

Khayyam Journal of Mathematics

 emis.de/journals/KJM kjm-math.org
SOME PROPERTIES OF PRIME AND Z-SEMI-IDEALS IN POSETS

KASI PORSELVI ${ }^{1}$ AND BALASUBRAMANIAN ELAVARASAN ${ }^{1 *}$
Communicated by B. Kuzma

Abstract

We define the notion of z-semi-ideals in a poset P and we show that if a z-semi-ideal J satisfies $(*)$-property, then every minimal prime semiideal containing J is also a z-semi-ideal of P. We also show that every prime semi-ideal is a z-semi-ideal or the maximal z-semi-ideals contained in it are prime z-semi-ideals. Further, we characterize some properties of union of prime semi-ideals of P provided the prime semi-ideals are contained in the unique maximal semi-ideal of P.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with smallest element 0. For the basic terminology and notation for posets, we refer the reader to [8, 12]. For $M \subseteq P$, let $L(M):=\{x \in P: x \leq m$ for all $m \in M\}$ denote the lower cone of M in P, and dually let $U(M):=\{x \in P: m \leq x$ for all $m \in M\}$ be the upper cone of M in P. Let $A, B \subseteq P$; then we write $L(A, B)$ instead of $L(A \cup B)$ and dually for the upper cones. If $M=\left\{x_{1}, \ldots, x_{n}\right\}$ is finite, then we use the notation $L\left(x_{1}, \ldots, x_{n}\right)$ instead of $L\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subseteq U(A)$. Moreover, $L U L(A)=L(A)$ and $U L U(A)=U(A)$.

Following [6], a nonempty subset I of P is called a semi-ideal if $b \in I$ and $a \leq b$ imply that $a \in I$. A non-empty subset I of P is said to be an ideal if $L U(a, b) \subseteq I$ for all $a, b \in I$. A proper semi-ideal (ideal) I of P is called a prime

[^0]semi-ideal (prime ideal) if for any $a, b \in P, L(a, b) \subseteq I$ implies $a \in I$ or $b \in I$; see [8]. An ideal I of a poset P is called semiprime if $L(a, b) \subseteq I$ and $L(a, c) \subseteq I$ together imply $L(a, U(b, c)) \subseteq I$. Let I be a semi-ideal of P and let $J \subseteq P$. Then the extension of I by $A \in P$ is meant the set $\langle A, I\rangle=\{x \in P: L(a, x) \subseteq$ I for all $a \in A\}$. Clearly $\langle A, I\rangle$ is a semi-ideal of P but not an ideal of P, in general. If $A=\{x\}$, then $\langle x, I\rangle=\{a \in P: L(a, x) \subseteq I\}$; see [4]. For $a \in P$, the subset $L(a)=\{x \in P: x \leq a\}$ is the ideal generated by a. For any subset A of P, we denote $A^{*}=A \backslash\{0\}$.

In 1973, Mason [9] defined the notion of z-ideal for an arbitrary commutative ring R as follows: An ideal I of R is called a z-ideal if $M_{a}=M_{b}$ and $b \in I$ imply $a \in I$, where M_{a} is the intersection of all maximal ideals of R containing a. Equivalently, since $M_{b} \subseteq M_{a}$ if and only if $M_{a}=M_{a b}, I$ is a z-ideal if and only if $M_{b} \subseteq M_{a}$ and $b \in I$ which imply $a \in I$. Later in 2013, Aliabad, Azarpanah, and Taherifar [1] have shown that for any ideal I of R, I is a z-ideal if and only if $M_{a} \subseteq I$ for any $a \in I$.

Following [1], a semi-ideal I of P is called a z-semi-ideal if $M_{a} \subseteq I$ for any $a \in I$, where M_{a} is the intersection of all maximal semi-ideals of P containing a. It is easy to see that I is a z-semi-ideal if and only if whenever $b \in P, a \in I$, and $M_{b} \subseteq M_{a}$, then $b \in I$. A z-semi-ideal that is prime is called prime z-semi-ideal. It is clear that an arbitrary union of z-semi-ideals and an arbitrary intersection of z-semi-ideals of P are z-semi-ideals of P.

The following example shows that prime semi-ideals and z-semi-ideals are independent concepts.

Example 1.1. Consider the set $P=\{0, a, b, c, d, e, f\}$ and define a relation \leq on P as follows:

Figure 1

Then (P, \leq) is a poset. Here $R=\{0, a, b, c, d, e\}$ and $S=\{0, a, c, d, e, f\}$ are the maximal semi-ideals of P. The semi-ideal $I=\{0, a, c, d, e\}$ is a z-semi-ideal of P but not a prime semi-ideal as $L(b, f) \subseteq I$ with $b, f \notin I$. Also, $J=\{0, b, c\}$ is a prime semi-ideal of P but not a z-semi-ideal as $M_{b} \nsubseteq I$.

A semi-ideal J of P is said to have $(*)$-property if for any $a, b \in P \backslash J$, we have either $a=b$ or $L(a, b)=\{0\}$. Following [2], a non-empty subset M of P is called
an m-system if for any $x_{1}, x_{2} \in M$ there exists $t \in L\left(x, x_{2}\right)$ such that $t \in M$. It is trivial that for any $x \in P, U(x)$ is an m -system of P. Also for any semi-ideal I of P, we have I is a prime semi-ideal of P if and only if $P \backslash I$ is an m-system of P.

2. Main Results

In this section, we study some important properties of z-semi-ideals and prime semi-ideals of P. Some elementwise characterizations of smallest z-semi-ideals and largest z-semi-ideals of P are given. Further, we discuss some important properties of union of z -semi-ideals of P.

The following theorems and lemma are very useful to prove our main results.
Theorem 2.1. ([2, Theorem 2.6]). Let M be a non-void m-system in P and let J be a semi-ideal of P with $J \cap M=\phi$. Then J is contained in a prime semi-ideal I of P with $I \cap M=\phi$.
Theorem 2.2. ([2, Theorem 2.7]). Let I and J be semi-ideals of P, and let I be prime with $J \subseteq I$. If J has $(*)$-property, then the following conditions are equivalent:
(a) I is a minimal prime semi-ideal of J.
(b) For each $x \in I$, there exist $y \in P \backslash I$ and $t \in U(x)$ such that $L(t, y) \subseteq J$.

Lemma 2.3. ([2, Lemma 2.9]). For any semi-ideal I of P, we have $P(I)=I$.
Theorem 2.4. Let P be a poset. Then we have the followings:
(a) For any $a, b \in P$, we have $M_{t}=M_{a} \cap M_{b}$ for any $t \in L(a, b)$.
(b) For any $a, b, c \in P$, we have $b \in M_{a}$ if and only if $M_{b} \subseteq M_{a}$ if and only if $M_{t_{1}} \subseteq M_{t_{2}}$ for any $t_{1} \in L(b, c)$ and $t_{2} \in L(a, c)$.
Proof. (a) Let $a, b \in P$. Consider $X=\{M \in \operatorname{Max}(P): L(a, b) \subseteq M\}, Y=$ $\{M \in \operatorname{Max}(P): a \in M\}$, and $Z=\{M \in \operatorname{Max}(P): b \in M\}$. Then $Y \subseteq X$ and $Z \subseteq X$, which imply $M_{t} \subseteq M_{a}$ and $M_{t} \subseteq M_{b}$, so $M_{t} \subseteq M_{a} \cap M_{b}$ for any $t \in L(a, b)$. It is trivial that $M_{a} \cap M_{b} \subseteq M_{t}$. So $M_{t}=M_{a} \cap M_{b}$ for any $t \in L(a, b)$.
(b) Let $a, b, c \in P$. Consider $X=\{M \in \operatorname{Max}(P): a \in M\}, X_{1}=\{M \in$ $\operatorname{Max}(P): L(a, c) \subseteq M\}, Y=\{M \in \operatorname{Max}(P): b \in M\}$, and $Y_{1}=\{M \in$ $\operatorname{Max}(P): L(b, c) \subseteq M\}$. If $b \in M_{a}$, then $X \subseteq Y$, which implies $M_{b} \subseteq M_{a}$.

If $M_{b} \subseteq M_{a}$, then $b \in M_{a}$ as $b \in M_{b}$.
If $M_{b} \subseteq M_{a}$, then $M_{b} \cap M_{c} \subseteq M_{a} \cap M_{c}$. By part (a), we have $M_{t_{1}} \subseteq M_{t_{2}}$ for any $t_{1} \in L(b, c)$ and $t_{2} \in L(a, c)$.

Theorem 2.5. Let P be a poset and J be a semi-ideal of P. If J is a z-semi-ideal of P and has $(*)$-property, then every minimal prime semi-ideal containing J is also a z-semi-ideal of P.

Proof. Let J be a z-semi-ideal of P and has $(*)$-property. Let $I \in \operatorname{Min}(J)$. If I is not a z-semi-ideal of P, then there exist $b \notin I$ and $a \in I$ such that $M_{b} \subseteq M_{a}$.

Let $S=(P \backslash I) \cup\left\{a_{i j}: a_{i j} \in L\left(y_{i}, t_{j}\right) \backslash J\right.$ for $y_{i} \in P \backslash J$ and let $\left.t_{j} \in U(a)\right\}$. Then by Theorem 2.2, S is an m-system with $S \cap J=\phi$. By Theorem 2.1, there exists $I^{\prime} \in \operatorname{Spec}(P)$ such that $J \subseteq I^{\prime}$ and $I^{\prime} \cap S=\phi$. Let $x \in I^{\prime}$. If $x \notin I$, then $x \in S$ and so $s \in I^{\prime} \cap S$, a contradiction. So $I^{\prime} \subseteq I$. If $a \in J$, then $b \in J$, a
contradiction. So $a \notin J$. Since $y_{i}=a$, we have $a \in S$, which implies $a \notin I^{\prime}$ and so $I^{\prime} \subset I$, a contradiction to the minimality of I. Thus I is a z-semi-ideal of P.

Let I be a semi-ideal of P. The set of all zero-divisors with respect to I, denoted by $Z_{I}(P)$, is defined as $Z_{I}(P)=\{x \in P \mid L(x, y) \subseteq I$ for some $y \notin I\}$.

Proposition 2.6. Let P be a poset and let I be a semi-ideal of P. If I is a z-semi-ideal of P, then $I \subseteq Z_{I}(P)$.

Proof. Let I be a z-semi-ideal of P. Assume that $I \nsubseteq Z_{I}(P)$. Then there exists $a \in I \backslash Z_{I}(P)$ such that $M_{a} \subseteq I$ and $L(a, x) \nsubseteq I$ for all $x \in P \backslash I$. Then for $t \in$ $L(a, x) \backslash I$, by Theorem 2.4, we have $M_{t}=M_{a} \cap M_{x} \subseteq M_{a} \subseteq I$, a contradiction.

Every semi-ideal I of P is contained in at least a z-semi-ideal of P, namely I_{z}, which is defined as $I_{z}=\cap\{I \subseteq J \mid J$ is z-semi-ideal $\}$. It is clear that $I \subseteq I_{z}$. For semi-ideals I and J, if $I \subseteq J$, then $I_{z} \subseteq J_{z}$. If I is not a z-semi-ideal and contains a prime semi-ideal, then from Theorem 2.10, we have I_{z} is a prime z-semi-ideal of P.

Now we give an elementwise characterization of I_{z}.
Proposition 2.7. For a semi-ideal I of P, we have

$$
I_{z}=\left\{a \in P \mid \text { there exists } b \in I \text { with } M_{a} \subseteq M_{b}\right\}
$$

Proof. Let $a, b \in P$ with $a \leq b$ and $b \in I_{z}$. Then there exists $y \in I$ such that $M_{b} \subseteq M_{y}$. Since $M_{a} \subseteq M_{b}$, we have $M_{a} \subseteq M_{y}$ and so $a \in I_{z}$, and hence I_{z} is a semi-ideal of P. Also, $I \subseteq I_{z}$.

We now claim that I_{z} is the smallest z-semi-ideal containing I. Let $a \in I_{z}$ with $M_{b} \subseteq M_{a}$. Then there exists $y \in I$ such that $M_{a} \subseteq M_{y}$, which implies $M_{b} \subseteq M_{y}$ and so $b \in I_{z}$. Hence I_{z} is a z-semi-ideal of P.

Let J be a z-semi-ideal of P with $I \subset J \subset I_{z}$. Let $b \in I_{z}$ and $b \notin J$. Then there exists $y \in I$ such that $M_{b} \subseteq M_{y}$, which implies $b \in J$, a contradiction. So I_{z} is the smallest z-semi-ideal containing I.

Lemma 2.8. Let P be a poset. Then
(a) if $I=L(a)$ for $a \in P$, then $(I)_{z}=M_{a}$;
(b) if I and J are two semi-ideals of P, then $\left(\bigcup_{i \in I, j \in J} L(i, j)\right)_{z}=(I \cap J)_{z}=$ $I_{z} \cap J_{z}$.

Proof. (a) It is trivial that M_{a} is a z-semi-ideal for any $a \in P$.
(b) Let I and J be two semi-ideals of P. Then $\left(\bigcup_{i \in I, j \in J} L(i, j)\right)_{z} \subseteq(I \cap J)_{z} \subseteq$ $I_{z} \cap J_{z}$. We now prove that $I_{z} \cap J_{z} \subseteq\left(\bigcup_{i \in I, j \in J} L(i, j)\right)_{z}$. Let K be a z-semi-ideal of P with $\bigcup_{i \in I, j \in J} L(i, j) \subseteq K$. For each $P_{1} \in \operatorname{Min}(K)$, by Theorem 2.5, we have P_{1} is a z-semi-ideal of P. Also by Lemma 2.3, we have $P_{1}=\bigcap_{P^{\prime} \in \operatorname{Min}(K)} P^{\prime}$. Since
$\bigcup_{i \in I, j \in J} L(i, j) \subseteq K$, we have $\bigcup_{i \in I, j \in J} L(i, j) \subseteq P^{\prime}$ for every $P^{\prime} \in \operatorname{Min}(K)$, which
implies either $I \subseteq P^{\prime}$ or $J \subseteq P^{\prime}$, so $I_{z} \subseteq P^{\prime}$ or $J_{z} \subseteq P^{\prime}$. Thus $I_{z} \cap J_{z} \subseteq P^{\prime}$ and hence $I_{z} \cap J_{z} \subseteq K$. So $I_{z} \cap J_{z}$ is the smallest z-semi-ideal containing $\bigcup_{i \in I, j \in J} L(i, j)$.
Therefore $\left(\bigcup_{i \in I, j \in J} L(i, j)\right)_{z}=(I \cap J)_{z}=I_{z} \cap J_{z}$.
Theorem 2.9. Let J be a semi-ideal of P. If J is prime, then either J is a z-semi-ideal or the maximal z-semi-ideals contained in J are prime z-semi-ideals.

Proof. Let $S=\{K \mid K$ be a z-semi-ideal, let $K \subseteq J$ and let $K \cap(P \backslash J)=\{\phi\}\}$. Clearly $S \neq\{\phi\}$, since $0 \in S$. By Zorn's lemma, S has maximal elements. Let I be the maximal element of S. By Theorem 2.1, there exists a prime semi-ideal P_{1} of P such that $I \subseteq P_{1}$ and $P_{1} \cap(P \backslash J)=\{\phi\}$. So $I \subseteq P_{1} \subseteq J$. By Theorem 2.5, P_{1} is a z-semi-ideal and so $P_{1} \neq J$. Thus either $I=P_{1}$ or $I \subset P_{1}$. Here $I \subset P_{1}$ gives a contradiction to maximality of I. So $I=P_{1}$ is prime.

Following [5, 6], a semi-ideal I of P is said to be strongly irreducible if for semi-ideals A and $B, A \cap B \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$. It is easy to observe that every prime semi-ideal is strongly irreducible.

Theorem 2.10. Let I be a z-semi-ideal of P. Then I is prime if and only if I is strongly irreducible and contains a prime semi-ideal of P.

Proof. Assume that I is strongly irreducible and contains a prime semi-ideal P_{1} of P. Suppose that $L(a, b) \subseteq I$ for $a, b \in P$. If $L(a, b) \subseteq P_{1}$, then either $a \in P_{1}$ or $b \in P_{1}$, which implies $a \in I$ or $b \in I$. If $L(a, b) \nsubseteq P_{1}$, then there exists $t \in L(a, b)$ such that $t \in I \backslash P_{1}$. By Theorem 2.4, $M_{t}=M_{a} \cap M_{b}$. Since I is a z-semi-ideal, we have $M_{a} \cap M_{b}=M_{t} \subseteq I$, which implies $a \in M_{a} \subseteq I$ or $b \in M_{b} \subseteq I$.

The following example shows that we cannot drop the condition I is strongly irreducible in Theorem 2.10.

Example 2.11. Consider $P=\{1,2,3,4,5,6\}$. Then P is a poset under the relation division and $I=\{1,2,3,5\}, A=\{1,2,3,4,5\}$, and $B=\{1,2,3,5,6\}$ are semi-ideals of P. Clearly $A \cap B \subseteq I$, but $A \nsubseteq I$ and $B \nsubseteq I$. Also $J=\{1,3,5\}$ is a prime semi-ideal of P with $J \subseteq I$ and I is a z-semi-ideal of P, but I is not a prime semi-ideal of P.

Theorem 2.12. Let I and J be two semi-ideals of P. Then we have the followings:
(a) If J is a strongly irreducible semi-ideal and $I \cap J$ is a z-semi-ideal of P, then either I is a z-semi-ideal or J is a z-semi-ideal of P.
(b) If I and J are strongly irreducible semi-ideals of P and $I \cap J$ is a z -semi-ideal of P, then either I is a z-semi-ideal or J is a z-semi-ideal of P.
(c) If I and J are strongly irreducible semi-ideals of P which are not in a chain and $I \cap J$ is a z-semi-ideal of P, then both I and J are z-semi-ideals of P.

Proof. (a) Suppose that $I \cap J$ is a z-semi-ideal of P, where I is a semi-ideal and J is a strongly irreducible semi-ideal of P. If $I \subseteq J$ or $J \subseteq I$, then either I or J is a z-semi-ideal of P. Suppose that $I \nsubseteq J$ and $J \nsubseteq I$. Then there exist $a \in I \backslash J$ and $b \in J \backslash I$. Clearly $L(a, b) \subseteq I \cap J$. If $t \in L(a, b)$, then by Theorem 2.4, $M_{t}=M_{a} \cap M_{b}$. Since $I \cap J$ is a z-semi-ideal, we have $M_{a} \cap M_{b} \subseteq I \cap J$, which implies $M_{a} \cap M_{b} \subseteq J$. Since J is a strongly irreducible semi-ideal and $a \notin J$, we have $M_{b} \subseteq J$ and so J is a z-semi-ideal of P.
(b) It follows from (a).
(c) Let I and J be strongly irreducible semi-ideals of P with $I \nsubseteq J$ and $J \nsubseteq I$, and let $I \cap J$ is a z-semi-ideal of P. If $I \nsubseteq J$, then by part (a), J is a z-semi-ideal of P. Also, if $J \nsubseteq I$, then by part (a), I is a z-semi-ideal of P.

Corollary 2.13. Let I and J be semi-ideals of P. Then we have the followings:
(a) If J is a prime semi-ideal and $I \cap J$ is a z-semi-ideal of P, then either I is a z-semi-ideal or J is a z-semi-ideal of P.
(b) If I and J are prime semi-ideals of P and $I \cap J$ is a z-semi-ideal of P, then either I is a z-semi-ideal or J is a z-semi-ideal of P.
(c) If I and J are prime semi-ideals of P that are not in a chain and $I \cap J$ is a z-semi-ideal of P, then both I and J are z-semi-ideals of P.

Following [3], for each subset A of P, we define $V(A)=\left\{P^{\prime} \in \operatorname{Spec}(P): A \subseteq\right.$ $\left.P^{\prime}\right\}$ to be the closed subset of P. If $A=\{a\}$, then we define $V(a)=\left\{P^{\prime} \in\right.$ $\left.\operatorname{Spec}(P): a \in P^{\prime}\right\}$ and $D(a)=\operatorname{Spec}(P) \backslash V(a)$. It is clear that $V(A)=\bigcap_{a \in A} V(a)$.

In general, the set of all prime semi-ideals of P does not necessarily form a chain. Indeed, consider the prime semi-ideals $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$ of P as shown in Figure 2. Here both P_{1} and P_{2} does not form a chain. But the following theorem shows that prime semi-ideals of poset containing a given prime semi-ideal forms a chain.

Theorem 2.14. Let I be a semi-ideal of P. If the intersection of two prime semi-ideals of P is again a prime semi-ideal of P, then all the elements of $V(I)$ form a chain.

Proof. Let $V(I)=\left\{P_{i} \in \operatorname{Spec}(P): I \subseteq P_{i}\right\}$. Suppose that $P_{i} \nsubseteq P_{j}$ and $P_{j} \nsubseteq P_{i}$ for some $i \neq j$. Then there exist $a \in P_{i} \backslash P_{j}$ and $b \in P_{j} \backslash P_{i}$. Clearly $L(a, b) \subseteq$ $P_{i} \cap P_{j}=P_{k}$ for some $P_{k} \in V(I)$, which implies $a \in P_{k}$ or $b \in P_{k}$, which implies $a \in P_{j}$ or $b \in P_{i}$, a contradiction. Thus either $P_{i} \subseteq P_{j}$ or $P_{j} \subseteq P_{i}$ for all $i \neq j$.

The following example shows that we cannot drop the condition intersection of two prime semi-ideals is a prime semi-ideal of P in Theorem 2.14.

Consider the set $P=\{1,2,3,4,6,18\}$. Then P is a poset under the relation division. Here $I=\{1,3\}, P_{1}=\{1,2,3,4\}, P_{2}=\{1,2,3,4,6\}$, and $P_{3}=\{1,2,3,6,18\}$ are prime semi-ideals containing I. But P_{1}, P_{2} and P_{3} does not form a chain and $P_{2} \cap P_{3}=\{1,2,3,6\}$ is not a prime semi-ideal of P.

Every z-semi-ideal I of P contains a greatest z-semi-ideal of P, namely I^{z}, which is defined as the union of all z-semi-ideals of P contained in I. For semi-ideals I and J, if $I \subseteq J$, then $I^{z} \subseteq J^{z}$.

Lemma 2.15. For semi-ideals I_{i} of P, we have $\bigcap_{i} I_{i}^{z}=\left(\bigcap_{i} I_{i}\right)^{z}$.
Proof. Let I be a semi-ideal of P. Since I^{z} is a z-semi-ideal contained in $I, \bigcap I_{i}^{z}$ is a z-semi-ideal contained in $\bigcap_{i} I_{i}$. If J is a z-semi-ideal of P contained in $\bigcap_{i}^{i} I_{i}$, then $J \subset I_{i}$ for all i. So $J \subset I_{i}^{z}$ for all i which implies $J \subset \bigcap_{i} I_{i}^{z}$. Thus $\bigcap_{i}^{i} I_{i}^{z}$ is the greatest z-semi-ideal contained in $\bigcap_{i} I_{i}$ and hence $\bigcap_{i} I_{i}^{z}=\left(\bigcap_{i} I_{i}\right)^{z}$.

Now we can give an elementwise characterization of I^{z} corresponding to that for I_{z}.
Proposition 2.16. For any semi-ideal I of P, we have

$$
I^{z}=\left\{a \in I_{z} \mid M_{y} \subseteq M_{a} \text { implies } y \in I\right\} .
$$

Proof. Let $S=\left\{a \in I_{z} \mid M_{y} \subseteq M_{a}\right.$ implies $\left.y \in I\right\}$. Clearly $S \neq\{\phi\}$. Let $a, b \in P$ with $a \leq b$ and $b \in S$. Then $b \in I_{z}$. Thus there exists $y \in I$ such that $M_{b} \subseteq M_{y}$. Since $M_{a} \subseteq M_{b}$, we have $a \in I_{z}$. Also, if $M_{y} \subseteq M_{a}$, then $M_{y} \subseteq M_{b}$ and so $y \in I$ and thus $a \in S$. Also, $S \subseteq I$.

Now we claim that S is a maximal z-semi-ideal contained in I.
If $a \in S$ and $M_{b} \subseteq M_{a}$, then $a \in I_{z}$. So there exists $y \in I$ such that $M_{a} \subseteq M_{y}$. Since $M_{b} \subseteq M_{y}$, we have $b \in I_{z}$. Also, if $M_{x} \subseteq M_{b}$, then $M_{x} \subseteq M_{a}$ and so $x \in I$ and hence $b \in S$.

Suppose that there exists a z-semi-ideal J such that $S \subset J \subset I$. If $x \in J$ and $x \notin S$, then $x \in I_{z}$. If $M_{y} \subseteq M_{x}$, then $y \in J$, which implies $y \in I$ and so $x \in S$, a contradiction. Hence S is the greatest z-semi-ideal contained in I.

Proposition 2.17. Let P be a poset and let I and J be semi-ideals of P. Then the following properties hold:
(a) If I is a z-semi-ideal of P, so is $\langle J, I\rangle$ for any J.
(b) If I is a z-semi-ideal of P, so is $\langle L(a), I\rangle$ for any $a \in P$.

Proof. (a) Let I be a z-semi-ideal of P and let $b \in\langle J, I\rangle$. Then $L(b, j) \subseteq I$ for all $j \in J$. Suppose that $M_{b} \nsubseteq\langle J, I\rangle$ for some $b \in\langle J, I\rangle$. Then there exists $a \in M_{b}$ such that $a \notin\langle J, I\rangle$, which implies $M_{a} \subseteq M_{b}$ and $L(a, j) \nsubseteq I$ for some $j \in J$. Therefore there exists $t \in L(a, j)$ such that $t \notin I$. By Theorem 2.4, $M_{t} \subseteq M_{s}$ for $s \in L(b, j)$, which implies $M_{t} \subseteq I$, a contradiction. So $\langle J, I\rangle$ is a z-semi-ideal of P.
(b) It follows from (a) that $\langle a, I\rangle=\langle L(a), I\rangle$ for all $a \in P$.

Following [7], a semi-ideal I is said to be a u-semi-ideal if, for $x, y \in I, U(x, y) \cap$ $I \neq\{\phi\}$. It is clear that an arbitrary union of u-semi-ideals and an arbitrary intersection of u-semi-ideals need not to be an u-semi-ideal of P. Indeed, consider the poset depicted in Figure 2. Here $I=\{1,2,3,12\}$ and $J=\{1,2,3,18\}$ are u-semi-ideals of P, but $I \cup J=\{1,2,3,12,18\}$ and $I \cap J=\{1,2,3\}$ are not u-semi-ideals of P.

Figure 2
In general, the union of two prime semi-ideals need not be a prime semi-ideal of P. Indeed, consider the prime semi-ideals $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$ of P as shown in Figure 2. Here $P_{1} \cup P_{2}=\{1,2,3\}$ is not prime as $L(12,18) \subseteq P_{1} \cup P_{2}$, but $12,18 \notin P_{1} \cup P_{2}$.

In [11], Rudd showed that the sum of two prime ideals in $C(X)$ is prime. Now to prove union of prime u -semi-ideals is a prime semi-ideal of P, we assume that union of two u-semi-ideals is an u-semi-ideal and, distinct prime semi-ideals P_{1} and P_{2} are contained in the same maximal semi-ideal of P.

The following two theorems are useful to prove Theorems 2.20 and 2.22.
Theorem 2.18. Let P_{1} and P_{2} be two u-semi-ideals of P. If P_{1} and P_{2} are prime and $P_{1} \cup P_{2}$ is a u-semi-ideal of P, then $P_{1} \cup P_{2}$ is a prime u-semi-ideal of P.

Proof. Let P_{1} and P_{2} be two prime u-semi-ideals of P, and $P_{1} \cup P_{2}$ be a u-semiideal of P. Let $L(a, b) \subseteq P_{1} \cup P_{2}$ for any $a, b \in P$. If $L(a, b) \subseteq P_{1}$ or $L(a, b) \subseteq P_{2}$, then $a \in P_{1} \cup P_{2}$ or $b \in P_{1} \cup P_{2}$. If $L(a, b) \nsubseteq P_{1}$ and $L(a, b) \nsubseteq P_{2}$, then there exist $s, t \in L(a, b)$ such that $s \notin P_{1}$ and $t \notin P_{2}$, which imply $s \in P_{2}$ and $t \in P_{1}$. Since $P_{1} \cup P_{2}$ is a u-semi-ideal, we have $U(s, t) \cap\left(P_{1} \cup P_{2}\right) \neq\{\phi\}$. Let $r \in U(s, t) \cap\left(P_{1} \cup P_{2}\right)$. If $r \in P_{1}$, then $s \in P_{1}$, a contradiction. If $r \in P_{2}$, then $t \in P_{2}$, a contradiction. So $P_{1} \cup P_{2}$ is a prime u-semi-ideal of P.

Note that the condition $P_{1} \cup P_{2}$ is a u-semi-ideal in Theorem 2.18 is not superficial. Indeed, consider the poset depicted in Figure 2. Here $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$ are prime u-semi-ideals of P. But $P_{1} \cup P_{2}=\{1,2,3\}$ is not a u-semi-ideal as $U(2,3) \cap\left(P_{1} \cup P_{2}\right)=\{\phi\}$, and also $P_{1} \cup P_{2}$ is not prime as $L(12,18) \subseteq P_{1} \cup P_{2}$ with $12,18 \notin P_{1} \cup P_{2}$.

Now we show that union of semiprime u-semi-ideal and prime u-semi-ideal is semiprime u-semi-ideal of poset.

Theorem 2.19. Let P_{1} and P_{2} be two semi-ideals and $P_{1} \cup P_{2}$ be a u-semi-ideal of P. If P_{1} is a semiprime u-semi-ideal and P_{2} is a prime u-semi-ideal, then $P_{1} \cup P_{2}$ is a semiprime u-semi-ideal of P.

Proof. Let $I=P_{1} \cup P_{2}$ where P_{1} is a semiprime u-semi-ideal and P_{2} is prime u-semi-ideal of P. By the assumption, I is a u-semi-ideal of P. Suppose that $L(a, b) \subseteq I$ and $L(a, c) \subseteq I$. Now we claim that $L(a, U(b, c)) \subseteq I$. Suppose
$L(a, b) \nsubseteq P_{1}$ or $L(a, c) \nsubseteq P_{2}$. Then there exist $s \in L(a, b)$ and $t \in L(a, c)$ such that $s \notin P_{1}$ and $t \notin P_{2}$, which imply $s \in P_{2}$ and $t \in P_{1}$. Since $P_{1} \cup P_{2}$ is a u-semi-ideal, we have $U(s, t) \cap\left(P_{1} \cup P_{2}\right) \neq\{\phi\}$. Let $r \in U(s, t) \cap\left(P_{1} \cup P_{2}\right)$. If $r \in P_{1}$, then $s \in P_{1}$, a contradiction. If $r \in P_{2}$, then $t \in P_{2}$, a contradiction. Thus $L(a, b) \subseteq P_{1}$ and $L(a, c) \subseteq P_{2}$.

Since P_{2} is prime, either $a \in P_{2}$ or $c \in P_{2}$. If $a \in P_{2}$ or $a \in P_{1}$, then $L(a, U(b, c)) \subseteq I$. Suppose $a \notin P_{2}$ and $c \in P_{2}$. Let $r \in L(a, b)$. Since $P_{1} \cup P_{2}$ is a u-semi-ideal, $U(r, c) \cap\left(P_{1} \cup P_{2}\right) \neq\{\phi\}$. Let $q \in U(r, c) \cap\left(P_{1} \cup P_{2}\right)$. If $q \in P_{1}$, then $c \in P_{1}$. So $L(a, c) \subseteq P_{1}$. Since P_{1} is semiprime, we have $L(a, U(b, c)) \subseteq P_{1}$, which implies $L(a, U(b, c)) \subseteq I$. If $q \in P_{2}$, then $r \in P_{2}$. So $L(a, b) \subseteq P_{2}$. Since P_{2} is prime, we have $b \in P_{2}$. So $L(a, U(b, c)) \subseteq P_{2}$, which implies $L(a, U(b, c)) \subseteq I$.

Although the proof of the following two theorems and proposition are just similar to that of Theorem 3.2, Proposition 3.6, and Theorem 3.7 in [10] for a commutative ring R, for the sake of completeness, we present the proof of the same for poset P.

Theorem 2.20. If the union of minimal prime u-semi-ideals of P is a z-semiideal and the intersection of two prime semi-ideals of P is again a prime semiideal of P, then the union of every two prime u-semi-ideals that are not in a chain is a prime z-semi-ideal of P. In fact, if $\left\{P_{i}\right\}_{i \in A}$ is a family of prime u-semi-ideals not all in a chain, then $\bigcup_{i \in A} P_{i}$ is a prime z-semi-ideal of P.
Proof. Let P_{1} and P_{2} be prime u-semi-ideals of P. Let I and J be two distinct minimal prime u-semi-ideals contained in P_{1} and P_{2}, respectively. By the hypothesis, $I \cup J$ is a z-semi-ideal and is prime by Theorem 2.18. Also $I \cup J \subseteq P_{1} \cup P_{2}$. On the other hand, $I \cup J$ is a prime ideal containing I and J. By Theorem 2.14, $P_{1} \subseteq I \cup J$ or $I \cup J \subseteq P_{1}$ and, $P_{2} \subseteq I \cup J$ or $I \cup J \subseteq P_{2}$.

If $P_{1} \subseteq I \cup J$ and $I \cup J \subseteq P_{2}$, then $P_{1} \subseteq I \cup J \subseteq P_{2}$, a contradiction. If $I \cup J \subseteq P_{1}$ and $P_{2} \subseteq I \cup J$, then $P_{2} \subseteq I \cup J \subseteq P_{1}$, a contradiction. If $P_{1} \subseteq I \cup J$ and $P_{2} \subseteq I \cup J$, then $P_{1} \cup P_{2} \subseteq I \cup J$ and so $P_{1} \cup P_{2}=I \cup J$ is a prime z-semi-ideal of P.

If I_{i} is a minimal prime u-semi-ideal contained in P_{i}, then $\cup I_{i} \subseteq \cup P_{i}$. Conversely, if $x \in \cup P_{i}$, then there is a finite subfamily $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ of $\left\{P_{i}\right\}$ such that $x \in \bigcup_{i=1}^{n} P_{i}$. Without loss of generality, assume that no two $P_{i}^{\prime} s$ are in a chain and $n>1$. Then I_{1} is a minimal prime u-semi-ideal contained in the prime u-semi-ideal $\bigcup_{i=1}^{n-1} P_{i}$. So $\bigcup_{i=1}^{n} P_{i}=I_{1} \cup I_{n}$. Thus $x \in I_{1} \cup I_{n} \subset \bigcup I_{i}$ and so $\bigcup_{i=1}^{n} P_{i}=\bigcup_{i=1}^{n} I_{i}$, a prime z-semi-ideal of P.
Proposition 2.21. Let Q and R be semi-ideals of P. If $Q \subset R$ are prime semiideals which are not z-semi-ideals and Q_{z}, R_{z} are strongly irreducible, then we have the followings:
(a) Either (i) $Q \subset Q_{z} \subset R^{z} \subset R$ or (ii) $R^{z} \subset Q \subset R \subset Q_{z}$.
(b) In case (i), $Q^{z}=R^{z}=I$ if and only if I is the unique z-semi-ideal between Q and R.
(c) In case (ii), if J is any prime semi-ideal with $R^{z} \subset J \subset Q_{z}$, then $R^{z}=$ $J^{z}=Q^{z}$ and $R_{z}=J_{z}=Q_{z}$.

Proof. (a) Let Q and R be prime semi-ideals that are not z-semi-ideals and $Q \subset R$. Then R_{z} is a prime z-semi-ideal. Similarly, R^{z} is a prime z-semi-ideal by Theorem 2.10, since $R^{z} \supset Q^{z}$ and Q^{z} is prime. Since R^{z}, Q and Q_{z} are primes containing Q^{z}, they are in a chain and the possible cases are as follows:

Case (i): $Q^{z} \subset Q \subset Q_{z} \subseteq R^{z} \subset R$ (or) $Q^{z} \subset Q \subset R^{z} \subseteq Q_{z}$; but this violates the minimality of Q_{z} unless $Q_{z}=R^{z}$.

Case (ii): $Q^{z} \subseteq R^{z} \subset Q \subset Q_{z}$, which contradicts the maximality of Q^{z} unless $Q^{z}=R^{z}$. Also, R and Q_{z} are primes containing Q and so must be in a chain. If $Q_{z} \subset R$, then it contradicts maximality of R^{z}. So $R \subset Q_{z}$. Thus $Q \subset Q_{z} \subset R^{z} \subset R$ or $R^{z} \subset Q \subset R \subset Q_{z}$.
(b) If I is any z-semi-ideal between Q and R, then I lies between Q^{z} and R_{z}. The result follows.
(c) This follows from the maximality of R^{z} and the minimality of Q_{z}.

Let P be a poset. Then P is said to satisfy the descending chain condition if every non-empty subset of P has a minimal element.

Theorem 2.22. Let I and J be u-semi-ideals of P satisfying descending chain condition and the intersection of two prime semi-ideals of P is again a prime semi-ideal of P. If I and J are not in a chain and if the union of two minimal prime u-semi-ideals of P is a z-semi-ideal of P, then we have the followings:
(a) If I is a z-semi-ideal and J is prime, then $I \cup J$ is a prime z-semi-ideal of P.
(b) If I is semiprime and J is prime, then $I \cup J=I \cup(I \cup J)^{z}$. Moreover, if $I \cup J$ is not a z-semi-ideal of P, then $I \cup J$ is a minimal prime semi-ideal of P containing I and I does not contain any prime semi-ideal of P.

Proof. (a) If I is prime, then by Theorem $2.20, I \cup J$ is a prime z-semi-ideal. If I is not prime, then $I \subset(I \cup J)^{z}$, since I is a z-semi-ideal. Clearly $J \cup(I \cup J)^{z} \subseteq I \cup J$. So $I \cup J=J \cup(I \cup J)^{z}$ is a prime z-semi-ideal of P.
(b) Let I be a semiprime u-semi-ideal of P. Then $I=\bigcap_{i} P_{i}$, where P_{i} are
minimal prime u-semi-ideals containing I. Since $J \subseteq I \cup J$, we have either $J \subseteq$ $(I \cup J)^{z} \subset I \cup J$ or $(I \cup J)^{z} \subseteq J \subset I \cup J$, by Theorem 2.14

Case (i): If $J \subseteq(I \cup J)^{z} \subset I \cup J$, then $I \cup J=I \cup(I \cup J)^{z}$.
Case (ii): Suppose that I and $(I \cup J)^{z}$ are in a chain. If $I \subset(I \cup J)^{z}$, then $I \subset J$, which is a contradiction. If $(I \cup J)^{z} \subset I=\bigcap_{i} P_{i}$, then each P_{i} contain the prime semi-ideal $(I \cup J)^{z}$ and so form a chain, a contradiction.

If I and $(I \cup J)^{z}$ are not in a chain, then $I \cup(I \cup J)^{z}$ is a prime semi-ideal containing $(I \cup J)^{z}$ and so is in a chain with J. If $J \subset I \cup(I \cup J)^{z} \subset I \cup J$, then
$I \cup J=I \cup(I \cup J)^{z}$. If $I \cup(I \cup J)^{z} \subset J$, then $I \subset J$, a contradiction. If I contains a prime semi-ideal, then it is prime and we are done by Theorem 2.20.

Finally, suppose that $I \cup J$ is not a z-semi-ideal and there exists a prime semiideal K with $I \subset K \subset I \cup J$. Then $I \cup J=K \cup J$ is a z-semi-ideal, a contradiction. So $I \cup J$ is a minimal prime semi-ideal containing I.

Acknowledgement. The authors are grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

1. A.R. Aliabad, F. Azarpanah and A. Taherifar, Relative z-ideals in commutative rings, Comm. Algebra 41 (2013) 325-341.
2. J. Catherine and B. Elavarasan, Weakly n-prime ideal of posets, Int. J. Pure Appl. Math. 86 (2013), no. 6, 905-910.
3. B. Elavarasan and K. Porselvi, An ideal-based zero-divisor graph of posets, Commun. Korean Math. Soc. 28 (2013), no. 1, 79-85.
4. R. Halaš, On extensions of ideals in posets, Discrete Math. 308 (2008) 4972-4977.
5. W.J. Heinzera, L.J. Ratliff Jr. and D.E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra 166 (2002) 267-275.
6. G. Jiang and L. Xu, Maximal ideals relative to a filter on posets and some applications, Int. J. Contemp. Math. Sci. 3 (2008), no. 9, 401-410.
7. V. Joshi and N. Mundlik, On primary ideals in posets, Math. Slovaca 65 (2015), no. 6, 1237-1250.
8. V.S. Kharat and K.A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem. 134 (2009), no. 1, 19-30.
9. G. Mason, Z-ideals and prime ideals, J. Algebra 26 (1973) 280-297.
10. G. Mason, Prime z-ideals of $C(X)$ and related rings, Canad. Math. Bull. 23 (1980), no. 4, 437-443.
11. D. Rudd, On two sum theorems for ideals of $C(X)$, Michigan Math. J. 17 (1970) 139-141.
12. P.V. Venkatanarasimhan, Semi ideals in posets, Math. Ann. 185 (1970), no. 4, 338-348.
${ }^{1}$ Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, India.

E-mail address: porselvi94@yahoo.co.in; belavarasan@gmail.com

[^0]: Date: Received: 1 December 2018; Revised: 6 May 2019; Accepted: 24 September 2019.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 06B10; Secondary 06A06.
 Key words and phrases. Posets, semi-ideals, prime semi-ideals, minimal prime semi-ideals, m-system.

