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Abstract. We define the notion of z-semi-ideals in a poset P and we show
that if a z-semi-ideal J satisfies (∗)-property, then every minimal prime semi-
ideal containing J is also a z-semi-ideal of P. We also show that every prime
semi-ideal is a z-semi-ideal or the maximal z-semi-ideals contained in it are
prime z-semi-ideals. Further, we characterize some properties of union of prime
semi-ideals of P provided the prime semi-ideals are contained in the unique
maximal semi-ideal of P.

1. Preliminaries

Throughout this paper, (P,≤) denotes a poset with smallest element 0. For
the basic terminology and notation for posets, we refer the reader to [8, 12].
For M ⊆ P, let L(M) := {x ∈ P : x ≤ m for all m ∈ M} denote the lower
cone of M in P , and dually let U(M) := {x ∈ P : m ≤ x for all m ∈ M}
be the upper cone of M in P. Let A,B ⊆ P ; then we write L(A,B) instead of
L(A ∪ B) and dually for the upper cones. If M = {x1, . . . , xn} is finite, then
we use the notation L(x1, . . . , xn) instead of L({x1, . . . , xn}) (and dually). It is
clear that for any subset A of P, we have A ⊆ L(U(A)) and A ⊆ U(L(A)). If
A ⊆ B, then L(B) ⊆ L(A) and U(B) ⊆ U(A). Moreover, LUL(A) = L(A) and
ULU(A) = U(A).

Following [6], a nonempty subset I of P is called a semi-ideal if b ∈ I and
a ≤ b imply that a ∈ I. A non-empty subset I of P is said to be an ideal if
LU(a, b) ⊆ I for all a, b ∈ I. A proper semi-ideal (ideal) I of P is called a prime
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semi-ideal (prime ideal) if for any a, b ∈ P, L(a, b) ⊆ I implies a ∈ I or b ∈ I;
see [8]. An ideal I of a poset P is called semiprime if L(a, b) ⊆ I and L(a, c) ⊆ I
together imply L(a, U(b, c)) ⊆ I. Let I be a semi-ideal of P and let J ⊆ P. Then
the extension of I by A ∈ P is meant the set 〈A, I〉 = {x ∈ P : L(a, x) ⊆
I for all a ∈ A}. Clearly 〈A, I〉 is a semi-ideal of P but not an ideal of P , in
general. If A = {x}, then 〈x, I〉 = {a ∈ P : L(a, x) ⊆ I}; see [4]. For a ∈ P, the
subset L(a) = {x ∈ P : x ≤ a} is the ideal generated by a. For any subset A of
P, we denote A∗ = A\{0}.

In 1973, Mason [9] defined the notion of z-ideal for an arbitrary commutative
ring R as follows: An ideal I of R is called a z-ideal if Ma = Mb and b ∈ I
imply a ∈ I, where Ma is the intersection of all maximal ideals of R containing a.
Equivalently, since Mb ⊆ Ma if and only if Ma = Mab, I is a z-ideal if and only
if Mb ⊆ Ma and b ∈ I which imply a ∈ I. Later in 2013, Aliabad, Azarpanah,
and Taherifar [1] have shown that for any ideal I of R, I is a z-ideal if and only
if Ma ⊆ I for any a ∈ I.

Following [1], a semi-ideal I of P is called a z-semi-ideal if Ma ⊆ I for any
a ∈ I, where Ma is the intersection of all maximal semi-ideals of P containing a.
It is easy to see that I is a z-semi-ideal if and only if whenever b ∈ P, a ∈ I, and
Mb ⊆ Ma, then b ∈ I. A z-semi-ideal that is prime is called prime z-semi-ideal.
It is clear that an arbitrary union of z-semi-ideals and an arbitrary intersection
of z-semi-ideals of P are z-semi-ideals of P .

The following example shows that prime semi-ideals and z-semi-ideals are in-
dependent concepts.

Example 1.1. Consider the set P = {0, a, b, c, d, e, f} and define a relation ≤ on
P as follows:

Then (P,≤) is a poset. Here R = {0, a, b, c, d, e} and S = {0, a, c, d, e, f} are
the maximal semi-ideals of P. The semi-ideal I = {0, a, c, d, e} is a z-semi-ideal
of P but not a prime semi-ideal as L(b, f) ⊆ I with b, f /∈ I. Also, J = {0, b, c}
is a prime semi-ideal of P but not a z-semi-ideal as Mb * I.

A semi-ideal J of P is said to have (∗)-property if for any a, b ∈ P\J, we have
either a = b or L(a, b) = {0}. Following [2], a non-empty subset M of P is called
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an m-system if for any x1, x2 ∈M there exists t ∈ L(x,x2) such that t ∈M. It is
trivial that for any x ∈ P, U(x) is an m-system of P. Also for any semi-ideal I of
P, we have I is a prime semi-ideal of P if and only if P\I is an m-system of P.

2. Main results

In this section, we study some important properties of z-semi-ideals and prime
semi-ideals of P. Some elementwise characterizations of smallest z-semi-ideals
and largest z-semi-ideals of P are given. Further, we discuss some important
properties of union of z-semi-ideals of P.

The following theorems and lemma are very useful to prove our main results.

Theorem 2.1. ([2, Theorem 2.6]). Let M be a non-void m-system in P and let
J be a semi-ideal of P with J∩M = φ. Then J is contained in a prime semi-ideal
I of P with I ∩M = φ.

Theorem 2.2. ([2, Theorem 2.7]). Let I and J be semi-ideals of P , and let I
be prime with J ⊆ I. If J has (∗)-property, then the following conditions are
equivalent:

(a) I is a minimal prime semi-ideal of J.
(b) For each x ∈ I, there exist y ∈ P\I and t ∈ U(x) such that L(t, y) ⊆ J.

Lemma 2.3. ([2, Lemma 2.9]). For any semi-ideal I of P, we have P (I) = I.

Theorem 2.4. Let P be a poset. Then we have the followings:

(a) For any a, b ∈ P, we have Mt = Ma ∩Mb for any t ∈ L(a, b).
(b) For any a, b, c ∈ P, we have b ∈Ma if and only if Mb ⊆Ma if and only if

Mt1 ⊆Mt2 for any t1 ∈ L(b, c) and t2 ∈ L(a, c).

Proof. (a) Let a, b ∈ P. Consider X = {M ∈ Max(P ) : L(a, b) ⊆ M}, Y =
{M ∈ Max(P ) : a ∈ M}, and Z = {M ∈ Max(P ) : b ∈ M}. Then Y ⊆ X
and Z ⊆ X, which imply Mt ⊆ Ma and Mt ⊆ Mb, so Mt ⊆ Ma ∩Mb for any
t ∈ L(a, b). It is trivial that Ma∩Mb ⊆Mt. So Mt = Ma∩Mb for any t ∈ L(a, b).

(b) Let a, b, c ∈ P. Consider X = {M ∈ Max(P ) : a ∈ M}, X1 = {M ∈
Max(P ) : L(a, c) ⊆ M}, Y = {M ∈ Max(P ) : b ∈ M}, and Y1 = {M ∈
Max(P ) : L(b, c) ⊆M}. If b ∈Ma, then X ⊆ Y , which implies Mb ⊆Ma.

If Mb ⊆Ma, then b ∈Ma as b ∈Mb.
If Mb ⊆ Ma, then Mb ∩Mc ⊆ Ma ∩Mc. By part (a), we have Mt1 ⊆ Mt2 for

any t1 ∈ L(b, c) and t2 ∈ L(a, c). �

Theorem 2.5. Let P be a poset and J be a semi-ideal of P. If J is a z-semi-ideal
of P and has (∗)-property, then every minimal prime semi-ideal containing J is
also a z-semi-ideal of P.

Proof. Let J be a z-semi-ideal of P and has (∗)-property. Let I ∈ Min(J). If I
is not a z-semi-ideal of P, then there exist b /∈ I and a ∈ I such that Mb ⊆Ma.

Let S = (P\I) ∪ {aij : aij ∈ L(yi, tj)\J for yi ∈ P\J and let tj ∈ U(a)}.
Then by Theorem 2.2, S is an m-system with S ∩ J = φ. By Theorem 2.1, there
exists I ′ ∈ Spec(P ) such that J ⊆ I ′ and I ′ ∩ S = φ. Let x ∈ I ′. If x /∈ I, then
x ∈ S and so s ∈ I ′ ∩ S, a contradiction. So I ′ ⊆ I. If a ∈ J, then b ∈ J , a
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contradiction. So a /∈ J. Since yi = a, we have a ∈ S, which implies a /∈ I ′ and so
I ′ ⊂ I, a contradiction to the minimality of I. Thus I is a z-semi-ideal of P. �

Let I be a semi-ideal of P. The set of all zero-divisors with respect to I, denoted
by ZI(P ), is defined as ZI(P ) = {x ∈ P | L(x, y) ⊆ I for some y /∈ I}.

Proposition 2.6. Let P be a poset and let I be a semi-ideal of P. If I is a
z-semi-ideal of P, then I ⊆ ZI(P ).

Proof. Let I be a z-semi-ideal of P. Assume that I * ZI(P ). Then there exists
a ∈ I\ZI(P ) such that Ma ⊆ I and L(a, x) * I for all x ∈ P\I. Then for t ∈
L(a, x)\I, by Theorem 2.4, we haveMt = Ma∩Mx ⊆Ma ⊆ I, a contradiction. �

Every semi-ideal I of P is contained in at least a z-semi-ideal of P , namely Iz,
which is defined as Iz = ∩{I ⊆ J | J is z-semi-ideal}. It is clear that I ⊆ Iz. For
semi-ideals I and J , if I ⊆ J , then Iz ⊆ Jz. If I is not a z-semi-ideal and contains
a prime semi-ideal, then from Theorem 2.10, we have Iz is a prime z-semi-ideal
of P.

Now we give an elementwise characterization of Iz.

Proposition 2.7. For a semi-ideal I of P, we have

Iz = {a ∈ P | there exists b ∈ I with Ma ⊆Mb}.

Proof. Let a, b ∈ P with a ≤ b and b ∈ Iz. Then there exists y ∈ I such that
Mb ⊆ My. Since Ma ⊆ Mb, we have Ma ⊆ My and so a ∈ Iz, and hence Iz is a
semi-ideal of P. Also, I ⊆ Iz.

We now claim that Iz is the smallest z-semi-ideal containing I. Let a ∈ Iz with
Mb ⊆ Ma. Then there exists y ∈ I such that Ma ⊆ My, which implies Mb ⊆ My

and so b ∈ Iz. Hence Iz is a z-semi-ideal of P.
Let J be a z-semi-ideal of P with I ⊂ J ⊂ Iz. Let b ∈ Iz and b /∈ J. Then there

exists y ∈ I such that Mb ⊆ My, which implies b ∈ J, a contradiction. So Iz is
the smallest z-semi-ideal containing I. �

Lemma 2.8. Let P be a poset. Then

(a) if I = L(a) for a ∈ P, then (I)z = Ma;

(b) if I and J are two semi-ideals of P , then (
⋃

i∈I,j∈J

L(i, j))z = (I ∩ J)z =

Iz ∩ Jz.

Proof. (a) It is trivial that Ma is a z-semi-ideal for any a ∈ P.
(b) Let I and J be two semi-ideals of P . Then (

⋃
i∈I,j∈J

L(i, j))z ⊆ (I ∩ J)z ⊆

Iz ∩ Jz. We now prove that Iz ∩ Jz ⊆ (
⋃

i∈I,j∈J

L(i, j))z. Let K be a z-semi-ideal

of P with
⋃

i∈I,j∈J

L(i, j) ⊆ K. For each P1 ∈ Min(K), by Theorem 2.5, we have

P1 is a z-semi-ideal of P . Also by Lemma 2.3, we have P1 =
⋂

P ′∈Min(K)

P ′. Since
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i∈I,j∈J

L(i, j) ⊆ K, we have
⋃

i∈I,j∈J

L(i, j) ⊆ P ′ for every P ′ ∈ Min(K), which

implies either I ⊆ P ′ or J ⊆ P ′, so Iz ⊆ P ′ or Jz ⊆ P ′. Thus Iz ∩ Jz ⊆ P ′ and

hence Iz ∩Jz ⊆ K. So Iz ∩Jz is the smallest z-semi-ideal containing
⋃

i∈I,j∈J

L(i, j).

Therefore (
⋃

i∈I,j∈J

L(i, j))z = (I ∩ J)z = Iz ∩ Jz. �

Theorem 2.9. Let J be a semi-ideal of P. If J is prime, then either J is a
z-semi-ideal or the maximal z-semi-ideals contained in J are prime z-semi-ideals.

Proof. Let S = {K | K be a z-semi-ideal, let K ⊆ J and let K ∩ (P\J) = {φ}}.
Clearly S 6= {φ}, since 0 ∈ S. By Zorn’s lemma, S has maximal elements. Let I
be the maximal element of S. By Theorem 2.1, there exists a prime semi-ideal P1

of P such that I ⊆ P1 and P1 ∩ (P\J) = {φ}. So I ⊆ P1 ⊆ J. By Theorem 2.5,
P1 is a z-semi-ideal and so P1 6= J. Thus either I = P1 or I ⊂ P1. Here I ⊂ P1

gives a contradiction to maximality of I. So I = P1 is prime. �

Following [5, 6], a semi-ideal I of P is said to be strongly irreducible if for
semi-ideals A and B, A ∩ B ⊆ I implies that either A ⊆ I or B ⊆ I. It is easy
to observe that every prime semi-ideal is strongly irreducible.

Theorem 2.10. Let I be a z-semi-ideal of P . Then I is prime if and only if I
is strongly irreducible and contains a prime semi-ideal of P .

Proof. Assume that I is strongly irreducible and contains a prime semi-ideal P1

of P . Suppose that L(a, b) ⊆ I for a, b ∈ P . If L(a, b) ⊆ P1, then either a ∈ P1 or
b ∈ P1, which implies a ∈ I or b ∈ I. If L(a, b) * P1, then there exists t ∈ L(a, b)
such that t ∈ I\P1. By Theorem 2.4, Mt = Ma ∩Mb. Since I is a z-semi-ideal,
we have Ma ∩Mb = Mt ⊆ I, which implies a ∈Ma ⊆ I or b ∈Mb ⊆ I. �

The following example shows that we cannot drop the condition I is strongly
irreducible in Theorem 2.10.

Example 2.11. Consider P = {1, 2, 3, 4, 5, 6}. Then P is a poset under the
relation division and I = {1, 2, 3, 5}, A = {1, 2, 3, 4, 5}, and B = {1, 2, 3, 5, 6} are
semi-ideals of P. Clearly A ∩ B ⊆ I, but A * I and B * I. Also J = {1, 3, 5} is
a prime semi-ideal of P with J ⊆ I and I is a z-semi-ideal of P, but I is not a
prime semi-ideal of P.

Theorem 2.12. Let I and J be two semi-ideals of P. Then we have the followings:

(a) If J is a strongly irreducible semi-ideal and I ∩ J is a z-semi-ideal of P,
then either I is a z-semi-ideal or J is a z-semi-ideal of P.

(b) If I and J are strongly irreducible semi-ideals of P and I ∩ J is a z-
semi-ideal of P, then either I is a z-semi-ideal or J is a z-semi-ideal of
P.

(c) If I and J are strongly irreducible semi-ideals of P which are not in a
chain and I ∩J is a z-semi-ideal of P, then both I and J are z-semi-ideals
of P.
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Proof. (a) Suppose that I ∩ J is a z-semi-ideal of P, where I is a semi-ideal and
J is a strongly irreducible semi-ideal of P . If I ⊆ J or J ⊆ I, then either I
or J is a z-semi-ideal of P . Suppose that I * J and J * I. Then there exist
a ∈ I\J and b ∈ J\I. Clearly L(a, b) ⊆ I ∩J. If t ∈ L(a, b), then by Theorem 2.4,
Mt = Ma ∩Mb. Since I ∩ J is a z-semi-ideal, we have Ma ∩Mb ⊆ I ∩ J , which
implies Ma ∩Mb ⊆ J. Since J is a strongly irreducible semi-ideal and a /∈ J, we
have Mb ⊆ J and so J is a z-semi-ideal of P.

(b) It follows from (a).
(c) Let I and J be strongly irreducible semi-ideals of P with I * J and J * I,

and let I ∩ J is a z-semi-ideal of P . If I * J, then by part (a), J is a z-semi-ideal
of P . Also, if J * I, then by part (a), I is a z-semi-ideal of P . �

Corollary 2.13. Let I and J be semi-ideals of P. Then we have the followings:

(a) If J is a prime semi-ideal and I ∩ J is a z-semi-ideal of P, then either I
is a z-semi-ideal or J is a z-semi-ideal of P.

(b) If I and J are prime semi-ideals of P and I ∩ J is a z-semi-ideal of P,
then either I is a z-semi-ideal or J is a z-semi-ideal of P.

(c) If I and J are prime semi-ideals of P that are not in a chain and I ∩ J
is a z-semi-ideal of P, then both I and J are z-semi-ideals of P.

Following [3], for each subset A of P , we define V (A) = {P ′ ∈ Spec(P ) : A ⊆
P ′} to be the closed subset of P . If A = {a}, then we define V (a) = {P ′ ∈
Spec(P ) : a ∈ P ′} and D(a) = Spec(P )\V (a). It is clear that V (A) =

⋂
a∈A

V (a).

In general, the set of all prime semi-ideals of P does not necessarily form a
chain. Indeed, consider the prime semi-ideals P1 = {1, 2} and P2 = {1, 3} of
P as shown in Figure 2. Here both P1 and P2 does not form a chain. But the
following theorem shows that prime semi-ideals of poset containing a given prime
semi-ideal forms a chain.

Theorem 2.14. Let I be a semi-ideal of P . If the intersection of two prime
semi-ideals of P is again a prime semi-ideal of P, then all the elements of V (I)
form a chain.

Proof. Let V (I) = {Pi ∈ Spec(P ) : I ⊆ Pi}. Suppose that Pi * Pj and Pj * Pi

for some i 6= j. Then there exist a ∈ Pi\Pj and b ∈ Pj\Pi. Clearly L(a, b) ⊆
Pi ∩ Pj = Pk for some Pk ∈ V (I), which implies a ∈ Pk or b ∈ Pk, which implies
a ∈ Pj or b ∈ Pi, a contradiction. Thus either Pi ⊆ Pj or Pj ⊆ Pi for all i 6= j. �

The following example shows that we cannot drop the condition intersection
of two prime semi-ideals is a prime semi-ideal of P in Theorem 2.14.

Consider the set P = {1, 2, 3, 4, 6, 18}. Then P is a poset under the relation divi-
sion. Here I = {1, 3}, P1 = {1, 2, 3, 4}, P2 = {1, 2, 3, 4, 6}, and P3 = {1, 2, 3, 6, 18}
are prime semi-ideals containing I. But P1, P2 and P3 does not form a chain and
P2 ∩ P3 = {1, 2, 3, 6} is not a prime semi-ideal of P.

Every z-semi-ideal I of P contains a greatest z-semi-ideal of P, namely Iz, which
is defined as the union of all z-semi-ideals of P contained in I. For semi-ideals I
and J, if I ⊆ J, then Iz ⊆ Jz.
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Lemma 2.15. For semi-ideals Ii of P, we have
⋂
i

Izi = (
⋂
i

Ii)
z.

Proof. Let I be a semi-ideal of P. Since Iz is a z-semi-ideal contained in I,
⋂
i

Izi

is a z-semi-ideal contained in
⋂
i

Ii. If J is a z-semi-ideal of P contained in
⋂
i

Ii,

then J ⊂ Ii for all i. So J ⊂ Izi for all i which implies J ⊂
⋂
i

Izi . Thus
⋂
i

Izi is

the greatest z-semi-ideal contained in
⋂
i

Ii and hence
⋂
i

Izi = (
⋂
i

Ii)
z. �

Now we can give an elementwise characterization of Iz corresponding to that
for Iz.

Proposition 2.16. For any semi-ideal I of P, we have

Iz = {a ∈ Iz | My ⊆Ma implies y ∈ I}.
Proof. Let S = {a ∈ Iz | My ⊆Ma implies y ∈ I}. Clearly S 6= {φ}. Let a, b ∈ P
with a ≤ b and b ∈ S. Then b ∈ Iz. Thus there exists y ∈ I such that Mb ⊆ My.
Since Ma ⊆ Mb, we have a ∈ Iz. Also, if My ⊆ Ma, then My ⊆ Mb and so y ∈ I
and thus a ∈ S. Also, S ⊆ I.

Now we claim that S is a maximal z-semi-ideal contained in I.
If a ∈ S and Mb ⊆Ma, then a ∈ Iz. So there exists y ∈ I such that Ma ⊆My.

Since Mb ⊆ My, we have b ∈ Iz. Also, if Mx ⊆ Mb, then Mx ⊆ Ma and so x ∈ I
and hence b ∈ S.

Suppose that there exists a z-semi-ideal J such that S ⊂ J ⊂ I. If x ∈ J and
x /∈ S, then x ∈ Iz. If My ⊆Mx, then y ∈ J , which implies y ∈ I and so x ∈ S, a
contradiction. Hence S is the greatest z-semi-ideal contained in I. �

Proposition 2.17. Let P be a poset and let I and J be semi-ideals of P. Then
the following properties hold:

(a) If I is a z-semi-ideal of P, so is 〈J, I〉 for any J.
(b) If I is a z-semi-ideal of P, so is 〈L(a), I〉 for any a ∈ P.

Proof. (a) Let I be a z-semi-ideal of P and let b ∈ 〈J, I〉. Then L(b, j) ⊆ I for all
j ∈ J . Suppose that Mb * 〈J, I〉 for some b ∈ 〈J, I〉. Then there exists a ∈ Mb

such that a /∈ 〈J, I〉, which implies Ma ⊆ Mb and L(a, j) * I for some j ∈ J.
Therefore there exists t ∈ L(a, j) such that t /∈ I. By Theorem 2.4, Mt ⊆Ms for
s ∈ L(b, j), which implies Mt ⊆ I, a contradiction. So 〈J, I〉 is a z-semi-ideal of
P.

(b) It follows from (a) that 〈a, I〉 = 〈L(a), I〉 for all a ∈ P. �

Following [7], a semi-ideal I is said to be a u-semi-ideal if, for x, y ∈ I, U(x, y)∩
I 6= {φ}. It is clear that an arbitrary union of u-semi-ideals and an arbitrary
intersection of u-semi-ideals need not to be an u-semi-ideal of P. Indeed, consider
the poset depicted in Figure 2. Here I = {1, 2, 3, 12} and J = {1, 2, 3, 18} are
u-semi-ideals of P, but I ∪ J = {1, 2, 3, 12, 18} and I ∩ J = {1, 2, 3} are not
u-semi-ideals of P.
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In general, the union of two prime semi-ideals need not be a prime semi-ideal
of P. Indeed, consider the prime semi-ideals P1 = {1, 2} and P2 = {1, 3} of P as
shown in Figure 2. Here P1 ∪ P2 = {1, 2, 3} is not prime as L(12, 18) ⊆ P1 ∪ P2,
but 12, 18 /∈ P1 ∪ P2.

In [11], Rudd showed that the sum of two prime ideals in C(X) is prime. Now
to prove union of prime u-semi-ideals is a prime semi-ideal of P, we assume that
union of two u-semi-ideals is an u-semi-ideal and, distinct prime semi-ideals P1

and P2 are contained in the same maximal semi-ideal of P.
The following two theorems are useful to prove Theorems 2.20 and 2.22.

Theorem 2.18. Let P1 and P2 be two u-semi-ideals of P. If P1 and P2 are prime
and P1 ∪ P2 is a u-semi-ideal of P, then P1 ∪ P2 is a prime u-semi-ideal of P.

Proof. Let P1 and P2 be two prime u-semi-ideals of P, and P1 ∪ P2 be a u-semi-
ideal of P. Let L(a, b) ⊆ P1 ∪ P2 for any a, b ∈ P. If L(a, b) ⊆ P1 or L(a, b) ⊆ P2,
then a ∈ P1 ∪ P2 or b ∈ P1 ∪ P2. If L(a, b) * P1 and L(a, b) * P2, then there
exist s, t ∈ L(a, b) such that s /∈ P1 and t /∈ P2, which imply s ∈ P2 and
t ∈ P1. Since P1 ∪ P2 is a u-semi-ideal, we have U(s, t) ∩ (P1 ∪ P2) 6= {φ}. Let
r ∈ U(s, t) ∩ (P1 ∪ P2). If r ∈ P1, then s ∈ P1, a contradiction. If r ∈ P2, then
t ∈ P2, a contradiction. So P1 ∪ P2 is a prime u-semi-ideal of P. �

Note that the condition P1 ∪ P2 is a u-semi-ideal in Theorem 2.18 is not su-
perficial. Indeed, consider the poset depicted in Figure 2. Here P1 = {1, 2}
and P2 = {1, 3} are prime u-semi-ideals of P. But P1 ∪ P2 = {1, 2, 3} is not
a u-semi-ideal as U(2, 3) ∩ (P1 ∪ P2) = {φ}, and also P1 ∪ P2 is not prime as
L(12, 18) ⊆ P1 ∪ P2 with 12, 18 /∈ P1 ∪ P2.

Now we show that union of semiprime u-semi-ideal and prime u-semi-ideal is
semiprime u-semi-ideal of poset.

Theorem 2.19. Let P1 and P2 be two semi-ideals and P1∪P2 be a u-semi-ideal of
P. If P1 is a semiprime u-semi-ideal and P2 is a prime u-semi-ideal, then P1∪P2

is a semiprime u-semi-ideal of P.

Proof. Let I = P1 ∪ P2 where P1 is a semiprime u-semi-ideal and P2 is prime
u-semi-ideal of P. By the assumption, I is a u-semi-ideal of P. Suppose that
L(a, b) ⊆ I and L(a, c) ⊆ I. Now we claim that L(a, U(b, c)) ⊆ I. Suppose
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L(a, b) * P1 or L(a, c) * P2. Then there exist s ∈ L(a, b) and t ∈ L(a, c) such
that s /∈ P1 and t /∈ P2, which imply s ∈ P2 and t ∈ P1. Since P1 ∪ P2 is a
u-semi-ideal, we have U(s, t) ∩ (P1 ∪ P2) 6= {φ}. Let r ∈ U(s, t) ∩ (P1 ∪ P2). If
r ∈ P1, then s ∈ P1, a contradiction. If r ∈ P2, then t ∈ P2, a contradiction.
Thus L(a, b) ⊆ P1 and L(a, c) ⊆ P2.

Since P2 is prime, either a ∈ P2 or c ∈ P2. If a ∈ P2 or a ∈ P1, then
L(a, U(b, c)) ⊆ I. Suppose a /∈ P2 and c ∈ P2. Let r ∈ L(a, b). Since P1 ∪ P2

is a u-semi-ideal, U(r, c)∩ (P1 ∪ P2) 6= {φ}. Let q ∈ U(r, c)∩ (P1 ∪ P2). If q ∈ P1,
then c ∈ P1. So L(a, c) ⊆ P1. Since P1 is semiprime, we have L(a, U(b, c)) ⊆ P1,
which implies L(a, U(b, c)) ⊆ I. If q ∈ P2, then r ∈ P2. So L(a, b) ⊆ P2. Since P2 is
prime, we have b ∈ P2. So L(a, U(b, c)) ⊆ P2, which implies L(a, U(b, c)) ⊆ I. �

Although the proof of the following two theorems and proposition are just
similar to that of Theorem 3.2, Proposition 3.6, and Theorem 3.7 in [10] for a
commutative ring R, for the sake of completeness, we present the proof of the
same for poset P.

Theorem 2.20. If the union of minimal prime u-semi-ideals of P is a z-semi-
ideal and the intersection of two prime semi-ideals of P is again a prime semi-
ideal of P, then the union of every two prime u-semi-ideals that are not in a chain
is a prime z-semi-ideal of P . In fact, if {Pi}i∈A is a family of prime u-semi-ideals

not all in a chain, then
⋃
i∈A

Pi is a prime z-semi-ideal of P .

Proof. Let P1 and P2 be prime u-semi-ideals of P. Let I and J be two distinct
minimal prime u-semi-ideals contained in P1 and P2, respectively. By the hypoth-
esis, I ∪ J is a z-semi-ideal and is prime by Theorem 2.18. Also I ∪ J ⊆ P1 ∪ P2.
On the other hand, I ∪ J is a prime ideal containing I and J . By Theorem 2.14,
P1 ⊆ I ∪ J or I ∪ J ⊆ P1 and, P2 ⊆ I ∪ J or I ∪ J ⊆ P2.

If P1 ⊆ I ∪ J and I ∪ J ⊆ P2, then P1 ⊆ I ∪ J ⊆ P2, a contradiction. If
I ∪ J ⊆ P1 and P2 ⊆ I ∪ J, then P2 ⊆ I ∪ J ⊆ P1, a contradiction. If P1 ⊆ I ∪ J
and P2 ⊆ I∪J , then P1∪P2 ⊆ I∪J and so P1∪P2 = I∪J is a prime z-semi-ideal
of P.

If Ii is a minimal prime u-semi-ideal contained in Pi, then ∪Ii ⊆ ∪Pi. Con-
versely, if x ∈ ∪Pi, then there is a finite subfamily P1, P2, P3, . . . , Pn of {Pi}

such that x ∈
n⋃

i=1

Pi. Without loss of generality, assume that no two P ′is are in

a chain and n > 1. Then I1 is a minimal prime u-semi-ideal contained in the

prime u-semi-ideal
n−1⋃
i=1

Pi. So
n⋃

i=1

Pi = I1 ∪ In. Thus x ∈ I1 ∪ In ⊂
⋃

Ii and so

n⋃
i=1

Pi =
n⋃

i=1

Ii, a prime z-semi-ideal of P. �

Proposition 2.21. Let Q and R be semi-ideals of P. If Q ⊂ R are prime semi-
ideals which are not z-semi-ideals and Qz, Rz are strongly irreducible, then we
have the followings:
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(a) Either (i) Q ⊂ Qz ⊂ Rz ⊂ R or (ii) Rz ⊂ Q ⊂ R ⊂ Qz.
(b) In case (i), Qz = Rz = I if and only if I is the unique z-semi-ideal between

Q and R.
(c) In case (ii), if J is any prime semi-ideal with Rz ⊂ J ⊂ Qz, then Rz =

Jz = Qz and Rz = Jz = Qz.

Proof. (a) LetQ andR be prime semi-ideals that are not z-semi-ideals andQ ⊂ R.
Then Rz is a prime z-semi-ideal. Similarly, Rz is a prime z-semi-ideal by Theorem
2.10, since Rz ⊃ Qz and Qz is prime. Since Rz, Q and Qz are primes containing
Qz, they are in a chain and the possible cases are as follows:

Case (i): Qz ⊂ Q ⊂ Qz ⊆ Rz ⊂ R (or) Qz ⊂ Q ⊂ Rz ⊆ Qz; but this violates
the minimality of Qz unless Qz = Rz.
Case (ii): Qz ⊆ Rz ⊂ Q ⊂ Qz, which contradicts the maximality of Qz

unless Qz = Rz. Also, R and Qz are primes containing Q and so must be in
a chain. If Qz ⊂ R, then it contradicts maximality of Rz. So R ⊂ Qz.Thus
Q ⊂ Qz ⊂ Rz ⊂ R or Rz ⊂ Q ⊂ R ⊂ Qz.

(b) If I is any z-semi-ideal between Q and R, then I lies between Qz and Rz.
The result follows.

(c) This follows from the maximality of Rz and the minimality of Qz. �

Let P be a poset. Then P is said to satisfy the descending chain condition if
every non-empty subset of P has a minimal element.

Theorem 2.22. Let I and J be u-semi-ideals of P satisfying descending chain
condition and the intersection of two prime semi-ideals of P is again a prime
semi-ideal of P. If I and J are not in a chain and if the union of two minimal
prime u-semi-ideals of P is a z-semi-ideal of P, then we have the followings:

(a) If I is a z-semi-ideal and J is prime, then I ∪ J is a prime z-semi-ideal
of P.

(b) If I is semiprime and J is prime, then I ∪ J = I ∪ (I ∪ J)z. Moreover, if
I ∪ J is not a z-semi-ideal of P, then I ∪ J is a minimal prime semi-ideal
of P containing I and I does not contain any prime semi-ideal of P.

Proof. (a) If I is prime, then by Theorem 2.20, I∪J is a prime z-semi-ideal. If I is
not prime, then I ⊂ (I∪J)z, since I is a z-semi-ideal. Clearly J∪(I∪J)z ⊆ I∪J.
So I ∪ J = J ∪ (I ∪ J)z is a prime z-semi-ideal of P.

(b) Let I be a semiprime u-semi-ideal of P. Then I =
⋂
i

Pi, where Pi are

minimal prime u-semi-ideals containing I. Since J ⊆ I ∪ J, we have either J ⊆
(I ∪ J)z ⊂ I ∪ J or (I ∪ J)z ⊆ J ⊂ I ∪ J, by Theorem 2.14

Case (i): If J ⊆ (I ∪ J)z ⊂ I ∪ J , then I ∪ J = I ∪ (I ∪ J)z.
Case (ii): Suppose that I and (I ∪ J)z are in a chain. If I ⊂ (I ∪ J)z, then

I ⊂ J , which is a contradiction. If (I ∪J)z ⊂ I =
⋂
i

Pi, then each Pi contain the

prime semi-ideal (I ∪ J)z and so form a chain, a contradiction.
If I and (I ∪ J)z are not in a chain, then I ∪ (I ∪ J)z is a prime semi-ideal

containing (I ∪ J)z and so is in a chain with J. If J ⊂ I ∪ (I ∪ J)z ⊂ I ∪ J, then
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I ∪J = I ∪ (I ∪J)z. If I ∪ (I ∪J)z ⊂ J, then I ⊂ J, a contradiction. If I contains
a prime semi-ideal, then it is prime and we are done by Theorem 2.20.

Finally, suppose that I ∪ J is not a z-semi-ideal and there exists a prime semi-
ideal K with I ⊂ K ⊂ I∪J. Then I∪J = K∪J is a z-semi-ideal, a contradiction.
So I ∪ J is a minimal prime semi-ideal containing I. �
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