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ABSTRACT. The commuting graph of a finite nonabelian group G is a simple
undirected graph, denoted by I', whose vertex set is the noncentral elements
of G and two distinct vertices x and y are adjacent if and only if zy = yz. In
this paper, we compute energy, Laplacian energy, and signless Laplacian energy
of I'¢ for various families of finite nonabelian groups and analyze their values
graphically. Our computations show that the conjecture posed in [MATCH
Commun. Math. Comput. Chem. 59, (2008) 343-354 ] holds for the commut-
ing graph of some families of finite groups.

1. INTRODUCTION

Let L(G) and Q(G) be the Laplacian and signless Laplacian matrices of a graph
G, respectively. Then L(G) = D(G)—A(G) and Q(G) = D(G)+ A(G), where A(G)
and D(G) are the adjacency and degree matrices of G, respectively. The spec-
trum of G is a multiset given by spec(G) := {\[", A5?, ..., A"}, where A1, Ag, ..., A
are the eigenvalues of A(G) with multiplicities py, po, ..., p;, respectively. Simi-
larly, the Laplacian and signless Laplacian spectrums of G are defined by the
multisets L-spec(G) := {u{", pd*, ..., p2} and Q-spec(G) = {v{*,v5?, ..., V" },
respectively, where i, fia, . . ., iy, are the eigenvalues of L(G) with multiplicities
Gyq2s - -y Gm and vy, s, ... v, are the eigenvalues of Q(G) with multiplicities
r1,72,...,Tn, respectively. A graph G is called integral if all the elements of
spec(G) are integers. Harary and Schwenk [12] introduced the concept of integral
graphs in 1974. Similarly, G is called L-integral and Q-integral, respectively, if
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L-spec(G) and Q-spec(G) contain only integers. One may refer to [1,2,4,14,16,21]
for various results of these graphs.

Depending on various spectra of a graph, there are various energies called
energy, Laplacian energy, and signless Laplacian energy denoted by E(G), LE(G)
and LE1(G), respectively. These energies are defined as follows:

E@G) = Y . (L1)

A€spec(G)

2le(9)]
LE(G) = = : (1.2)
MEL§C(9) (@)l
and
LEYG = Y 2’5((5))" ‘ , (1.3)

vEQ-spec(G)

where v(G) and e(G) denote the set of vertices and edges of G, respectively.

The commuting graph of a finite nonabelian group G with center Z(G) is a
simple undirected graph, denoted by I'g, whose vertex set is G \ Z(G), and two
distinct vertices x and y are adjacent if and only if xy = yx. Various aspects
of commuting graphs of finite groups can be found in [3, 13,17, 19]. In [6-8, 18],
Dutta and Nath have computed various spectra of I'¢ for different families of
finite groups.

In this paper, we compute various energies of the commuting graphs of those
families of finite nonabelian groups and analyze their values graphically. It may
be mentioned here that various energies of the commuting graphs of some super
integral groups are computed in [10,20]. It is also worth mentioning that the
Laplacian spectrum and energy of noncommuting graphs of some finite nonabelian
groups are computed in [5] and [9], respectively.

The motivation of this paper lies in [11], where Gutman et al. posed the
following conjecture.

Conjecture 1.1. F(G) < LE(G) for any graph G.

The above conjecture was disproved in [15,22], providing some counterexam-
ples. Here we pose the following question comparing Laplacian and signless Lapla-
cian energies of graphs.

Question 1.2. Is LE(G) < LET(G) for all graphs G?

In this paper, we show that Conjecture 1.1 holds for commuting graphs of some
families of finite groups. In particular, we show that the conjecture holds for the
commuting graphs of the family of dihedral groups, quasidihedral groups, gen-
eralized quaternion groups, projective special linear groups PSL(2,2%), general
linear groups, the groups A(n,?), and the family of metacyclic groups Mis, =
(a,b:a® =0 =1,bab™' = a™') and Us, = (z,y : 2*" = y3 = 1,27 lyz = y~1).
We also show that the inequality in Question 1.2 does not hold for commuting
graphs of finite nonabelian groups in general.
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2. SOME COMPUTATIONS

In this section, we compute various energies of the commuting graphs of some
families of finite nonabelian groups. We begin with the family of groups G such
that %G) is isomorphic to Z, x Z, for any prime p.

Theorem 2.1. Let G be a finite group such that % = 7y x Ly, where p is a
prime integer. Then

E(Tg) = LE(Tg) = LE*(T) = 2(p* — 1)|Z(G)| — 2(p + 1)
Proof. The expression for E(I'¢) follows from [20, Theorem 3(i)].
We have [v(T'¢)| = (p* — 1)|Z(G)| and ' = (p + 1)K(p—1)z(c)|- Therefore,
2le(l'a)| = (p* = DIZ(G)|((p — DIZ(G)| — 1) and so
2le(Te)|
[0(Te)l
By [8, Theorem 2.3], we have
L-spec(Tg) = {07, ((p = D] Z(G) ) DAy,

_ 2le(Tg)l
Now, )0 [o(T)]

by (1.2), we have
LE(Tg) = (p+1)((p - DIZ(G)| = 1) + (»* = 1)|Z(G)| = p — 1,

and the result follows.
By [8, Theorem 2.3], we also have

Q-spec(T) = {(2(p — 1| Z(G)| — 2)"**, ((p — 1)| 2(G)| — 2)* - DIZ@I=p=1}

Now

= (- DIZ(G)] - L

= (p— )| Z(G)| =1 and |(p — 1)|Z(G)| — T5F<| = 1. Hence,

g g M|

20~ D12(6)] - 2= T5E = - 112(6)) - 1,0
iz g 2T

- viz©-2- L -1

Hence, by (1.3), we have
LE*(Tg) = (p+ 1)((p — DIZ(G)] = 1) + (»* = D|Z(G)| = p — 1,
and the result follows. O
As a consequence, we have the following result.
Corollary 2.2. Let G be a nonabelian group of order p*, for any prime p. Then
E(g) = LETg) = LET(Tg) = 2p* —4p — 2.
Proof. The result follows from Theorem 2.1, since |Z(G)| = p and % =7, X
Zy,. O
Theorem 2.3. Let G be a finite group such that % = Do, for m > 2. Then
(1) E(Tg) = (4m —2)|Z(G)| —2(m + 1).
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(2) Ifm=2;m=3and |Z(G)| =1,2; orm =4 and |Z(G)| =1, then

(2m3 + 2)|Z(G)| — 4m? — 2m + 2

LE(Tq) = o — 1

(3) If m=3 and |Z(G)| > 3; m =4 and |Z(G)| > 2; or m > 5, then

(2m3 — 6m? + 4m)| Z(G)|? + (2m? — 2m + 2)| Z(G)| — 4m + 2
2m — 1 '

If m =2, then LET(T'¢) = 6|Z(G)| — 6.

LE(Tg) =

E ; If m =3 and |Z(G)| =1, then LE*(I'g) =

(6) If m =3 and |Z(G)| > 2, then LET(Tg) = 212() '2+;8'Z< =30,
(7) If m = 4 and |Z(G)| < 6, then LE*(T¢) = 2L

(8) If m =4 and |Z(G)| > 6, then LE*(Tg) = BIZCILHZC)Z56.
(9)

9) If m > 5, then LE*(Tg) = Zm=m t4m)|IZ(G)F

2m—1

Proof. The expression for E(I'¢;) follows from [20, Theorem 3(ii)].
Since I'g = Km—l)\Z(G)\ (] mK|Z(G)| we have ‘ (Fg)’ = (2m - 1)‘Z(G)’ and
2le(Te)| = (m = D]Z(G)[((m = 1]Z(G)| = 1) +m|Z(G)|(|Z(G)| —1). Therefore,

2le(Tg)| _ (m?>—m+1)|Z(GQ)] —2m + 1
lv(Tq)] 2m — 1 '

Note that for any two integers r, s, we have

2le(T'q)| _ (2r+1)m—m?—r—1)|Z(G)|+2m(s+1)—s—1
lv(Tq)] 2m — 1 ‘

r|Z(G)|+ s —

(2.1)
By [8, Theorem 2.5], we have

Lrspec(T'a) = {071, ((m = D Z(G) )" DAL, (|2(G| 14D},

Therefore, using (2.1), we have

o Ae@al| _ (m? —m +1)|Z(G)] —2m + 1
lv(Ta)| | 2m —1 ’
2le(Tg)| (m* —2m)|Z(G)| +2m — 1
- D|Z(G)| - =
on - Djz0) - T4 Z(6) ,
and ,
(3m—m 7222,‘1{(1G)Hszl if m=2;orm=3and |Z(G)|=1,2;
orm=4and |Z(G)| =1,
12(G)| - FFgl | § ot RZ@antl gy — 3 and |2(0)] > 3

orm=4and |Z(G)| > 2;

orm > 5.
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Therefore, if m = 2; m =3 and |Z(G)| = 1,2; or m = 4 and |Z(G)| = 1, then
by (1.2), we have

(m+1)((m?> —m+1)|Z(G)| —2m + 1)

LE(Tq) =

2m —1
((m = D|Z(G)] = D((m* = 2m)|Z(G)| +2m — 1)
+ 2m —1
(m(Z(G)]| = ))((Bm —m? = 2)|Z(G)| +2m — 1)
+ 2m — 1 ’

and hence the result follows on simplification.

If m=3and |Z(G)| > 3; or m =4 and |Z(G)| > 2; or m > 5, then by (1.2),
we have
(m+1)((m?* —m+1)|Z(G)| —2m+1)

LE(Te) = 2m — 1
N ((m = D|Z(G)] = D((m* = 2m)|Z(G)| +2m — 1)
2m —1
. (m(|Z(Q)| — 1))((=3m +m? + 2)| Z(G)| — 2m + 1)
2m — 1 '

and hence the result follows on simplification.
By [8, Theorem 2.5], we also have

Qspec(l'e) ={(2(m — 1)|Z(G)| = 2)", ((m = 1)|Z(G)| - 2)m- V@,
(212(G)] = 2)™, (12(G)| - 2)"(ZD=Dy,
Now, using (2.1), we have

_ _ o _ 2elg)]
2(m = 1)|Z(G)| - 2 - 2k

_ (3m?-5m+1)|Z(G)|— 2m+1
2m—1

e 2mZQI2mtL i m=3 and |Z(G)| = 2;

or m > 4,

_ o9 _ 2| _
[(m = 1)|2(G)| -2 - el | —

(- 2+2m)|Z(G)|+2m L it = 2:orm =3

2m—1
and |Z(G)| =1,
(Gm=—m?-3)|Z(G)|-2m+1  i¢ 0 9. o1 — 3 and
2m—1 ’
12(G)| 2 2 or

m =4 and |Z(G)| > 6,

(Comem® 922 ¢ ) — 3 and |Z(G)| = 1;
orm =4 and |Z(G)| < 6;
orm > 5,

o 2eo)l| _
‘2|Z(G>| 2= Tttan | =

o 2| _ (=3m+m?+2)|Z(G)|+2m—1
and“Z(G)‘ 2— ron | = ) -

If m = 2, then by (1.3) and substitution, we have
3 Z(G) -3 3|Z(G)|—-3 6|Z(G)|—6 6|Z(G)|—6
2G) =3 , HA@I =3 62(G) =5 62G) =6

and the result follows on simplification.
If m =3 and |Z(G)| = 1, then by (1.3) and substitution, we get LET(I'¢) = 2.

LE*(Tg) =
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If m =3 and |Z(G)| > 2, then by (1.3) and substitution, we have

LE(Tg) :13|Z(C;)\ =5 61Z(G) - é3\Z(G)| +5 9|Z(G§| —15
| SIZ(G)P +912(G)] ~ 15

5 )
and the result follows on simplification.
If m =4 and |Z(G)| < 6, then by (1.3) and substitution, we have

LE*(T) :29|Z(§)| —7 BIZG)] - 1)7(8\Z(G)| -7, 4(—12(;;)| +7)
L A2 = 1)(612(G) +7)

7 )
and the result follows on simplification.
If m =4 and |Z(G)| > 6, then by (1.3) and substitution, we have

291 Z(G)| =7 24|Z(G)]? —29|Z(G 7T 4lZ(G)| — 28
Ly <G =T | 2O - @I +T , 42(C)
24| Z(G)[? + 4|1 Z(G)| — 28
+ - ;

and the result follows on simplification.
If m > 5, then by (1.3) and substitution, we have

(3m?* —5m+1)|Z(G)| —2m + 1

LET () = 2m — 1
((m —DIZ(G)] = 1)((m* — 2m)|Z(G)| — 2m +1)
* 2m —1
m((=5m +m? + 3)|Z(G)| +2m — 1)
* 2m —1
m(|Z(G)] — 1)((=3m +m? +2)|Z(G)| + 2m — 1)
* 2m — 1 ’

and hence the result follows on simplification.

Using Theorem 2.3, we now compute the energy, Laplacian energy, and signless
Laplacian energy of the commuting graphs of the groups Mo, Do, and Qg

respectively.

Corollary 2.4. Let My, = (a,b: a™ = b*" = 1,bab™! = a™ ') be a metacyclic

group, where m > 2.
If m is odd, then

E(Ty,,., ) =@Am —2)n—2(m+ 1),

M ifm=3andn=1,2,

2 _ .
LET )y, ) = 12n +é4n 10 ifm=3andn > 3,
(2m3—6m2+4m)n?+(2m>—2m+2)n—4m+2
2m—1

otherwise,
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and
% ifm=3andn=1,
LE*(Ty,,) = w ifm=3andn>2,
3_ 2 2 )
Qe bm A otherwise.
m—1

If m is even, then

E(T,., ) = {Am —4)n — (m + 2),

(120 — 6 if m = 4,
% ifm==6andn=1,2,
LE(Tw,,,) = w ifm=26 andn > 2,
192n2452n—14 . _
\ m—1 ’
and
(12n — 6 if m = 4,
48n2+§6n—30 if m =6,
LE*(Ta,,,) = { 1920° if m=8 andn < 3,

2 _ .

7
(m3—6m2+8m)n?

| o otherwise.

Proof. The result follows from Theorem 2.3, using the facts

(b%) if m is odd, Mon Dy, if m is odd,
Z (M. mn) — m . . d —F"—=
(Man) {<b2> Uaz (b?) if m is even, o Z (M)

D,, if m is even.
OJ
Putting n = 1 in Corollary 2.4, we get the following result.

Corollary 2.5. Let Dy, = (a,b: a™ = b* = 1,bab™! = a™1) be the dihedral group
of order 2m, where m > 2.
If m is odd, then

16 ifm=23
E(FDQm) =2m — 4, LE<FD2m) = {25(m+1)(m1)(m2) . ’
T otherwise,
16 ifm=23
and LE+<FD2m) = {25171367712 dm ; 7
MmN otherwise.
If m is even, then
6 ifm=4,
2 ifm==~6
E(Tp,,) =3m—6, LE(p,,)=1 2, . ’
= if m=3§,

m3—5m2+4m+6

otherwise,
m—1
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6 ifm=4,
54 :
= ifm=2~6
and LE"(Tp,, ) =1 : ’
: L;: ] if m =8,
m_OmdBm  oiherwise.

1

Corollary 2.6. Let Qu, = (x,y : y*™ = 1,22 = y"™, ayz~' =y~ 1), where m > 2,

be the generalized quaternion group of order 4m. Then

6 ifm =2,
E(To,.)=6m—6, LE(Tg,.) 5 m =3,
= m — s m = .
Qam Q4 @ ifm =4,
8m3’220$f1+8m+6 otherwise,
6 ifm=2,
4 5 if m =3,
and LET(Dg,,.) = i Fm— 4
W otherwise.
Proof. We have Z(Qum) = {1,a™} and Z%;”) = Dy,,. Therefore, the result

follows from Theorem 2.3. ]

It may be mentioned here that Corollaries 2.5 and 2.6 are also obtained, by
direct calculations, in [10, Theorems 2.2 and 2.1] along with [20, Theorem 1(ii),
(iii)]. We also have the following result as a corollary of Theorem 2.3, noting that
|Z(Usy)| = n and the central quotient of U, is isomorphic to Ds.

Corollary 2.7. Let U, = (z,y: 2" =3 =1, 27 'yzr =y~ ). Then

56n—40 .
om=tl ifn=12
E<FU67L> = 10n — 87 LE<FU6n) = {12n52 14n—10 : U
A= ifn >3,
16 :
= an = 17
and LE+(FU6n) = {152n2+é8n—30 ifn > 2.

Theorem 2.8. If G is a finite group such that % is isomorphic to Sz(2) =

{(a,b:a®=0b*=1,b"tab = a?), known as the Suzuki group, then

732|2(G)|-228 if 1Z2(G)] < 4
E(Lg) = 3812(G)| - 12, LE(Lg) = ilk =N -4
120/ 2(@)| +11922\Z(G)\ B f |Z(G)| > 4,

a1 if |2(G)] =1,

and LET(Tg) = {11290|Z(G>|2+2302<G>—190, if |Z(G)| > 1.

Proof. The expression for E(I'g) follows from [20, Theorem 2(iv)].
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We have |v(I'¢)| = 19|Z(G)| and |e(T¢)| = 4|Z(G)|(4\Z(G)\—1)-;15|Z(G)|(3|Z(G)|—1) as
I'g= K4|Z(G)| L 5K3\Z(G)\- Therefore,

2le(Te)| _42(G)|(4]2(G)] — 1) +152(G)[(3]2(G)[ - 1) _ 61]Z(G)] — 19

[o(Te)] 19[2(G)] 19

Note that for any two integers r, s, we have

2e(Tg)| (197 — 61)|Z(G)| +19(s + 1)
2@ + s = S = - 22

By [8, Theorem 2.2|, we have
L-spec(I'g) = {0%, (4] Z(G)|)*2@1=L (3| z(G)|)*oI#(I=5}

. 2le(T 61|Z(G)|—19 2|e(T" 15|Z(G)|+19
Using (2.2), we have ’0— |L((F§))‘| = 8l (19)| , A Z(G)| — ‘L((Fg))” = 1l (19)‘ ,
and

_ G .
31200y - 2eTol| _|~41Z(G)] +19] _ 2GS if | 2(G)| < 4,
lv(TCq)] 19 WG if | 2(G)] > 4.

Therefore, if |Z(G)| < 4, then by (1.2) and substitution, we have

366|Z(G)| — 114 60|Z(G)[* + 61|2(G)| — 19
= +
19 19
—60|Z(G)|2 + 305 Z(G)| — 95
i 19 ’

and the result follows on simplification.
If |Z(G)| > 4, then by (1.2) and substitution, we have

LE(Tc)

366|Z(G)] — 114 60|Z(G)|* + 61|Z(G)| — 19
= -
19 19
60|Z(Q)|* — 305|Z(G)| + 95
+ )
19
and the result follows on simplification.
By [8, Theorem 2.2], we also have

LE(Tc)

Q-spec(I'g) = {(8|Z(G)| — 2)*,(4]|2(@)| — 2)4IZ(G)|—17
(6]2(G) - 2)°,3|12(G)| — 2)P#@I=51,

Now, using (2.2), we have

o9 2eCg)l| _ 911Z(G)|-19
81Z(G) —2- Trgr| = 1

{M if |Z(G)| =1,

4 7(G) — 9 — 2edel| 19

2le(Tq)|| _ 53|Z(G)|—19 2le(Te)|| _ 4Z(G)|+19
612(G) —2= | = = — and BIZ(G) =2 - 5| = 5
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Hence, if |Z(G)| = 1, then by (1.3) and substitution, we have
9112(G)] - 19 , (41Z(G)| - D(-15|2(G)] +19) , 265|2(G)| — 9
19 19 19
(15]1Z(G)| — 5)(4|Z2(G)| +19) 484
" 19 S 19
If |Z(G)| > 1, then by (1.3) and substitution, we have
911Z(G)| — 19 N (4|1Z(G)] — 1)(15|Z(G)| — 19) N 5(53|Z(G)| — 19)

LET(Tg) =

LE*T(Tg) =
19 19 19
L ISIZ(G)] - 5)(4|Z(G)| +19)
19 ’
and hence the result follows on simplification. O

n—1

Theorem 2.9. Let QDyn = (a,b : o' = b = 1,bab™! = ¥ °~1) be the
quasidihedral group, where n > 4. Then
2%03 — 52272 2" 46
21— !
5.2%n74 — 152272 4 5.2"+2
on—1 ] '
Proof. The expression for E(I'gp,,) follows from [20, Theorem 2(i)].
We have [v(Cgp,.)| = 2(2" 1 —1) and |e(Tgp,. )| = w , since 'gp,, =
2" 2Ky U Kon-1_5. Therefore,
2le(Top,.)| 2272 — 2"t 4+ 6
v(Tep,n)l 22 = 1)
By [8, Proposition 2.10], we have

L_SpeC<FQD2n) = {0271—2+1 (27171 - 2)2”—1,37 22n—2}'

E(Cgp,.) =3(2"" =2), LE(Tgp,.) =

and LEY"(Tgp,.) =

2le( Topon )| 92n—2_on+l¢ n— 2|6(FQD )l _ 92n—2_9n_9
Therefore, 10 = 3,57 = @m0 27 27 Taan, | — @
and ‘2 - Q‘L 15352" = 2 ;n QTZJN Hence, by (1.2) and substitution, we have
2TL
LE(F ) :(2n 2 + 1)(22n—2 _ 2n+1 + 6) N (2n—1 _ 3) (22n—2 —_9on _ 2)
@Dan 2271 — 1) 2(2n-1 - 1)

2n—2(22n—2 _ 2n+2 + 10)
2(2n1 —1) ’

and the result follows on simplification.
By [8, Proposition 2.10], we also have

Q‘SpeC(FQD2n> = {(2” _ 6)1’ (27171 . 4)2”‘1737 22n—27 02n—2}.

Now
o _ g — 2|€(I‘czD2n)| _ 3202 30n 46 [gn-1 g 2le(C@Dyn )| _ 22n—2_39n 19
[v(FQDyn )l 2(2n—1-1) (T QDyn )l 2(2n=1-1)
‘ 2| FQD2n ‘ 22n 2 2n+2+10 )0 . 2‘ FQDzn)‘ ‘ . 92n—2 2n+1+6
[v(TQDyn )| 2(2nt-1) [v(CQpyn ) 2(2n—1-1)
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Therefore, by (1.3) and substitution, we have
322072 _3omtl 46 (201 _ 3)(2202 _ 307 4 9)

LET(Tgp,.) =

2(2n1 — 1) 2(2n1 — 1)
220 - 20 4 10) | 2020 2 4 )
2271 - 1) 2271 - 1) ’
and the result follows on simplification. |

Theorem 2.10. Let G denote the projective special linear group PSL(2,2%),
where k > 2. Then

E(FG) — 23k+1 . 22k+1 o 2k+2 o 47

26k+1 _ 25k+1 —3. 24k _ 23k+2 +3. 22k +3. 2k+1 +4

LE(g) = 23k _ 9k _ 1 ’
and
LE+(Fg) = {zg_}éil 95k+1_o4k+3_3.93k+1 2k+1_ 9k+3 Zf k; B 2’
—2 =2 Rt e 2 otherwise.

Proof. The expression for E(T'¢) follows from [20, Theorem 2(ii)].
We have [u(D¢)| = 235 — 28 — 1 and |e(Tg)| = 2222428042 ince T =
(2F + 1) Kok _q LI2E71(2F + 1) Kok _y LI 2871(2F — 1) Kok Therefore,
2|6(FG)| _ 24k _ 23k+1 _ 22k + 2k+1 + 2
lv(Tq)| 23k — 2k _ ] ‘
By [8, Proposition 2.11], we have
L-spec(I'g) = {022k+2k+1, (2F — 1)22k_2k_2,(2k — 2)2’971(2%_2“1_3)7

(2k)2k‘71(22k_2k+1+1)}‘

_ 2le(Cg)|| _ 2tk_23k+1_ o2k oktlo k1 2le(Te)l| _ 23k_okt1_q

Therefore, |0 W) | = 2BE _of 1 ;128 -1 WTe) | = “2%F—2k—1 >
k_ o _ 2e@aol| _ 2k k_ 2e(To)|| _ 23k+1_3.2k_2

28 — 2 | = T and (2 BT | = “ et Hence, by (1.2)

and substitution, we have
(22k + 2k + 1)(24k o 23k+1 _ 22k + 2k+l + 2)

LE(T¢) = S
2k _ ok __ 3k _ ok+1 __ k—=1(92k __ o9k+1 __ k
(226 — 2k — 2)(23% — 2 1)  2k-1(22k —2 3)2
+ 23k_2k_1 + 23k_2k_1
2k—1(22k o 2k+1 + 1)(23k+1 _ 32k o 2)
+
23k — ok _ | !

and the result follows on simplification.
By [8, Proposition 2.11], we also have

Q-spec(T'¢) = {(2k+1 _ 4)2k+1’ (2k _ 3)22k—2k—2’ (2k+1 _ 6)2k_1(2k+1),
(2k — 4)21“*1(22’@2“173) (2k+1 2)2‘“*1(2’“71) (2F — 2)2’“*1(2%—2‘”%1)}‘



38 P. DUTTA, B. BAGCHI, R.K. NATH

Therefore, |2+ — 4 — Har | = b B, ‘2k -3 1| = wa
_ 94k 93k+2_ 92k _ok+1_ .
2k‘+1 —6— w _ 4i +21€2:;k_-522]12_1k2 ; 4 if k= 2,
lv(l'a)| 2 72321;19:31@:;2 = otherwise,
‘Qk —4- QILG((FFC?))\l = I ‘Qkﬂ —2- 2|Le((rrf))\| TS5, and
’2"3 —2— 2|Le((£§))“ = 23,_2;,_1. Therefore, by (1.3) we have, if £ = 2, then
LE+(FG> :(2k 4 1)(24k o 23k+1 _ 22k + 2) N (22k _ 2k o 2)(23k . 1)
23k_2k_1 23k_2k_1
2k—1(2k 4 1)(_24kz 4 23k+2 4 22k: _ 2k+1 o 4)
+ 23k ok _ |
2k—1(22k _ 2k+1 _ 3)(223k _ 2k _ 2)
* 28k — ok _ |
2k—1(2k o 1)(24k _ 22k _ 2k+1) 2k—1(22k _ 2k+1 + 1)2k
+ 23k — 2k 1 + 23k — 2k — 1
3916
59
Otherwise,
LE+(FG) _ (2k + 1)(24k o 23k—|—1 o 22k + 2) (22k o 2k o 2)(23k _ 1)
23k_2k)_1 23k_2k_1
2k—1(2k =+ 1)(24k o 23k+2 - 22k + 2k+1 4 4)
* 23k — ok — |
2k—1(22k _ 2k+1 _ 3) (23k+1 _ 2k o 2)
* 2%k — 2k — 1
N 2k71(2k _ 1)(24k _ 22k _ 2k+1) N 2]671(22]6 _ 2k+1 + 1)2k
2%k — 2k — 1 ok —9k—1
Hence, the result follows on simplification. O

Theorem 2.11. Let G denote the general linear group GL(2, q), where ¢ = p™ > 2
and p is a prime. Then

E(Tg) =2¢" — 2¢° — 4¢° — 2q,
) _ 4" —2¢° — 49" +10¢° + ¢* — 11¢* + 2¢° + 5¢* — 2q
(- —q-1) ’

LE*(To) ~2¢° —10q" — 22¢° — 18¢° + 51¢" — 16¢° — 30¢° + 3¢
v 20¢—D(¢* —q—1) |

Proof. The expression for E(T'¢) follows from [20, Theorem 2(iii)].

and

LE(T¢
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We have [0(Tg)| = (¢ = 1)(¢* — g — 1) and |e(Tg)| = T2020ZHHR0 g

Ty = Q(qsrl)Kq2—3q+2 |_|q(q2—1)Kq2_q U (g + 1)K2_9411. Therefore,

2le(Tq)|  ¢® —2¢° — 2¢* +4¢° 4+ 2¢*> — 3¢
lv(Te)| (q—1)(¢* —q—1)

By [8, Proposition 2.12], we have

a(a=1)(¢2—q-1)

7(q2 - q) 2 )
(q2 — 2+ 1)q(tI+1)(f1*2)}.

a(a+1) (¢ —3q+1)
2

L-spec(Te) = {07+ (¢? — 3¢ + 2)

Y

Therefore,
_ 2le(Tg)| ®—2¢5—2¢*+4¢3+2¢>—3q | 2 _ 2le(Ta)|| _ 2¢°—6¢*+3¢5+3¢%—2
‘0 vl | = @@ |9 32 el | = T @ e
2 2eTe)l| _ 2¢*—3¢>—¢*+2q 2 ~ 2le(Tg)| ¢°—4¢*+3¢3+2¢>—q—1
"1 4~ Toira) | = eD(@—a-1) 2nd ’q 29+ 1= ml | = @ D@D

Hence, by (1.2) and substitution, we have

(¢ +q+1)(¢° —2¢° — 2¢" + 44> 4+ 2¢° — 3¢)
(¢—1)(¢*—q—1)

q(q +1)(¢*> = 3¢+ 1)(2¢° — 6¢" + 3¢° + 3¢* — 2)

2(¢ = )(¢* —q—1)

qlg —1)(¢* —q—1)(2¢" — 3¢° — ¢° + 2q)
2q—-1)(¢—q—1)

qlq +1)(q = 2)(¢° —4¢* +3¢° +2¢* —q — 1)

(¢—=1)(¢®—q—1) ’

LETg) =

_|_

+

+

and the result follows on simplification.
By [8, Proposition 2.12], we also have

a(q+1)

Q-spec(Tq) ={(2¢° =64 —2) >, (¢* — 3q) (2% —2g— 2)q<q2—1>’
ala=1)(¢%®—q-1)

(@ —a-2 = (20 —49)", (¢’ +2¢ — 1)@V,

ala+1)(q®~3q+1)
2

@5 —6¢°+4q* +4¢3+2¢%>—3¢—2

Therefore, (2q2 —6g—2— TS| = (e-D(@—a-1) ’

lv(T'a)l

2 _ 2le(Ca)l| _ ¢®—4q*+q3+¢° 2 o9 2e)l| _ ¢5—2¢5+2¢%+q—2

¢ =30~ Wl | = @@ |2 202 3w | T @@ e
2 o 2e@)l| _ ¢®—q>—2q+2 2 _ 2le(Ce)|| _ ¢°—4¢°+4q*—q

“1 1= 2= %al | = wn@a1 |24 4~ T | = enw—ey and
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¢ +29—1-— 2|Le((FF§))I‘ = 3qi;f‘{j@§23 qf’f)*l. Therefore, by (1.3) and substitution,

we have
q(q+1)(¢° — 6¢° +4¢" + 4¢*> +2¢> — 3¢ — 2)
20¢-1)(¢* —q—1)
q(q+1)(¢* =3¢+ 1)(¢° —4¢" + ¢’ + ¢*)
20 —1)(¢® —q—1)
qlq —1)(¢° — 2¢° + 2¢°> + ¢ — 2)
20— 1)(¢* —q¢—1)
ql¢—1)(¢* —q—1)(¢* — ¢* —2¢ +2)
2(¢—1(¢*—q—1)
(¢+1)(¢° —4¢° + 4¢* — q)
(¢—1)(¢*—q—1)
q(q+1)(q = 2)(3¢° — 2¢* — 5¢° + 5¢ — 1)
(¢—1)(¢*=q—1) '
Hence, the result follows on simplification. O

Theorem 2.12. Let F = GF(2"),n > 2 and let 9 be the Frobenius automorphism
of F, that is, 9(x) = 2 for all x € F. If G denotes the group

LE*(I'g) =

+

+

+

+

1 0 0
An,9¥):=<qU(a,b)=1a 1 0| :a,b€F
b d(a) 1

under the operation U(a,b)U(da’, V') :=U(a+a',b+V + a'V(a)), then
E(lg) = LE(Lg) = LET(I'g) = 2(2" — 1)%.
Proof. The expression for E(I'g) follows from [20, Theorem 2(v)].
We have |[v(I'g)| = 2"(2" — 1) and |e(T'g)| = w, since I'g = (2" —
1) Kon. Therefore,
2le(Te)|
[v(Ta)]
By [8, Proposition 2.13], we have
L-spec(Ig) = {021, (2m)¥" -2 +1y,

 2fe(Te)]
0= Joro)

=21,

Therefore, =2"—1and 2" — % = 1. Hence, by (1.2), we have

LE(Tg) = (2" —1)(2" — 1) 4+ (22" — 2" 4 1) = 2(2" — 1)%.
By [8, Proposition 2.13], we also have

Q—Spec(FG) — {<2n+l - 2)2”—1’ (271, . 2)221’1,_277,4,»1_,’_1}'

Therefore, |27 —2 — Zelol| — on _ 1 and |27 — 2 — 2llal) — 4 Therefore,

[v(Te)l [v(T'q)l
by (1.3) , have
LET(Tg) = (2" —1)(2" — 1) + (22" — 271 4 1) = 2(2" — 1)%. O
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Theorem 2.13. Let F = GF(p"), where p is prime. If G denotes the group

1 00
V(a,b,e)=|a 1 0| :a,b,ceF
b ¢ 1

under the operation V(a,b,c)V(a', b/, d) =V(a+d, b+ +cd',c+ ), then
E(g) = LE(Tg) = LEY(Tg) = 2(p*" — 2p™ — 1).
Proof. The expression for E(I'¢) follows from [20, Theorem 2(vi)].

We have [o(T)| = p"(p*" — 1) and [e(T)| = BF=2=22222 since T =
(p™ 4+ 1) Kp2n_pn. Therefore,

2|€(Fg)| 9
T =p -t - L
Tl 7 F
By [8, Proposition 2.14], we have
L-spec(T'g) = {Opn"'l, (p2n _ pn)p3n_2pn_1}'

el
0= S

no__ 2le(Tg)|
[v(T'c)]

=p —p" —1 and |p* —p = 1. Hence, by

Therefore,
(1.2), we have
LE(Tg) = (p" + )™ —p" = 1)+ (p™ = 2p" — 1) = 2(p™ — 2p" — 1).
By [8, Proposition 2.14], we also have

Q-spec(Tg) = {(2p™" — 2p"™ — 2)7"+1, (p* — pi* — 27"~ 2" 1),

Therefore, ‘2p2” —2p" =2 — % =p?—pt—1and [p —p* — 2 — 2|L€(g§))\| —
1. Therefore, by (1.3), we have

LE*(Tg) = (0" + D™ —p" =)+ (™" —2p" = 1) =20 = 2p" —1). O

Proposition 2.14. Let G be a nonabelian group of order pq, where p and q are
primes with p | (¢ — 1). Then

16 e
5 ifp=2,
E(lg) =2q(p—1)-3, LE(I'g)= and ¢ = 3,
2pq3—2p2q2+4p2q—8p1¢1—2q3+4q2—2q+4 otherwise
Pq— )
16 ifp=2and q =3,

2pg® —2p? > +2p? q—2pq—2¢>+2¢>

o) otherwise.

and LET(Tg) = { >

Proof. The expression for E(I';) follows from [20, Theorem 2(vii)].
We have |v(I'g)| = pg — 1 and |e(T'g)| = w, since ' = ¢K,—1 U
K, ;. Therefore,

2leCe)l _ p*q—3pg+q* —q+2
[o(Te)l pq—1
By [8, Proposition 2.9], we have

Lespec(Tg) = {071, (g — 1)72, (p — 1)P~21}.
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_ 2leT)l| _ p®q—3pg+q*—q+2 _ 1 _ 2e@)l| _ pe®—p*q+2pg—q®—1
Therefore, |0 — T p | = =t ‘q 1= Y| = Pl
and
1 2le(Ta)|| % if p=2and g =3,
b lo(Ce)| | % otherwise.

Hence, by (1.2) we have, if p = 2 and ¢ = 3, then

+ 1) (p%g —3pg +q* — g+ 2 —9 2 0204 90 — % — 1
LE(T) <4t DWa =300t @ —a+2) , (4=~ g+ 20—~ 1)

pg—1 pq—1
N (pg —29)(=¢"+q+2pg—p—1)
pg—1
Otherwise,

+1)(p*¢—3pg+q* —qg+2 — ) (pg? — p2q + 2pg — ¢ — 1
LE(FG):(q )(Pa=3pg+ ¢ —q+2)  (¢-2)p¢’ —pg+2pq—q" 1)
pg—1 pg—1
(pq —29)(¢° —q—2pg+p+1)

+ .
pq—1

Hence, the result follows on simplification.
By [8, Proposition 2.9], we also have

Q-spec(Tg) ={(2¢ —4)", (¢ —3)7>, (2p — 4)%, (p — )~}

_ 2p®—p?q—pg—q>—q+2
pq—1 ’

4 2le(Tg)]
Therefore, ‘QQ 4 (T

5 2ea)l| _ APl i p = 2 and g =3,
! [v(Tq)| P p '+l _Zz(flqzﬂ otherwise,
2le(Te)| | _ —p%q+pg+q®—q+2p—2 2le(Te)|| _ ¢®—q+p—1
‘21)_4_ Wl | = et and ‘p_ 3= Tren | = Tt

Therefore, by (1.3), we have, if p = 2 and ¢ = 3, then

2 2 2, 2 2 _2 _ 2 2 2_1
LEHTg) =L PP — " —q+ IRl o b kY
pqg—1 pqg—1
q(—pQQ+pq+q2—q+2p—2)+(pq—2Q)(q2—q+p—1)
pq—1 pqg—1

+

Otherwise,

2 2 _ 2, 2 2 -9 2 2, 42 1
LE+HTy) = 2P —Pa—pi—q —q+ L a=2p — - g+ 1)

pq—1 pq—1
a(—p*q+pe+F —q+2p—2)  (pg—2¢)(¢*—q+p—1)
+ + .
pqg—1 pqg—1

Hence, the result follows on simplification. O
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3. GRAPHICAL REPRESENTATION

In this section, we analyze the graphical representations of various energies
of commuting graphs of the groups Da,,, Qum, QDan, Ugsn, GL(2,q), Mis,, and

A(n,9).
T
400 H E
—— LFE
1 —— LE+
8
2 200} :
=
62}
0 I | |
5 10 15 20
m —
FIGURE 1. Energies of I'p,, ,
m is odd
400
4
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&
g 200
£a|
0
200
+
wn
Q
2]
g 100
=
0

n —

FIGURE 5. Energies of I'y,,
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400

200
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FIGURE 2. Energies of I'p,, ,
m is even
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FIGURE 6. Energies of I'gr(2,q)
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-108
T T T T T
800 E E=LE=LE*
—— LE 2 N
1 600 H LE+ — 1
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2 K9]
jod 400 - - o
[} Q 1 - —
=) =
€2 2
200 -
0 ! | | | | 04— o
2 4 6 8 10 2 4 6 8 10
n— n—
FIGURE 7. Energies of 'z, , FIGURE 8. Energies of I' 5, 9)
m is odd

From the above figures, one can conclude that Conjecture 1.1 holds for the
commuting graphs of the family of dihedral groups, quasidihedral groups, gen-
eralized quaternion groups, general linear groups, the groups A(n,?), and the
family of metacyclic groups Mis, = (a,b : a® = V" = 1,bab™ = a~') and
Usp = (m,y - 2® =3 = 1,27 lyz = y~!). We also have
2k

Therefore, Conjecture 1.1 also holds for the commuting graphs of projective spe-
cial linear groups PSL(2,2%). In the light of the above discussion and [10, The-
orems 3.1 and 3.2], it follows that Conjecture 1.1 holds for ' if I'g is planar or
toroidal.

It is also observed that Laplacian energy and signless Laplacian energy of the
commuting graph of a finite nonabelian group are not comparable in general.
For example, in Figures 1 and 2, LE(T'p,,) > LET(T'p,,,); however in Figure
4, LE(Tgp,.) < LET(Tgp,.). Also, in Figure 3, LE(T'g,,,) > LET(Tg,, ) for
3 <m < 8 whereas LE(I'g,, ) < LET(Tg,,.) for m > 9. In most of the cases

E(Tg) < min{LE(Tg), LE"(T'g)}.
However, in Figure 8, E(T' 4(n9)) = LE(am,9)) = LET (I a(n,9)). We conclude

this paper with the following natural questions.

Question 3.1. Is Conjecture 1.1 true for commuting graphs of finite nonabelian
groups?

Question 3.2. Can we determine all finite nonabelian groups G such that
(a) LE(T'g) < LET(T¢)
(b) E(Tg) = LE(T'¢) = LET(T'¢)?
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