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ON GENERAL (α, β)-METRICS
WITH SOME CURVATURE PROPERTIES
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Abstract. In this paper, we study a class of Finsler metric called general
(α, β) metrics and obtain an equation that characterizes these Finsler metrics
of almost vanishing H-curvature. As a consequence of this result, we prove
that a general (α, β)-metric has almost vanishing H-curvature if and only if it
has almost vanishing Ξ-curvature.

1. Introduction

One of the finest differential geometer of twentieth century, Chern, used to say
“Finsler geometry is just Riemannian geometry without the quadratic restriction
on its metrics” [7]. In the study of Finsler geometry, we often encounter long
and complicated calculations. However, when we consider Finsler metrics with
certain symmetries, that would make things much easier. In 1996, Rutz [14]
introduced a special class of Finsler metrics called spherically symmetric which
is invariant under rotation. In general relativity, the solution of vacuum Einstein
field equations describing the gravitational field, which is spherically symmetric,
we obtain the Schwarzschild metric in four-dimensional space-time [21]. A Finsler
metric F on Bn(δ) is called spherically symmetric if F (Ax,Ay) = F (x, y), for all
n × n orthogonal matrix A, x = (xi) ∈ Bn(δ) and y = (yi) ∈ TxB

n(δ). Here
Bn(δ) denotes the Euclidean ball of radius δ around the origin and TxB

n(δ)
denotes the tangent space of Bn(δ) at the point x. Zhou [22] proved that a
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Finsler metric F on Bn(δ) is spherically symmetric if and only if there exists a
function φ : [0, δ)× R→ R such that

F (x, y) = |y|φ
(
|x|, 〈x, y〉

|y|

)
, (1.1)

where |.| denotes the Euclidean norm and 〈, 〉 denotes the Euclidean inner product
on Rn.

The concept of (α, β)-metrics was introduced by Matsumoto in 1972 [9] as
a generalization of Randers metrics, and the Randers metrics was introduced
by Randers [13]. The (α, β)-metrics are of the form F = αφ(s), where φ is
a C∞ positive function and s = β

α
. In 2012, Yu and Zhu [20] introduced a

new class of Finsler metrics, called general (α, β)-Finsler metrics given by F =
αφ(b2, s), where φ = φ(b2, s) is a C∞ positive function and b2 := ‖β‖2α. This class
of Finsler metrics not only generalize (α, β)-metrics in a natural way, but also
includes spherically symmetric Finsler metrics. It is interesting to note that the
general (α, β) metric includes an interesting family of Finsler metric constructed
by Bryant [5, 4, 3]. Bryant metrics are rectilinear Finsler metrics on the unit
sphere Sn with flag curvature K = 1 defined by

F (X, Y ) = <

{√
Q(X,X)Q(Y, Y )−Q(X, Y )2

Q(X,X)
− iQ(X, Y )

Q(X,X)

}
,

where Q(X, Y ) = x0y0+eip1x1y1+eip2x2y2+ · · ·+eipnxnyn is a complex quadratic
form on Rn+1 for n ≥ 2 with the parameters satisfying 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn < π
and X = (x0, . . . , xn) ∈ Sn, Y = (y0, . . . , yn) ∈ TXSn.

Shen et al. showed that a Randers metric is locally projectively flat and of
constant flag curvature if and only if α is locally projectively flat and β is closed
and homothetic with respect to α [2, 15]. The Beltrami theorem says that a
Riemannian metric is locally projectively flat if and only if it has a constant
sectional curvature. Thus in this case α and β have to satisfy the following:

αRi
j = µ(α2δij − yiyj), bi|j = c(x)aij, (1.2)

where αRi
j denotes the Riemann curvature of the Riemannian metric α and µ is

the Ricci constant. Shen [18] also showed that a general (α, β)-metric satisfy-
ing (1.2) will be projectively flat if and only if φ satisfies φss = 2(φb2 − sφb2s).
The spherically symmetric metric F given by (1.1) satisfies the property (1.2)
automatically.

The Cartan torsion, the S-curvature, the Ξ-curvature and the H-curvature are
the examples of few non-Riemannian quantities in Finsler geometry as they vanish
for Riemannian metrics. The S-curvature S(x, y) was introduced by Shen [6, 16]
and was defined as follows:

S(x, y) =
d

dt
[τ(γ(t), γ′(t))]t=0 ,

where τ(x, y) is the distortion of the metric F and γ(t) is the geodesic with
γ(0) = x and γ′(0) = y on M .
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The non-Riemannian quantity Ξ-curvature is denoted by Ξ = Ξjdx
j and is

defined as
Ξj := S.j|iy

i − S|j,
where “|” denotes the horizontal covariant derivative and “.” denotes the verti-
cal covariant derivative of F [16]. The Finsler metric F is said to have almost
vanishing Ξ-curvature if

Ξj = −(n+ 1)F 2

(
θ

F

)
yj
. (1.3)

In 1988, Akbar-Zadeh introduced H-curvature which is closely related to the
S-curvature [1]. The H-curvature Hy = Hijdx

i ⊗ dxj is defined by

Hij =
1

4
(Ξi.j + Ξj.i). (1.4)

Also F is said to have almost vanishing H-curvature if

Hij =
n+ 1

2
θFyiyj . (1.5)

Several authors studied the H-curvature of different class of Finsler metrics [10,
12]. In [11], Mo proved that all spherically symmetric Finsler metrics of almost
vanishing H-curvature are of almost vanishing Ξ-curvature and corresponding
one forms are exact, generalizing a result previously only known in the case of
metrics with vanishing H-curvature. In general, it is difficult to find the Riemann
curvature tensor for general (α, β)-metrics. In this paper, we further generalize
Mo’s result for general (α, β)-metrics under the assumption (1.2) and prove the
following results.

Theorem 1.1. The general (α, β)-metric F = αφ(b2, s) satisfying (1.2) has al-
most vanishing H-curvature if and only if

αs

[
(n+ 1)

∂R1

∂s
+ 3(b2 − s2)∂R2

∂s
+ 2(n+ 1)R3

]
= 3(n+1)θ(φ−sφs), θ = θj(x)yj,

(1.6)
where R1, R2, and R3 are given in (2.6), (2.9), and (2.8), respectively.

As an application of Theorem 1.1, we have the following corollary.

Corollary 1.2. For the general (α, β)-metric F = αφ(b2, s) satisfying (1.2) the
H-curvature almost vanishes if and only if the Ξ-curvature almost vanishes. In
this case, the corresponding 1-form θ is an exact form.

As a consequence of Corollary 1.2, for θ = 0, we get the following corollary.

Corollary 1.3. For the general (α, β)-metric F = αφ(b2, s) satisfying (1.2) the
H-curvature vanishes if and only if the Ξ-curvature vanishes.

A Finsler metric is said to be R-quadratic if its Riemann curvature Ry is
quadratic in y ∈ TxM . These R-quadratic Finsler metrics always have vanishing
H-curvature [10]. Together with Corollary 1.3, we have the following.

Corollary 1.4. The Ξ-curvature of a R-quadratic general (α, β)-metric always
vanishes.
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2. preliminaries

Let M be an n-dimensional smooth manifold. TxM denotes the tangent space
of M at x. The tangent bundle of M is the union of tangent spaces TM :=⋃
x∈M TxM . We denote the elements of TM by (x, y) where y ∈ TxM and TM0 :=

TM \ {0}.

Definition 2.1 (see [8]). A Finsler metric on M is a function F : TM → [0,∞)
satisfying the following conditions:

(i) F is C∞ on TM0.
(ii) F is a positively 1-homogeneous on the fibers of tangent bundle TM .

(iii) The Hessian of F 2

2
with element gij = 1

2
∂2F 2

∂yi∂yj
is positive definite on TM0.

The pair (M,F ) is called a Finsler space. The metric F is called the fundamental
function and gij is called the fundamental tensor.

The spray coefficients of the Finsler metric F is defined by

Gi =
1

4
gil
{

[F 2]xmyly
m − [F 2]xl

}
, (2.1)

where gij = (gij)
−1.

Definition 2.2 (see[20]). A Finsler metric F on a manifold M is called a general
(α, β)-metric, if it can be expressed in the form

F = αφ
(
b2, s

)
, (2.2)

for some C∞ function φ(b2, s), where α is a Riemannian metric and β is a 1-form.
Also F is called an (α, β)-metric, if F can be expressed as F = αφ (s) for some
C∞ function φ(s), Riemannian metric α, and 1-form β.

You and Zhu [20] have proved that a general (α, β)-metric F = αφ (b2, s)
satisfies

φ− sφs > 0, φ− sφs + (b2 − s2)φss > 0, for , n ≥ 3,

or

φ− sφs + (b2 − s2)φss > 0, for n = 2,

where s and b are arbitrary numbers with |s| ≤ b < b0.
Here φs denotes the differentiation of φ with respect to s.
For a general (α, β)-metric F = αφ (b2, s), the fundamental tensor gij is given

by [20]

gij = ρaij + ρ0bibj + ρ1
(
biαyj + bjαyi

)
− sρ1αyiαyj , (2.3)

where ρ = φ (φ− sφs) , ρ0 = φφss + φsφs, ρ1 = (φ− sφs)φs − sφφss.
Moreover,

det (gij) = φn+1 (φ− sφs)n−2 (φ− sφs + (b2 − s2)φss) det (aij) ,

and the inverse metric tensor gij is given by

gij = ρ−1
{
aij + ηbibj + η0α

−1 (biyj + bjyi
)

+ η1α
−2yiyj

}
, (2.4)



34 B.TIWARI, R.GANGOPADHYAY, G.K.PRAJAPATI

where (aij) = (aij)
−1, bi = aijbj,

η = − φss
φ− sφs + (b2 − s2)φss

, η0 = − (φ− sφs)φs − sφφss
φ (φ− sφs + (b2 − s2)φss)

,

η1 =
(sφ+ (b2 − s2)φs) ((φ− sφs)φs − sφφss)

φ2 (φ− sφs + (b2 − s2)φss)
.

For any x ∈M and y ∈ Tx(M) \ {0} the Riemann curvature Ry = Ri
k
∂
∂xi
⊗ dxk

of F is defined by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂xk∂ym
− ∂Gi

∂ym
∂Gm

∂yk
.

The Riemann curvature tensor Ri
j of the general (α, β)-metric under the as-

sumption (1.2) is given by [19]

Ri
j = R1α

2δij − sR2yjb
i +R2α

2bjb
i +R3bjy

i +R4yjy
i, (2.5)

where

R1 = µ(1 + sψ) + c2[ψ2 − 2sψb2 − ψ2 + 2χ(1 + sψ + uψs)], (2.6)

R2 = −µ(2χ−sχs)+c2[2(2ψb2−sψb2s)−χss+2χ(2χ−sχs)+u(2χχss−χ2
s)] (2.7)

R3 = −µ(2ψ − sψs) + c2[2(2ψb2 − sψb2s)− ψψs − ψss
+2χ(ψ − sψs + uψss)− χs(1 + ssψ + uψs)],

(2.8)

R4 = −µ[1− s(ψ − sψs)] + c2[ψs + sψss − ψ(ψ − sψs)− 2s(ψb2 − sψb2s)
−2χ(1 + sψ + uψs) + sχ2(1 + sψ + uψs)− 2sχ(ψ − sψsψss)],

(2.9)

with

χ =
φss − 2(φ1 − sφb2s)

2(φ− sφs) + (b2 − s2)φss
, ψ =

φs + 2sφb2

2φ
− χ

φ
[sφ+ (b2 − s2)φs].

One can observe that here

c2 = k − µb2 and R1 +R4 + sR3 = 0 (2.10)

for some constant k.
Therefore, using (2.10) in (2.5), we have

Ri
j = R1(α

2δij − yjyi) +R2(αbj − syj)αbi +R3(αbj − syj)yi. (2.11)

3. The Ξ-curvature and H-curvature of a general (α, β)-metric

In this section, we find the expressions of non-Riemannian quantities Ξ and H
of general (α, β) Finsler metrics.

The Ricci curvatureRic is defined byRic = Ri
i, and for a general (α, β)-metrics,

Ric can be obtained as

Ric = Ri
i = R1(α

2δii − yiyi) +R2(αbi − syi)αbi +R3(αbi − syi)yi

= α2[(n− 1)R1 + (b2 − s2)R2]

= α2R,

(3.1)

where

R = (n− 1)R1 + (b2 − s2)R2. (3.2)



ON GENERAL (α, β)-METRICS WITH SOME CURVATURE PROPERTIES 35

By some simple calculations, we can obtain the following results:

∂α2

∂yj
= 2yj, syj =

αbj − syj
α2

(3.3)

and

syjy
j = 0, syjb

j =
b2 − s2

α
. (3.4)

Using (3.2) and (3.3), we have

∂

∂yj
Ric =

∂

∂yj
α2R = αRsbj + (2R− sRs)yj, (3.5)

where Rs = ∂R
∂s

.
Now differentiating (2.11) with respect to yi and using (3.3) and (3.4) and then

taking the summation over i, we have∑
i

∂Ri
j

∂yi
=
[
R1s + sR2 + (b2 − s2)R2s + (n+ 1)R3

]
αbj

+
[
(1− n)R1 − sR1s − b2R2 − s(b2 − s2)R2s − (n+ 1)sR3

]
yj.

(3.6)

Let

M = R1s + sR2 + (b2 − s2)R2s + (n+ 1)R3

and

N = (1− n)R1 − sR1s − b2R2 − s(b2 − s2)R2s − (n+ 1)sR3.

Therefore, (3.6) becomes ∑
i

∂Ri
j

∂yi
= Mαbj +Nyj. (3.7)

We will use the following lemma to calculate the Ξ-curvature.

Lemma 3.1 (see[10, 16]). The Ξ-curvature of a Finsler metric F is given by

Ξj = −1

3

(
2
∑
i

∂Ri
j

∂yi
+

∂

∂yj
Ric

)
. (3.8)

Plugging (3.5) and (3.7) into (3.8), we obtain

Ξj = −1

3
[(2M +Rs)αbj + (2N + 2R− sRs)yj]. (3.9)

From (3.2), we have

Rs = (n− 1)R1s + (b2 − s2)R2s − 2sRs.

Then we can have

(2M +Rs) = (n+ 1)R1s + 3(b2 − s2)R2s + 2(n+ 1)R3 := κ. (3.10)

and

2N + 2R− sRs = −sκ. (3.11)
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Substituting (3.10) and (3.11) into (3.9), we obtain the following formula for Ξ
as:

Ξj = −κ
3

(αbj − syj), (3.12)

where κ is given as in (3.10).
Now differentiating (3.12) with respect to yi and using (3.3), we have

Ξj.i = − κs
3α2

(αbi − syi)(αbj − syj)−
κ

3

(
bjyi − biyj

α
+

s

α2
yiyj − saij

)
,

where κs := ∂κ
∂s

.
Therefore, from (1.4), we have

Hij = − κs
6α2

(αbi − syi)(αbj − syj)−
sκ

6

(yiyj
α2
− aij

)
=

1

6

[
sκaij − κsbibj +

sκs
α

(bjyi + biyj)−
s

α2
(κ+ sκs)yiyj

]
.

4. Almost vanishing H-curvature

In this section, we prove Theorem 1.1 and Corollary 1.2. Using (3.3), we obtain

αyiyj =
α2aij − yiyj

α3
. (4.1)

syiyj =
3syiyj − αbiyj − αbjyi − sα2aij

α4
. (4.2)

Proof of Theorem 1.1. Differentiating (2.2) with respect to yi, we have

Fyi = αyiφ+ αφssyi . (4.3)

Differentiating again (4.3) with respect to yj yields

Fyiyj = αyiyjφ+ (αyisyj + αyjsyi)φs + αsyisyjφss + αsyiyjφs. (4.4)

Plugging (3.3),(4.1),(4.2) into (4.4) yields

Fyiyj =
1

α3

[
(φ− sφs)α2aij + α2φssbibj − αsφss(biyj + bjyi)− (φ− sφs − s2φss)yiyj

]
.

In the view of (1.5), the general (α, β)-metric is of almost vanishing H-curvature
if and only if

sκaij − κsbibj +
sκs
α

(bjyi + biyj)−
s

α2
(κ+ sκs)yiyj

=
3(n+ 1)θ

α3

[
(φ− sφs)α2aij + α2φssbibj − αsφss(biyj + bjyi)

−(φ− sφs − s2φss)yiyj
]
. (4.5)

Now equating the similar coefficients of both sides of (4.5), we have the following
equations:

sκ =
3(n+ 1)θ

α
(φ− sφs), (4.6)

− κs =
3(n+ 1)θ

α
φss, (4.7)
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− sκs =
3(n+ 1)θ

α
sφss, (4.8)

s(κ+ sκs) =
3(n+ 1)θ

α
(φ− sφs − s2φss). (4.9)

At first we show that (4.6) implies (4.7), (4.8), and (4.9).
Suppose (4.6) holds. Since F is a Finsler metric, we have φ − sφs > 0. Since

s = β
α

, the 1-form θ can be expressed by

θ =
κ

3(n+ 1)(φ− sφs)
β. (4.10)

Furthermore, κ
3(n+1)(φ−sφs) is independent of y. In fact, it depends only on b2. Let

κ

3(n+ 1)(φ− sφs)
:= σ

(
b2

2

)
. (4.11)

Therefore, from (4.10) and (4.11), we have

θ = σ

(
b2

2

)
β. (4.12)

As s = β
α

, we have

θ

α
= sσ

(
b2

2

)
. (4.13)

By using (4.11) and (4.13), we obtain

κs =

[
3(n+ 1)σ

(
b2

2

)
(φ− sφs)

]
s

= −3(n+ 1)
θ

α
φss.

Thus, we get (4.7). Now multiplying (4.7) by s yields (4.8). Equation (4.9) can
be obtained easily from (4.6) and (4.7).

Now substitute the value of κ from (3.10) into (4.6), we get (1.6), which proves
the theorem. �

Proof of Corollary 1.2. It is sufficient to show that Ξ-curvature almost vanishes if
the H-curvature almost vanishes and in this case corresponding 1-form is exact.
Suppose that a general (α, β)-metric F = αφ(b2, β

α
) has almost vanishing H-

curvature. Then (4.6), (4.11), and (4.12) hold. By using (4.12), we have

d

[
f

(
b2

2

)]
= f ′

(
b2

2

)
d

(
b2

2

)
= σ

(
b2

2

)∑
j

bjdbj = θ,

where f(t) :=
∫
σ(t)dt. Hence θ is an exact form. Using (3.3) into (4.3) yields

Fyj = φsbj +
φ− φs
α

yj.

Using (4.12), we get (
θ

F

)
yj

=
σ
(
b2

2

)
F 2

(φ− sφs)(αbj − syj). (4.14)
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Now we have

Ξj = −κ
3

(αbj − syj) (from (3.12))

= −(n+ 1)(φ− sφs)σ(
b2

2
)(αbj − syj) (from (4.11))

= −(n+ 1)F 2

(
θ

F

)
yj
. (using (4.14))

Hence we have the proof of Corollary 1.2. �
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