (2A, 3A, 31X); (2A, 5B, 31X); (2A, 31X, 31Y ), X, Y ∈ T ;
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(2) (3A, 3A, 5B); (3A, 3A, 31X), X ∈ T ; (3A, 5X, 31Y ), X ∈ {A,B}, Y ∈ T ;
(3A, 31X, 31Y ), X, Y ∈ T ;

(3) (5B, 5B, 5B); (5X, 5B, 31Y ), X ∈ {A,B}, Y ∈ T ;
(5A, 31X, 31Y ), X, Y ∈ T, X 6= Y ; (5B, 31X, 31Y ), X, Y ∈ T ;

(4) (31X, 31Y 31Z), X, Y, Z ∈ T.

The proof of Theorem 1.1 will be done through sequence of propositions that
will be established in Subsections 3.1, 3.2, and 3.3.

Also the main result on the ranks of nontrivial classes of G can be summarized
in the following theorem.

Theorem 1.2. Let G be the projective special linear group PSL(3, 5). Then

(1) rank(G:2A) = rank(G:4A) = rank(G:4B) = rank(G:5A) = 3,
(2) rank(G:nX) = 2 for all nX 6∈ {1A, 2A, 4A, 4B, 5A}.

The proof of Theorem 1.2 will be established in Propositions 4.1, 4.3, and 4.5.
In [3], the first author determined the ranks of the classes of the group A10,

using the structure constant method. In this paper, we use the same technique to
determine the (p, q, r)-generations and ranks of conjugacy classes of PSL(3, 5).
Therefore for the notation, description of the structure constant method and
known results, we follow precisely [3, 4, 5, 6].

2. The projective special linear group PSL(3, 5)

The projective special linear group PSL(3, 5) is a simple group of order 372000 =
25 × 3× 53 × 31. By the Atlas [9], the group PSL(3, 5) has exactly 30 conjugacy
classes of its elements, of which 14 of these classes have elements of prime or-
ders. These are the classes 2A, 3A, 5A, 5B, 31A, 31B, 31C, 31D, 31E, 31F,
31G, 31H, 31I, and 31J. Also PSL(3, 5) has 5 conjugacy classes of maximal sub-
groups, where representatives of these classes of maximal subgroups can be taken
as follows:

H1 = 52:GL(5, 2) H2 = 52:GL(5, 2) H3 = S5

H4 = 42:S3 H5 = 31:3

Throughout this paper and unless otherwise stated, by G we always mean the
projective special linear group PSL(3, 5). For a subgroup H of G containing a
fixed element g such that gcd(o(g), [NG(H):H]) = 1, we let h(g,H) be the number
of conjugates of H in G containing g. This number is given by χH(g), where χH

is the permutation character of G with action on the conjugates of H. Using [4,
Theorem 2.2], we computed the values of h(g,Hi) for all the nonidentity classes
of elements and all the maximal subgroups Hi, 1 ≤ i ≤ 5, of G, and we list these
values in Table 1.

3. The (p, q, r)-generations of the PSL(3, 5)

In this section, we investigate all the generation of PSL(3, 5) := G by the
triples (pX, qY, rZ), where p, q and r are primes that divide the order of G, that
is, p, q, r ∈ {2, 3, 5, 31}.
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Table 1. The values h(g,Hi), 1 ≤ i ≤ 5, for nonidentity classes
and maximal subgroups of PSL(3, 5)

H1 H2 H3 H4 H5

2A 7 7 100 75 0
3A 1 1 4 8 16
4A 7 7 0 15 0
4B 7 7 0 15 0
4C 3 3 4 3 0
5A 6 6 0 0 0
5B 1 1 5 0 0
6A 1 1 4 0 0
8A 1 1 0 3 0
8B 1 1 0 3 0
10A 2 2 0 0 0
12A 1 1 0 0 0
12B 1 1 0 0 0
20A 2 2 0 0 0
20B 2 2 0 0 0
24A 1 1 0 0 0
24B 1 1 0 0 0
24C 1 1 0 0 0
24D 1 1 0 0 0
31A 0 0 0 0 1
31B 0 0 0 0 1
31C 0 0 0 0 1
31D 0 0 0 0 1
31E 0 0 0 0 1
31F 0 0 0 0 1
31G 0 0 0 0 1
31H 0 0 0 0 1
31I 0 0 0 0 1
31J 0 0 0 0 1

3.1. The (2, q, r)-generations of G. The (2, q, r)-generations comprise three
cases, namely (2, 3, r)-, (2, 5, r)-, and (2, 31, r)-generations. The condition 1

p
+

1
q

+ 1
r
< 1, implies that if G is (2A, 3A, rZ)-generated, then we must have r > 6,

that is, r = 31. Throughout the paper, we assume that T is the same as in
Theorem 1.1, that is, T = {A,B,C,D,E, F,G,H, I, J}.

Proposition 3.1. The group G is (2A, 3A, 31X)-generated for X ∈ T.

Proof. The computations with GAP [19] show that ∆G(2A, 3A, 31X) = 31, for all
X ∈ T. From Table 1, we can see that only H5 = 31:3 is the maximal subgroup
of G that contains elements of order 31. However we can see that the order of
H5 is odd and thus there is no fusion from this subgroup into the class 2A of
G. It follows that there is no contribution from any maximal subgroup of G to
∆∗G(2A, 3A, 31X) for any X ∈ T. Thus ∆∗G(2A, 3A, 31X) = ∆G(2A, 3A, 31X) =
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31 for all X ∈ T. Hence G is generated by all the triples (2A, 3A, 31X) for
X ∈ T. �

Proposition 3.2. The group G is neither (2A, 5A, 5X)- nor (2A, 5A, 31Y )-
generated for all X ∈ {A,B} and Y ∈ T.

Proof. The GAP computations reveals that ∆G(2A, 5A, 5X) = ∆G(2A, 5A, 31Y )
= 0 for all X ∈ {A,B} and Y ∈ T. Hence the result. �

Proposition 3.3. The group G is not (2A, 5B, 5B)-generated.

Proof. Firstly note from Table 1 that there are three maximal subgroups of G
with elements that fuse to class 5B of G. These are the subgroups H1 = H2 =
52:GL(2, 5) and H3 = S5. Now the intersection of any two of these maximal
subgroups are as follows: H1∩H2

∼= GL(2, 5), H1∩H3
∼= D8, and H2∩H3

∼= 5:4.
There is no fusion from any class of H1 ∩H2

∼= GL(2, 5) into the class 5B of G,
while we can see that H1 ∩ H3

∼= D8 has no element of order 5. For the group
H2∩H3

∼= 5:4 there are only one class of invloutions and only one class of elements
of order 5, and both these classes fuse to classes 2A and 5B ofG, respectively. Also
H1∩H2∩H3

∼= Z2, which is clearly has no element of order 5. The computations

show that h(5B, 5:4) = 5 and
∑
5:4

(2a, 5a, 5a) = 0. Finally the computations also

show that ∆G(2A, 5B, 5B) = 25,
∑
H1

(2a, 5a, 5a) +
∑
H1

(2b, 5a, 5a) = 0 + 0 = 0,∑
H2

(2a, 5a, 5a)+
∑
H2

(2b, 5a, 5a) = 0+0 = 0, and
∑
H3

(2a, 5a, 5a)+
∑
H3

(2b, 5a, 5a) =

0+5 = 5.Now from Table 1, we have h(5B,H1) = h(5B,H2) = 1 and h(5B,H3) =
5. It follows that

∆∗G(2A, 5B, 5B) = ∆G(2A, 5B, 5B)− 1×
∑
H1

(2a, 5a, 5a)− 1×
∑
H2

(2a, 5a, 5a)

−5×
∑
H3

(2a, 5a, 5a) + 5×
∑
5:4

(2a, 5a, 5a)

= 25− 0− 0− 25 + 0 = 0,

and hence G is not generated by (2A, 5B, 5B). �

Proposition 3.4. The group G is (2A, 5B, 31X)-generated for all X ∈ T.

Proof. The computations with GAP show that ∆G(2A, 5B, 31X) = 31 for all
X ∈ T. From Table 1, we can see that only H5 = 31:3 is the maximal subgroup
of G that contains elements of order 31. However we can see that the order of
H5 is neither divisible by 2 nor by 5, and thus there is no fusion from classes
of H5 into the classes 2A and 5B of G. It follows that there is no contribution
from any maximal subgroup of G to ∆∗G(2A, 5B, 31X) for any X ∈ T. Thus
∆∗G(2A, 5B, 31X) = ∆G(2A, 5B, 31X) = 31 for all X ∈ T. Hence G is generated
by all the triples (2A, 5B, 31X) for X ∈ T. �

We now look at the last case of the (2, q, r)-generations, namely, the (2, 31, 31)-
generations.
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Proposition 3.5. The group G is (2A, 31X, 31Y )-generated for all X, Y ∈ T.
Proof. The computations with GAP show that ∆G(2A, 31X, 31Y ) = 31 for all
X, Y ∈ T. The treatment is same as in Propositions 3.1 and 3.4, and thus
∆∗G(2A, 31X, 31Y ) = ∆G(2A, 31X, 31Y ) = 31 for all X, Y ∈ T. Hence G is
generated by all the triples (2A, 31X, 31Y ) for X, Y ∈ T. �

3.2. The (3, q, r)-generations of G. In this subsection, we consider all the
(3, q, r)-generations, which constitutes the cases (3, 3, r)-, (3, 5, r)-, and (3, 31, r)-
generations. The condition 1

p
+ 1

q
+ 1

r
< 1, implies that if G is (3A, 3A, rZ)-

generated, then we must have r > 3, that is, r = 5 or r = 31.

Proposition 3.6. The group G is not (3A, 3A, 5A)-generated.

Proof. From Table 1, we can see that only H1 = H2 = 52:GL(2, 5) is the maximal
subgroup of G that contains elements of orders 3 and 5, and there are fusions
into 3A and 5A. We also know that H1 ∩ H2

∼= GL(2, 5), which has fusions
into both 3A and 5A. Now the computations give that ∆G(3A, 3A, 5A) = 1000,∑
H1

(3a, 3a, 5a) =
∑
H2

(3a, 3a, 5a) = 500,
∑

H1∩H2

(3a, 3a, 5a) = 4, and

h(5A,H1 ∩H2) = 25. From Table 1, we also have h(5A,H1) = h(5A,H2) = 6. It
follows that

∆∗G(3A, 3A, 5A) = ∆G(3A, 3A, 5A)− 6×
∑
H1

(3a, 3a, 5a)− 6×
∑
H2

(3a, 3a, 5a)

+25×
∑

H1∩H2

(3a, 3a, 5a) = 1000− 3000− 3000 + 100 < 0,

showing the nongeneration of G by (3A, 3A, 5A). �

Proposition 3.7. The group G is (3A, 3A, 5B)-generated.

Proof. Here we have three maximal subgroups of G which are involved, namely
H1 = H2 and H3. We know from the proof of Proposition 3.3 that H1 ∩ H2

∼=
GL(2, 5), H1 ∩ H3

∼= D8, and H2 ∩ H3
∼= 5:4. The unique class of elements of

order 5 in H1 ∩H2
∼= GL(2, 5) fuses into the class 5A of G. We can see that the

order of H1 ∩ H3
∼= D8 is not divisible by 5, while the order of H2 ∩ H3

∼= 5:4
is not divisible by 3. Also the order of H1 ∩ H2 ∩ H3

∼= Z2 is neither divisible
by 3 nor by 5. We conclude that there will be no contribution from the inter-
sections of H1, H2, and H3 (pairwise or the three of them) in the computations
of ∆∗G(3A, 3A, 5B). Now the computations show that ∆G(3A, 3A, 5B) = 625,∑
H1

(3a, 3a, 5b) =
∑
H2

(3a, 3a, 5b) = 0, and
∑
H3

(3a, 3a, 5b) = 5. From Table 1, we

also have h(5B,H1) = h(5B,H2) = 1, h(5B,H3) = 5, and h(5B,Z2) = 0. It
follows that

∆∗G(3A, 3A, 5B) = ∆G(3A, 3A, 5B)− 1×
∑
H1

(3a, 3a, 5b)− 1×
∑
H2

(3a, 3a, 5b)

−5×
∑
H3

(3a, 3a, 5b) + 0×
∑
Z2

(3a, 3a, 5b)

= 625− 0− 0− 25 + 0 = 600 > 0,
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establishing the generation of G by (3A, 5A, 5A). �

Proposition 3.8. The group G is (3A, 3A, 31X)-generated for all X ∈ T.

Proof. From Table 1, we can see that H5 = 31:3 is the only maximal subgroup
of G containing elements of order 31 and also has fusions into the class 3A of
G. In addition to the identity class 1a, the group H5 has two classes of ele-
ments of order 3, namely 3a and 3b; and has 10 conjugacy classes of elements
of order 31, namely 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h, 31i and 31j. Let
M := {a, b, c, d, e, f, g, h, i, j}. For class 3a of H5 and with the aid of GAP, we

find that
∑
H5

(3a, 3a, 31x) = 0 for all x ∈ M \ {a}, where
∑
H5

(3a, 3a, 31a) = 31,

while for class 3b of H5 we found that
∑
H5

(3b, 3b, 31x) = 0 for all x ∈M. We also

found that ∆G(3A, 3A, 31X) = 651 for all X ∈ T. We can also see from Table 1
that h(31X,H5) = 1 for all X ∈ T. It follows that

∆∗G(3A, 3A, 31X) = ∆G(3A, 3A, 31X)− 1×
∑
H5

(3a, 3a, 31x)

= 651− 31 = 620 > 0.

Hence G is generated by all the triples (3A, 3A, 31X) for X ∈ T. �

Next we turn to look at the (3, 5, r)-generations.

Proposition 3.9. The group G is not (3A, 5A, 5X)-generated for X ∈ {A,B}.

Proof. The computations with GAP show that ∆G(3A, 5A, 5A) = 125, and from
the Atlas [9], we can see that |CG(5A)| = 500, where by CG(nX) we mean the
centralizer of a representative of class nX of G. Now the nongeneration of G by
(3A, 5A, 5A) follows by [4, Lemma 2.7].

For the other case (3A, 5A, 5B), we can see from Table 1 that only H1 = H2 =
52:GL(2, 5) are the maximal subgroups of G that have fusions into the classes
3A, 5A, and 5B of G. In fact each of H1 and H2 has two classes of elements
of order 5 that fuse to class 5A of G, one class of elements of order 5 that
fuse to class 5B of G and one class of elements of order 3 that fuse to class
3A of G. The intersection of H1 and H2 has no element of order 5 that fuses

to class 5B of G, and thus
∑

H1∩H2

(3a, 5a, 5b) = 0. Now the computations with

GAP reveal ∆G(3A, 5A, 5B) = 50,
∑
H1

(3a, 5a, 5b) +
∑
H1

(3a, 5a, 5b) = 0 + 25 =

25,
∑
H2

(3a, 5a, 5b) +
∑
H2

(3a, 5a, 5b) = 0 + 25 = 25. Also from Table 1, we have

h(5B,H1) = h(5B,H2) = 1. Therefore, we get

∆∗G(3A, 5A, 5B) = ∆G(3A, 5A, 5B)− 1× (
∑
H1

(3a, 5a, 5b) +
∑
H1

(3a, 5a, 5b))

−1× (
∑
H2

(3a, 5a, 5b) +
∑
H2

(3a, 5a, 5b)) = 50− 25− 25 = 0,
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showing the nongeneration of G by (3A, 5A, 5B) and completing the proof. �

Proposition 3.10. The group G is not (3A, 5B, 5B)-generated.

Proof. In this case three maximal subgroups are involved, namely, H1, H2, and
H3. Neither the intersection Hi ∩ Hj for i, j ∈ {1, 2, 3} nor H1 ∩ H2 ∩ H3 has
classes of elements of orders 3 and 5 such that these classes simultaneously fuse to
classes 3A and 5B of G, respectively. It follows that there will be no contribution
from the intersections of any set of maximal subgroups of G in the computations

of ∆∗G(3A, 5B, 5B). By GAP, we have ∆G(3A, 5B, 5B) = 700,
∑
H1

(3a, 5b, 5b) =

100,
∑
H2

(3a, 5b, 5b) = 100, and
∑
H3

(3a, 5b, 5b) = 10. We also have h(5B,H1) =

h(5B,H2) = 1 and h(5B,H3) = 5. It renders that

∆∗G(3A, 5B, 5B) = ∆G(3A, 5B, 5B)− 1×
∑
H1

(3a, 5b, 5b)− 1×
∑
H2

(3a, 5b, 5b)

−5×
∑
H2

(3a, 5b, 5b) = 700− 100− 100− 50 = 450 > 0.

Hence G is a (3A, 5B, 5B)-generated group. �

Proposition 3.11. The group G is (3A, 5X, 31Y )-generated for X ∈ {A,B} and
Y ∈ T.
Proof. From Table 1, we can see that H5 = 31:3 is the only maximal subgroup of
G that contains elements of order 31. Clearly order of H5 is not divisible by 5, and
thus there is no contribution by any maximal subgroup of G in the computations
of ∆∗G(3A, 5X, 31Y ) for X ∈ {A,B} and Y ∈ T, that is, ∆∗G(3A, 5X, 31Y ) =
∆G(3A, 5X, 31Y ) for X ∈ {A,B} and Y ∈ T. Now the computations show that
∆G(3A, 5A, 31Y ) = 31 and ∆G(3A, 5B, 31Y ) = 620 for all Y ∈ T. Hence G is a
(3A, 5X, 31Y )-generated group for X ∈ {A,B} and Y ∈ T. �

The last part of our investigation on the (3, q, r)-generations of G is to look at
the (3, 31, 31)-generations, which is the context of the next proposition.

Proposition 3.12. The group G is (3A, 31X, 31Y )-generated for all X, Y ∈ T.
Proof. The computations with GAP show that ∆G(3A, 31X, 31Y ) = 496 for all
X, Y ∈ T. Again H5 is the only maximal subgroup of G with classes that fuse to

classes 3A and 31X ofG forX ∈ T. By GAP, we obtained that
∑
H5

(3x, 31y, 31z) =

0, for x ∈ {a, b} and y, z ∈ M, where M is the same as in the proof of Proposi-
tion 3.8. Thus ∆∗G(3A, 31X, 31Y ) = ∆G(3A, 31X, 31Y ) = 496 for all X, Y ∈ T.
Hence G is generated by all the triples (3A, 31X, 31Y ) for X, Y ∈ T. �

3.3. The (5, q, r)- and (31, q, r)-generations of G. In this subsection, we look
at the (5, q, r)-generations ofG, which comprise of the cases (5, 5, r)- and (5, 31, r)-
generations.

Proposition 3.13. The group G is neither (5A, 5A, 5X)- nor (5A, 5A, 31Y )-
generated for X ∈ {A,B} and Y ∈ T.
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Proof. The GAP computations give ∆G(5A, 5A, 5A) = 43 and ∆G(5A, 5A, 5B) =
10. From the Atlas, we can see that |CG(5A)| = 500 and |CG(5B)| = 25. Now the
nongeneration of G by (3A, 5A, 5X) for X ∈ {A,B} follows by [4, Lemma 2.7].
For the other case of (5A, 5A, 31Y ), for Y ∈ T, the direct computations show
that ∆G(5A, 5A, 31Y ) = 0 for all Y ∈ T. Hence the result holds. �

Proposition 3.14. The group G is not (5A, 5B, 5B)-generated while it is a
(5B, 5B, 5B)-generated group.

Proof. The maximal subgroups of G with elements, that fuse to class 5B of G,
are H1, H2, and H3, while those maximal subgroups with elements that fuse to
both classes 5A and 5B of G are H1 and H2 only. Now we consider the case
(5A, 5B, 5B) firstly. The intersection of H1 and H2 has no element of order 5

that fuses to the class 5B of G, and thus
∑

H1∩H2

(5a, 5b, 5b) = 0. Using GAP,

we get ∆G(5A, 5B, 5B) = 34,
∑
H1

(5a, 5b, 5b) +
∑
H1

(5c, 5b, 5b) = 19 + 15 = 34,∑
H2

(5a, 5b, 5b) +
∑
H2

(5c, 5b, 5b) = 19 + 15 = 34. We also have h(5B,H1) =

h(5B,H2) = 1. It follows that

∆∗G(5A, 5B, 5B) = ∆G(5A, 5B, 5B)− 1× (
∑
H1

(5a, 5b, 5b) +
∑
H1

(5c, 5b, 5b))

−1× (
∑
H2

(5a, 5b, 5b) +
∑
H2

(5c, 5b, 5b))

= 34− 34− 34 = −34 < 0,

showing the nongeneration of G by (5A, 5B, 5B).
For the other case (5B, 5B, 5B), the intersection of H1 and H2 has no element of

order 5 that fuses to class 5B of G. The intersection of H1 and H3 has no element
of order 5 at all, and the intersection of H2 and H3 has no element of order 5 that
fuses to class 5A of G. The intersection of H1, H2, and H3 is Z2. Therefore there
is no any contribution from the intersection of any subgroups of G in the compu-
tations of ∆∗G(5B, 5B, 5B). Using GAP, we obtained that ∆G(5B, 5B, 5B) = 670,∑
H1

(5b, 5b, 5b) = 45,
∑
H2

(5b, 5b, 5b) = 45, and
∑
H3

(5b, 5b, 5b) = 8. We also have

h(5B,H3) = 5. Therefore we get

∆∗G(5B, 5B, 5B) = ∆G(5B, 5B, 5B)− 1×
∑
H1

(5b, 5b, 5b)− 1×
∑
H2

(5b, 5b, 5b)

−5×
∑
H2

(5b, 5b, 5b) = 670− 45− 45− 40 = 540 > 0.

Hence G is a (5B, 5B, 5B)-generated group. �

Proposition 3.15. The group G is (5X, 5B, 31Y )-generated for X ∈ {A,B} and
Y ∈ T.
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Proof. For the triple (5A, 5B, 31Y ), we can see from Table 1 that H5 = 31:3 is
the only maximal subgroup of G containing elements of order 31. However H5

does not contain elements of order 5. Thus there will be no contribution by any
maximal subgroup of G in the computations of ∆∗G(5A, 5B, 31Y ) for Y ∈ T, that
is, ∆∗G(5A, 5B, 31Y ) = ∆G(5A, 5B, 31Y ) for Y ∈ T. Now the computations show
that ∆G(5A, 5B, 31Y ) = 31 for all Y ∈ T. Hence G is a (5A, 5B, 31Y )-generated
group for Y ∈ T.

For the other case (5B, 5B, 31Z), Z ∈ T, we recall from Proposition 3.4 that
G is a (2A, 5B, 31Z)-generated group for all Z ∈ T. It follows by [4, Lemma 2.5]
that G is also a (5B, 5B, (31Z)2)-generated group for all Z ∈ T, that is, G is a
(5B, 5B, 31Y )-generated group for all Y ∈ T, where (31Z)2 = 31Y. Hence the
result holds. �

The last part of this subsection is to study the (5, 31, r)-generations of G.

Proposition 3.16. For X ∈ T, the group G is not (5A, 31X, 31X)-generated,
while for X, Y ∈ T and X 6= Y, the group G is (5A, 31X, 31Y )-generated.

Proof. The direct computations show that ∆G(5A, 31X, 31X) = 0 for all X ∈ T.
Thus G is not generated by (5A, 31X, 31X) for X ∈ T.
For the case (5A, 31X, 31Y ), where X, Y ∈ T and X 6= Y, the computations
show that ∆G(5A, 31X, 31Y ) = 31. We know that H5 is the only maximal sub-
group of G that has elements of order 31. However it does not contains elements
of orders 5. Thus there will be no contribution from any maximal subgroup
of G in the computations of ∆∗G(5A, 31X, 31Y ), that is, ∆∗G(5A, 31X, 31Y ) =
∆G(5A, 31X, 31Y ) = 31, establishing the generation of G by (5A, 31X, 31Y ) for
X, Y ∈ T and X 6= Y. �

Proposition 3.17. The group G is (5B, 31X, 31Y )-generated for all X, Y ∈ T.

Proof. As in the proof of Proposition 3.15, there will be no contribution from
any maximal subgroup of G in the computations of ∆∗G(5B, 31X, 31Y ), that is,
∆∗G(5B, 31X, 31Y ) = ∆G(5B, 31X, 31Y ). The computations with GAP show that
∆G(5B, 31X, 31X) = 620 while ∆G(5B, 31X, 31Y ) = 465, for X 6= Y , and both
X and Y are in T. This establishes the generation of G by (5B, 31X, 31Y ) for
X, Y ∈ T. �

Finally we handle the case (31, q, r)-generation of G. This comprises of only
the case (31, 31, 31).

Proposition 3.18. The group G is (31X, 31Y, 31Z)-generated for all X,Y, Z ∈ T.

Proof. Using GAP, we obtained that ∆G(31X, 31Y, 31Z) ∈ {341, 466, 591}. Now
H5 is the only maximal subgroup of G that has elements of order 31. It has 10
conjugacy classes of elements of order 31, where each class fuses into a class
of elements of order 31 in G. Again the computations with GAP show that∑
H5

(31a, 31b, 31c) ∈ {0, 1, 2}. Since h(31X,H5) = 1 for all X ∈ T, it follows
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that

∆∗G(31X, 31Y, 31Z) = ∆G(31X, 31Y, 31Z)− 1×
∑
H5

(31x, 31y, 31z)

∈ {339, 340, 341, 464, 465, 466, 589, 590, 591}.

Therefore ∆∗G(31X, 31Y, 31Z) > 0, and hence G is generated by all the triples
(31X, 31Y, 31Z) for all X, Y, Z ∈ T. �

4. The ranks of the classes of PSL(3, 5)

In this section, we determine the ranks for all the nontrivial conjugacy classes
of elements of the group PSL(3, 5).

We start our investigation on the ranks of the nontrivial classes of PSL(3, 5) :=
G by looking at the unique class of involutions 2A. It is well-known that two
involutions generate a dihedral group. Thus the lower bound of the rank of an
involutry class in a finite group G 6= D2n (the dihedral group of order 2n) is 3.
The following proposition gives the rank of class 2A in G.

Proposition 4.1. rank(G:2A) = 3.

Proof. By Proposition 3.1, we have G is a (2A, 3A, 31X)-generated group, for all
X ∈ T, where T as in the previous section. It follows by [4, Lemma 2.3], that
G is a (2A, 2A, 2A, (31X)3)-generated group, that is, G is a (2A, 2A, 2A, 31Y )-
generated group for some Y ∈ T. Therefore rank(G : 2A) ≤ 3. Since rank(G :
2A) 6= 2, it follows that rank(G : 2A) = 3. �

Lemma 4.2. rank(G:nX) 6= 2, for nX ∈ {4A, 4B, 5A}.

Proof. For the classes 4A and 4B of G, let M := {3A, 4A, 4B, 4C, 5A, 5B, 6A, 8A,
8B, 24A, 24B, 24C, 24D, 31A, 31B, 31C, 31D, 31E, 31F, 31G, 31H, 31I, 31J}. The
direct computations show that ∆G(4A, 4A,mY ) = 0 and ∆G(4B, 4B, kZ) = 0 for
all mY ∈M \ {4B} and kZ ∈M \ {4A}. Thus G is neither a (4A, 4A,mY )- nor
(4B, 4B, kZ)-generated group for all mY ∈M \ {4B} and kZ ∈M \ {4A}. Also
we have

∆G(4A, 4A, 2A) = ∆G(4B, 4B, 2A) = 49 < 480 = |CG(2A)|,
∆G(4A, 4A, 4B) = ∆G(4B, 4B, 4A) = 30 < 480 = |CG(4B)| = |CG(4A)|,

∆G(4A, 4A, 10A) = ∆G(4B, 4B, 10A) = 4 < 20 = |CG(10A)|,
∆G(4A, 4A, 12A) = ∆G(4B, 4B, 12A) = 6 < 24 = |CG(12A)|,
∆G(4A, 4A, 12B) = ∆G(4B, 4B, 12B) = 6 < 24 = |CG(12B)|,
∆G(4A, 4A, 20B) = ∆G(4B, 4B, 20A) = 10 < 20 = |CG(20B)| = |CG(20A)|,
∆G(4A, 4A, 20A) = ∆G(4B, 4B, 20B) = 5 < 20 = |CG(20A)| = |CG(20B)|.

Thus by [4, Lemma 2.7], G is neither a (4A, 4A,mY )- nor (4B, 4B, kZ)-generated
group for mY ∈ {2A, 4B, 10A, 12A, 12B, 20A, 20B} and kZ ∈ {2A, 4A, 10A, 12A,
12B, 20A, 20B}. It follows that G cannot be generated by only two elements from
class 4A or 4B.
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For the class nX = 5A, the direct computations show that ∆G(5A, 5A,mY ) =
0, for all nontrivial classes of G except for mY ∈ {3A, 4C, 5A, 5B, 6A, 10A} := K.
For mY ∈ K, we have

∆G(5A, 5A, 3A) = 6 < 24 = |CG(3A)|,
∆G(5A, 5A, 4C) = 4 < 16 = |CG(4C)|,
∆G(5A, 5A, 5A) = 43 < 500 = |CG(5A)|,
∆G(5A, 5A, 5B) = 10 < 25 = |CG(5B)|,
∆G(5A, 5A, 6A) = 6 < 24 = |CG(6A)|,

∆G(5A, 5A, 10A) = 5 < 20 = |CG(10A)|.

It follows that G is not a (5A, 5A,mY )-generated group for any nontrivial class
mY of G, and hence rank(G:5A) 6= 2. This completes the result for all nX ∈
{4A, 4B, 5A}. �

Proposition 4.3. rank(G:4A) = rank(G:4B) = rank(G:5A) = 3.

Proof. For nX ∈ {4A, 4B, 5A}, the computations show that ∆G(nX, nX, nX, 31A)
= 961. From Table 1, we can see that h(31A,Hi) = 0 for all i ∈ {1, 2, 3, 4}, while

h(31A,H5) = 1. Also the direct computations show that
∑
H5

(nX, nX, nX, 31A) = 0

for nX ∈ {4A, 4B, 5A}. It follows that

∆∗G(nX, nX, nX, 31A) = ∆G(nX, nX, nX, 31A)

−
5∑

i=1

h(gi, Hi)
∑
Hi

(nX, nX, nX, 31A)

= 961− 0 = 961,

showing the generation of G by (nX, nX, nX, 31A). Hence the result holds. �

Remark 4.4. The result of Proposition 4.3 can also be established by the results
of [4, Section 2] as follows. Let

a := (2, 4, 8)(3, 7, 31)(5, 12, 17)(6, 16, 23)(9, 11, 22)(10, 13, 21)(14, 18, 30)

(15, 25, 28)(19, 29, 27)(20, 26, 24) ∈ 3A,

b := (1, 3, 2, 13)(4, 22, 18, 30)(5, 21, 25, 23)(7, 17, 14, 27)(8, 19, 24, 29)

(10, 16, 26, 28) ∈ 4A,

c := (1, 3, 13, 9)(4, 15, 22, 18)(5, 25, 20, 23)(7, 27, 14, 17)(8, 19, 29, 11)

(10, 16, 28, 12) ∈ 4B,

d := (1, 2, 3, 6, 13)(4, 26, 27, 23, 19)(5, 22, 7, 24, 28)(8, 25, 14, 16, 30)

(11, 31, 15, 20, 12) ∈ 5A.
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Then 〈a, b〉 = 〈a, c〉 = 〈a, d〉 = G with

ab = (1, 3, 17, 21, 16, 5, 12, 14, 30, 27, 24, 20, 28, 15, 23, 6, 26, 29, 7, 31, 2,

22, 9, 11, 18, 4, 19, 8, 13, 25, 10) ∈ 31A,

ac = (1, 3, 27, 29, 14, 4, 19, 11, 18, 30, 17, 25, 12, 7, 31, 13, 21, 16, 5, 10, 9,

8, 2, 15, 20, 26, 24, 23, 6, 28, 22) ∈ 31A and

ad = (1, 2, 26, 28, 20, 27, 4, 25, 5, 11, 7, 15, 14, 18, 8, 3, 24, 12, 17, 22, 9, 31,

6, 30, 16, 19, 29, 23, 13, 21, 10) ∈ 31A.

Thus G is a (3A, nX, 31A)-generated group for nX ∈ {4A, 4B, 5A}. This im-
plies that it is also a (nX, 3A, 31A)-generated group. By [4, Lemma 2.3], it fol-
lows that G is a (nX, nX, nX, (31A)3)-generated group for nX ∈ {4A, 4B, 5A}.
Thus rank(G:nX) ≤ 3, but by Lemma 4.2, we know that rank(G:nX) 6= 2, thus
rank(G:nX) = 3 for nX ∈ {4A, 4B, 5A}.

Table 2. Some information on the classes nX ∈ S

∆G h(31A,H5)
∑
H5

h(31A,H5)
∑
H5

∆∗G

3A 651 1 62 62 589
4C 1271 1 0 0 1271
5B 589 1 0 0 589

6A 651 1 0 0 651
8A 651 1 0 0 651
8B 651 1 0 0 651
10A 899 1 0 0 899

12A 651 1 0 0 651
12B 651 1 0 0 651
20A 899 1 0 0 899

20B 899 1 0 0 899
24B 651 1 0 0 651
24A 651 1 0 0 651

24C 651 1 0 0 651
24D 651 1 0 0 651
31A 341 1 0 0 341

31B 591 1 2 2 589
31C 466 1 1 1 465

31D 341 1 0 0 341

31E 341 1 0 0 341
31F 341 1 0 0 341

31G 341 1 0 0 341

31H 341 1 0 0 341
31I 341 1 0 0 341

31J 341 1 0 0 341

Proposition 4.5. Let S be the set {3A, 4C, 5B, 6A, 8A, 8B, 10A, 12A, 12B, 20A,
20B, 24A, 24B, 24C, 24D, 31A, 31B, 31C, 31D, 31E, 31F, 31G, 31H, 31I, 31J}.
Then rank(G:nX) = 2 for all nX ∈ S.

Proof. The aim here is to show that G is an (nX, nX, 31A)-generated group for
all nX ∈ S. We recall from Table 1, that H5 = 31:3 is the only maximal subgroup
of G containing elements of order 31. Now for nX ∈ S, we give in Table 2 some
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information about ∆G(nX, nX, 31A) := ∆G, h(31A,H5),
∑
H5

(nX, nX, 31A) :=∑
H5

, and ∆∗G(nX, nX, 31A) := ∆∗G. The last column of Table 2 establishes the

generation of G by the triple (nX, nX, 31A) for all nX ∈ S. It follows that
rank(G:nX) = 2 for all nX ∈ S. �

Remark 4.6. For all nX ∈ S of Proposition 4.5, it is possible show that G is a
(2A, nX, 31A)-generated group. Now the result follows by [4, Corollary 2.6].
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