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ON APPROXIMATION OF FUNCTIONS BELONGING TO
SOME CLASSES OF FUNCTIONS BY (N, pn, qn)(E, θ) MEANS OF

CONJUGATE SERIES OF ITS FOURIER SERIES

XHEVAT ZAHIR KRASNIQI1∗, DEEPMALA2

Communicated by J. Brzdęk

Abstract. We obtain some new results on the approximation of functions
belonging to some classes of functions by (N, pn, qn)(E, θ) means of conjugate
series of its Fourier series. These results, under conditions assumed here, are
better than those obtained previously by others. In addition, several particular
results are derived from our results as corollaries.

1. Introduction and preliminaries

Given two sequences p := (pn) and q := (qn), the convolution (p∗ q)n is defined
by

Rn := (p ∗ q)n :=
n∑

m=0

pmqn−m.

We write Pn := (p∗1)n =
∑n

m=0 pm and Qn := (1∗q)n =
∑n

m=0 qm =
∑n

m=0 qn−m.
Let (sn) be the sequence of partial sums of the numerical series

∑∞
n=0 un. The

generalized Nörlund transform of the sequence (sn) is the sequence {tp,qn } obtained
by putting

tp,qn =
1

Rn

n∑
m=0

pn−mqmsm,

where Rn is a sequence of nonzero real numbers. If sn → s as n → ∞ implies
that tp,qn → s as n → ∞, then the method (N, pn, qn) is said to be regular. A
necessary and sufficient condition for the method (N, pn, qn) to be regular is that
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74 XH. Z. KRASNIQI, DEEPMALA∑n
m=0 |pn−mqm| = O(|(p∗ q)n|) and pn−m = o(|(p∗ q)n|) as n→∞ for every fixed

m ≥ 0 (see Borwein [1]).
The method (N, pn, qn) reduces to the Nörlund method (N, pn), if qn = 1 for

all n; and to the Riesz method (N, qn), if pn = 1 for all n. It is a well-known fact
that the (N, pn) mean (respectively, (N, qn) mean), includes as a special case,
Cesàro and harmonic means (respectively, logarithmic mean).

Let Eθ
n = 1

(1+θ)n

∑n
k=0

(
n
k

)
θn−ksk, θ > 0. If Eθ

n −→ s as n→∞, then the series∑∞
n=0 un is said to be summable to s by the Euler method (E, θ) and this method

is regular; see [2].
The product summability (N, pn, qn)(E, θ) is obtained if we superimpose (E, θ)

summability on (N, pn, qn) summability. The (N, pn, qn) transform of the (E, θ)
transform defines the (N, pn, qn)(E, θ) transform tp,q,θn of the nth partial sums sn
of the series

∑∞
n=0 un which is defined by the equality

tp,q,θn =
1

Rn

n∑
k=0

pkqn−k
(1 + θ)n−k

n−k∑
v=0

(
n− k
v

)
θksv.

If tp,q,θn −→ s as n → ∞, then the series
∑∞

n=0 un or the sequence (sn) is said
to be summable (N, pn, qn)(E, θ) to the sum s if the limit limn→∞ t

p,q,θ
n exists and

is equal to the same number s.
Let f be a 2π periodic signal (function) and Lebesgue integrable, that is, f ∈

L[0, 2π]. Then the Fourier series of the signal (function) f at the point x is given
by

f(x) ∼ a0
2

+
∞∑
m=1

(am cosmx+ bm sinmx), (1.1)

with its partial sums sn(f ;x) being a trigonometric polynomial of order n with
n+ 1 terms.

The conjugate series of the Fourier series (1.1) is given by
∞∑
m=1

(bm cosmx− am sinmx). (1.2)

A signal (function) f ∈ Lip α if |f(x+ t)− f(x)| = O(|t|α) for 0 < α ≤ 1.
A signal (function) f ∈ Lip (α, r) for 0 ≤ x ≤ 2π if{∫ 2π

0

|f(x+ t)− f(x)|r
}1/r

≤M(|t|α) (1.3)

for r ≥ 1 and 0 < α ≤ 1, whereM is an absolute positive constant not necessarily
the same at each occurrence (see McFadden [5]).

Moreover, it is said that f ∈ Lip (ξ(t), r), ξ(t) > 0 if

f ∈ Lr[0, 2π] and ‖f(x+ t)− f(x)‖r = O (ξ(t))

for r ≥ 1, where the Lr-norm of a function f : R −→ R is defined by

‖f‖r =
(∫ 2π

0

|f(x)|rdx
)1/r

, r ≥ 1.
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The L∞-norm of a function f : R −→ R is defined by

‖f‖∞ = sup{|f(x)| : x ∈ R}.

It should be noted here that if ξ(t) = tα, then Lip (ξ(t), r) = Lip (α, r), and if
r −→∞ in Lip(p, r) class, then this class reduces to the Lipα class.

A signal (function) f is approximated by the trigonometric polynomial τn(f ;x)
of order n, and the degree of approximation En(f) of a function f ∈ Lr is given
by

En(f) = min
n
‖f(x)− τn(f ;x)‖r,

in terms of n.
The degree of approximation of a function f : R −→ R by a trigonometric

polynomial τn(f ;x) of order n under sup norm ‖ · ‖∞ is defined by

‖f(x)− τn(f ;x)‖∞ = sup{|f(x)− τn(f ;x)| : x ∈ R}.

Throughout this paper, we will write

ψx(t) := ψ(t) = f(x+ t)− f(x− t), 4cn = cn − cn+1, n ≥ 0,

and

K̃p,q,θ
n (t) =

1

2πRn

n∑
k=0

pkqn−k

(
R(t)

1 + θ

)k cos [ (k+1)t
2
− k tan−1

(
θ−1
θ+1

tan t
2

)]
sin t

2

,

where

R(t) =

√
(θ + 1)2 − 4θ sin2 t

2
.

The theory of approximation, which is originated from a well-known theorem of
Weierstrass, has been an excitatory interdisciplinary field of study till nowadays.
The approximations of the functions have a wide applications in signal analysis,
digital communications, theory of machines in mechanical engineering, and in
particular in digital signal processing; see [12] and [13] (also the interested reader
could find several new results on these approximations and their applications into
references given in [11], see also [3] and [6–8]).

Very recently, Mishra and Sonavane [11] determined the degree of approxi-
mation of a conjugate function f̃ of a function f ∈ Lip(α, r) (r ≥ 1), by an
(N, qn)(E, 1) transform of partial sums of the conjugate series of a Fourier series.

Their results are the following statements.

Theorem 1.1 ([11]). Let (N, pn) be a regular Nörlund method of summability
defined by a positive generating sequence (pn). Let f : [0, 2π] −→ R be a 2π
periodic function, Lebesgue integrable, and belonging to the Lip(α, r), (r ≥ 1)
class. If either

(i) (n+ 1)pn = O(Pn), (ii)
n−1∑
k=0

| 4 pk| = O
(

Pn
n+ 1

)
(1.4)
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or

(i)′ (n+ 1)pn = O(Pn), (ii)′
n−1∑
k=0

∣∣∣∣4( Pk
k + 1

)∣∣∣∣ = O( Pn
n+ 1

)
. (1.5)

Then the degree of approximation of the function f̃ by the (N, pn)(E, 1) transform

t̃NEn =
1

Pn

n∑
k=0

pk
2n−k

n−k∑
v=0

(
n− k
v

)
s̃v

of the partial sums s̃n(f, x) of the series (1.2) is given by the following estimations:

‖t̃NEn − f̃‖r =

{
O ((n+ 1)−α) for 0 < α < 1

O
(

log(n+1)
n+1

)
for α = 1,

for all n ∈ {0, 1, 2, . . . }.

Theorem 1.2 ([11]). Let (N, pn) be a regular Nörlund method of summability
defined by a positive generating sequence (pn). Assume that ξ(t) is a modulus of
continuity such that ∫ v

0

ξ(t)

t
dt = O (ξ(v)) , 0 < v < π. (1.6)

Let f : [0, 2π] −→ R be a 2π periodic function, Lebesgue integrable, and be-
longing to the Lip(ξ(t), r), (r ≥ 1) class. Then the degree of approximation of the
function f̃ by t̃NEn means of the partial sums s̃n(f, x) of the series (1.2) is given
by

‖t̃NEn − f̃‖r = O

(
1

n+ 1

∫ π

π
n+1

ξ(t)

t2
dt

)
for all n ∈ {0, 1, 2, . . . }.

Theorem 1.3 ([11]). Let (N, pn) be a regular Nörlund method of summability
defined by a positive generating sequence (pn) satisfying (1.4) or (1.5). Let f :
[0, 2π] −→ R be a 2π-periodic function, Lebesgue integrable, and belonging to the
Lip(ξ(t), r), (r ≥ 1) class and let ξ(t)

t
be monotone decreasing in (π/(n + 1), π).

Then the degree of approximation of the function f̃ by t̃NEn means of the partial
sums s̃n(f, x) of the series (1.2) is given by

‖t̃NEn − f̃‖r = O
(
ξ

(
1

n+ 1

)
log(n+ 1)

)
,

for all n ∈ {0, 1, 2, . . . }.

The purpose of this paper is to determine the degree of approximation of the
function f̃ by t̃p,q,θn means of the partial sums s̃n(f, x) of the series (1.2), in
the cases when f ∈ Lip(α, r) and f ∈ Lip(ξ(t), r), (r ≥ 1). Our results will
significantly extend the above mentioned results.
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2. Helpful lemmas

The following auxiliary statements are needed for the proofs of our main results.

Lemma 2.1. If 0 ≤ t ≤ π
n+1

, then
∣∣∣K̃p,q,θ

n (t)
∣∣∣ = O(t−1), n ∈ {0, 1, 2, . . . }.

Proof. If 0 ≤ t ≤ π
n+1

and n ∈ {0, 1, 2, . . . }, then according to Young’s inequality
sin t

2
≥ t

π
, we get

∣∣∣∣K̃p,q,θ
n (t)

∣∣∣∣ ≤ 1

2πRn

n∑
k=0

pkqn−k

∣∣∣∣ R(t)1 + θ

∣∣∣∣k
∣∣∣cos [ (k+1)t

2
− k tan−1

(
θ−1
θ+1

tan t
2

)]∣∣∣∣∣sin t
2

∣∣
≤ 1

2πRn

n∑
k=0

pkqn−k
|R(t)|2·

k
2

(1 + θ)k
1
t
π

≤ 1

2πRn

n∑
k=0

pkqn−k

∣∣(θ + 1)2 − 4θ sin2 t
2

∣∣ k2
(1 + θ)k

π

t

≤ 1

2Rn

n∑
k=0

pkqn−k
[(θ + 1)2]

k
2

(1 + θ)k
1

t

= O
(
1

t

)
.

�

Lemma 2.2. If π
n+1

< t ≤ π, 0 ≤ k ≤ n, θ 6= 3, and either

(i) (k + 1)2pkqn−k = O(Rk), (ii)
n−1∑
k=0

| 4 pkqn−k| = O
(

Rn

(n+ 1)2

)
(2.1)

or

(i)′ (k + 1)2pkqn−k = O(Rk), (ii)′
n−1∑
k=0

∣∣∣∣4( Rk

k + 1

)∣∣∣∣ = O( Rn

(n+ 1)2

)
,

(2.2)
then ∣∣∣∣t̃p,q,θn (t)

∣∣∣∣ = Oθ ( 1

(n+ 1)2t3

)
, n ∈ {0, 1, 2, . . . }.

Proof. Let the conditions (2.1) be satisfied. For the sake of brevity, we denote

ϕ(t; θ) := ϕ := tan−1
(
θ − 1

θ + 1
tan

t

2

)
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and

P`(t) = cos
t

2
− cosϕ− 2 cos

t

2
cos(`+ 1)

(
t

2
− ϕ

)
cos2

(
t

4
− ϕ

2

)
+sin

(
t

2
− ϕ

)
sin

[
t

2
+ (`+ 1)

(
t

2
− ϕ

)]
+2 sin

t

2
sin(`+ 1)

(
t

2
− ϕ

)
sin2

(
t

4
− ϕ

2

)
.

Then, applying the summation by parts, we obtain

∣∣∣∣t̃p,q,θn (t)

∣∣∣∣ = 1

2πRn

∣∣∣∣∣∣
n∑
k=0

pkqn−k

(
R(t)

1 + θ

)k cos [ (k+1)t
2
− kϕ

]
sin t

2

∣∣∣∣∣∣
=

1

2πRn

∣∣∣∣∣
n−1∑
k=0

4 (pkqn−k)
k∑
j=0

[
(θ + 1)2 − 4θ sin2 t

2

] j
2 cos

[
(j+1)t

2
− jϕ

]
(1 + θ)j sin t

2

+pnq0

n∑
j=0

[
(θ + 1)2 − 4θ sin2 t

2

] j
2 cos

[
(j+1)t

2
− jϕ

]
(1 + θ)j sin t

2

∣∣∣∣∣
≤ 1

2πRn

n−1∑
k=0

| 4 (pkqn−k) | max
0≤`≤k

∣∣∣∣∣ ∑̀
j=0

cos
[
(j+1)t

2
− jϕ

]
sin t

2

∣∣∣∣∣
+pnq0 max

0≤`≤n

∣∣∣∣∣ ∑̀
j=0

cos
[
(j+1)t

2
− jϕ

]
sin t

2

∣∣∣∣∣
≤ 1

2tRn

{
n−1∑
k=0

| 4 (pkqn−k) | max
0≤`≤k

∣∣∣∣∣<∑̀
j=0

ei[
(j+1)t

2
−jϕ]

∣∣∣∣∣
+pnq0 max

0≤`≤n

∣∣∣∣∣<∑̀
j=0

ei[
(j+1)t

2
−jϕ]

∣∣∣∣∣
}

=
1

2tRn

{
n−1∑
k=0

| 4 (pkqn−k) | max
0≤`≤k

∣∣∣∣∣<e it2 1− ei(`+1)( t2−ϕ)

1− ei(
t
2
−ϕ)

∣∣∣∣∣
+pnq0 max

0≤`≤n

∣∣∣∣∣<e it2 1− ei(`+1)( t2−ϕ)

1− ei(
t
2
−ϕ)

∣∣∣∣∣
}

=
1

2tRn

{
n−1∑
k=0

| 4 (pkqn−k) | max
0≤`≤k

∣∣∣∣∣ P`(t)

4 sin2
(
t
4
− ϕ

2

)∣∣∣∣∣
+pnq0 max

0≤`≤n

∣∣∣∣∣ P`(t)

4 sin2
(
t
4
− ϕ

2

)∣∣∣∣∣
}
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=
7

8tRn

{
n−1∑
k=0

| 4 (pkqn−k) |
sin2

(
t
4
− ϕ

2

) +
pnq0

sin2
(
t
4
− ϕ

2

)}

≤ 7π2

32tRn

{
n−1∑
k=0

| 4 (pkqn−k) |∣∣ t
4
− ϕ

2

∣∣2 +
pnq0∣∣ t

4
− ϕ

2

∣∣2
}
.

Using the inequality of [4, pp. 288–289]

tan−1 u < u for u > 0,

we have∣∣∣∣t̃p,q,θn (t)

∣∣∣∣ ≤ 7π2

32tRn

[
t
4
− θ−1

2(θ+1)
tan t

2

]2
{

n−1∑
k=0

| 4 (pkqn−k) |+ pnq0

}

≤ 7π2

32tRn

[
t
4
− θ−1

2(θ+1)
tan t

2

]2O
(

Rn

(n+ 1)2
+

Rn

(n+ 1)2

)

= O

 1

(n+ 1)2t
(
t− 2(θ−1)

θ+1
tan t

2

)2


= O

(
1

(n+ 1)2t3
(
3−θ
θ+1

)2
)

= Oθ
(

1

(n+ 1)2t3

)
.

The proof of this lemma, under conditions (2.2), can be done in a similar way.
We will skip it, and the proof of the lemma is completed. �

Lemma 2.3 ([11]). Let f ∈ Lip(α, r), let 0 < α ≤ 1, and let r ≥ 1. Then[∫ 2π

0

|ψ(x, t)|rdx
] 1
r

= O(|tα|).

Lemma 2.4 ([11]). Let f ∈ Lip(ξ, r), and let r ≥ 1. Then[∫ 2π

0

|ψ(x, t)|rdx
] 1
r

= O(ξ(t)).

Now we pass to the main results of this paper.

3. Main results

We prove firstly the following main result.

Theorem 3.1. Let (N, pn, qn) be a generalized regular Nörlund method of summa-
bility defined by two positive generating sequences (pn) and (qn). Let f : [0, 2π] −→
R be a 2π periodic function, Lebesgue integrable, and belonging to the Lip(α, r),
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(r ≥ 1) class. If either (2.1) or (2.2) holds true, then the degree of approximation
of the function f̃ by (N, pn, qn)(E, θ) transform

t̃p,q,θn (x) =
1

Rn

n∑
k=0

pkqn−k
(1 + θ)k

k∑
v=0

(
k

v

)
θk−vs̃v(x)

of the partial sums s̃n(f, x) of the series (1.2) is given by the following estimation:∥∥∥t̃p,q,θn − f̃
∥∥∥
Lr

= Oθ
(
(n+ 1)−α

)
, 0 < α ≤ 1,

for all n ∈ {0, 1, 2, . . . } and θ 6= 3.

Proof. For the partial sums s̃v(f, x) of the series (1.2), the following equality holds
true

s̃v(f, x)− f̃(x) =
1

2π

∫ π

0

ψ(x, t)
cos
(
v + 1

2

)
t

sin t
2

dt.

Therefore, the (E, θ) means of s̃v(f, x)− f̃(x), have this form

Ẽθ
k(x)− f̃(x) =

1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

k∑
v=0

(
k

v

)
θk−v cos

(
v +

1

2

)
tdt,

which can be rewritten as follows:

Ẽθk(x)− f̃(x) =
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<

{
k∑
v=0

(
k

v

)
θk−vei(v+

1
2)t

}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<

{
e
it
2

k∑
v=0

(
k

v

)
θk−veivt

}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<
{
e
it
2
(
θ + eit

)k}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<
{
e
i(k+1)t

2

(
θe−

it
2 + e

it
2

)k}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<

{
e
i(k+1)t

2

[
(θ + 1) cos

t

2
− i(θ − 1) sin

t

2

]k}
dt.

Denoting

R(t) cosϕ(t; θ) = (θ + 1) cos
t

2
and R(t) sinϕ(t; θ) = (θ − 1) sin

t

2
,

we easily obtain that

R(t) =

√
(θ + 1)2 − 4θ sin2 t

2
,

and

ϕ(t; θ) = tan−1
(
θ − 1

θ + 1
tan

t

2

)
.
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So, we have

Ẽθk(x)− f̃(x) =
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<
{
e
i(k+1)t

2 Rk(t)e−iϕ(t;θ)k
}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

<
{
e
i(k+1)t

2 Rk(t)e−ikϕ(t;θ)
}
dt

=
1

2π(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

Rk(t) cos

[
(k + 1)t

2
− k tan−1

(
θ − 1

θ + 1
tan

t

2

)]
dt.

Consequently, the (N, pn, qn) means of Ẽθ
k(x)− f̃(x) are

1

Rn

n∑
k=0

pkqn−k

{
Ẽθk(x)− f̃(x)

}
=

1

2πRn

n∑
k=0

pkqn−k
(1 + θ)k

∫ π

0

ψ(x, t)

sin t
2

Rk(t) cos

[
(k + 1)t

2
− k tan−1

(
θ − 1

θ + 1
tan

t

2

)]
dt

or

t̃p,q,θn (x)− f̃(x) =
∫ π

0

ψ(x, t)K̃p,q,θ
n (t)dt.

Whence, using generalized Minkowski’s inequality (see [15, p. 18]) and Lemma
2.3, we have

∥∥∥t̃p,q,θn (x)− f̃(x)
∥∥∥
Lr

=

[∫ 2π

0

∣∣∣t̃p,q,θn (x)− f̃(x)
∣∣∣rdx]1/r

=

[∫ 2π

0

∣∣∣ ∫ π

0

ψ(x, t)K̃p,q,θ
n (t)dt

∣∣∣rdx]1/r
=

∫ π

0

[∫ 2π

0

∣∣∣ψ(x, t)∣∣∣rdx]1/r ∣∣∣K̃p,q,θ
n (t)

∣∣∣dt
=

∫ π
n+1

0

O(tα)
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt+ ∫ π

π
n+1

O(tα)
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt

:= J1 + J2,

since by Lemma 2.3 the implication f ∈ Lipα =⇒ ψ ∈ Lipα holds true.
Based on Lemma 2.1, we obtain

J1 =

∫ π
n+1

0

O(tα)O(t−1)dt = O((n+ 1)−α).
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Now applying Lemma 2.2, we have

J2 =

∫ π

π
n+1

O(tα)
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt

=

∫ π

π
n+1

O(tα)Oθ
(

1

(n+ 1)2t3

)
dt

= Oθ
(

1

(n+ 1)2

)
tα−2

α− 2

∣∣∣∣∣
π

π
n+1

= Oθ
(

1

(n+ 1)α

)
.

Therefore, we have∥∥∥t̃p,q,θn − f̃
∥∥∥
Lr

= Oθ
(

1

(n+ 1)α

)
, θ 6= 3, 0 < α ≤ 1.

�

Note that t̃p,q,θn means generalize t̃NEn means considered in [9, 11], in the case
when qn = 1 for all n, and therefore this theorem has a wider range of applications.
Another advantage of this theorem is the fact that, for α = 1, it gives a degree of
approximation of Jackson’s order, even in this case, while in the previous results
proved by others do not.

Example 3.2. In order to support our main results, we take pn = n+1, qn = 1,
and θ = 1, then E1

n(f ;x) = 1
2n

∑n
k=0

(
n
k

)
sk(f ;x) means as well as t̃Nn (f ;x) =

2
(n+1)(n+2)

∑n
k=0(n − k + 1)sk(f ;x) means, converge to f(x) faster than sn(x) in

the interval [−π, π], where sn(x) denotes the partial sums of the series
∞∑
n=1

2[1− (−1)n]
πn

sinnx, −π ≤ x ≤ π,

which is the Fourier series of the function

f(x) =

{
−1 if −π ≤ x < 0,
1 if 0 ≤ x ≤ π.

This nice example given in [11] (see its details at the end of it) shows that the
product summability means t̃NEn (f ;x) (these are special cases of the means consid-
ered in this paper) of the Fourier series of f(x) overshoots the Gibbs Phenomenon
and presents the smoothing effect of this method providing better approximates
than partial sums sn(f ;x).

Theorem 3.3. Let (N, pn, qn) be a generalized regular Nörlund method of summa-
bility defined by two positive generating sequences (pn) and (qn) satisfying condi-
tions (2.1) or (2.2). Assume that ξ(t) is a modulus of continuity such that∫ v

0

ξ(t)

t
dt = O (ξ(v)) , 0 < v < π. (3.1)

Let f : [0, 2π] −→ R be a 2π periodic function, Lebesgue integrable, and be-
longing to the Lip(ξ(t), r), (r ≥ 1) class. Then the degree of approximation of the
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function f̃ by t̃p,q,θn means of the partial sums s̃n(f, x) of the series (1.2) is given
by ∥∥∥t̃p,q,θn − f̃

∥∥∥
Lr

= Oθ

(
1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)
for all n ∈ {0, 1, 2, . . . }.

Proof. Using the generalized Minkowski’s inequality and Lemma 2.4, we have∥∥∥t̃p,q,θn (x)− f̃(x)
∥∥∥
Lr

=

[∫ 2π

0

∣∣∣t̃p,q,θn (x)− f̃(x)
∣∣∣rdx]1/r

=

[∫ 2π

0

∣∣∣ ∫ π

0

ψ(x, t)K̃p,q,θ
n (t)dt

∣∣∣rdx]1/r
=

∫ π

0

[∫ 2π

0

∣∣∣ψ(x, t)∣∣∣rdx]1/r ∣∣∣K̃p,q,θ
n (t)

∣∣∣dt
=

∫ π
n+1

0

O(ξ(t))
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt+ ∫ π

π
n+1

O(ξ(t))
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt

:= J
(1)
1 + J

(1)
2 .

Based on Lemma 2.1 and condition (3.1), we obtain

J
(1)
1 =

∫ π
n+1

0

O(ξ(t))
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt = O(∫ π

n+1

0

ξ(t)

t
dt

)

= O
(
ξ

(
π

n+ 1

))
= O

(
1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)
,

since

1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt ≥

ξ
(

π
n+1

)
(n+ 1)2

∫ π

π
n+1

dt

t3

≥
ξ
(

π
n+1

)
(n+ 1)2

(
1

−2t2

) ∣∣∣∣∣
π

π
n+1

≥ 1

4π2
ξ

(
π

n+ 1

)
.

On the other hand, Lemma 2.2 gives

J
(1)
2 =

∫ π

π
n+1

O(ξ(t))
∣∣∣K̃p,q,θ

n (t)
∣∣∣dt = Oθ( 1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)
.

Consequently, we clearly have∥∥∥t̃p,q,θn − f̃
∥∥∥
Lr

= Oθ

(
1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)
,

which proves the statement of the theorem. �
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Theorem 3.4. Let (N, pn, qn) be a generalized regular Nörlund method of summa-
bility defined by two positive generating sequences (pn) and (qn) satisfying (1.4)
or (1.5) and (3.1). Let f : [0, 2π] −→ R be a 2π-periodic function, Lebesgue in-
tegrable, and belonging to the Lip(ξ(t), r), (r ≥ 1) class, and let ξ(t)

t
be monotone

decreasing in (π/(n+ 1), π). Then the degree of approximation of the function f̃

by t̃p,q,θn means of the partial sums s̃n(f, x) of the series (1.2) is given by∥∥∥t̃p,q,θn − f̃
∥∥∥
Lr

= Oθ
(
ξ

(
π

n+ 1

))
,

for all n ∈ {0, 1, 2, . . . } and θ 6= 3.

Proof. Under conditions of our theorem and from the proof of the previous the-
orem, we have ∥∥∥t̃p,q,θn − f̃

∥∥∥
Lr

= Oθ

(
1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)

= Oθ

(
1

(n+ 1)2
ξ
(

π
n+1

)(
π
n+1

) ∫ π

π
n+1

dt

t2

)

= Oθ
(
ξ

(
π

n+ 1

))
.

�

4. Corollaries

Several corollaries can be derived from our main results. Let us see some of
them as follows. If we take pn = 1 for all n and θ = 1, then we obtain (note that
conditions (2.1) or (2.2) become simpler) the following corollary.

Corollary 4.1. Let (N, qn) be a regular Nörlund method of summability defined
by a positive sequence (qn). Let f : [0, 2π] −→ R be a 2π periodic function,
Lebesgue integrable, and belonging to the Lip(α, r), (r ≥ 1) class. If either (2.1)
or (2.2) holds true for pn = 1, then the degree of approximation of the function
f̃ by the (N, qn)(E, 1) transform

t̃NEn (x) =
1

Qn

n∑
k=0

qn−k
2k

k∑
v=0

(
k

v

)
s̃v(x)

of the partial sums s̃n(f, x) of the series (1.2) is given by the following estimation:∥∥∥t̃NEn − f̃
∥∥∥
Lr

= O
(
(n+ 1)−α

)
, 0 < α ≤ 1,

for all n ∈ {0, 1, 2, . . . }.

Corollary 4.2. Let (N, qn) be a regular Nörlund method of summability defined by
a positive generating sequence (qn) satisfying conditions (2.1) or (2.2) for pn = 1.
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Assume that ξ(t) is a modulus of continuity such that∫ v

0

ξ(t)

t
dt = O (ξ(v)) , 0 < v < π.

Let f : [0, 2π] −→ R be a 2π periodic function, Lebesgue integrable, and be-
longing to the Lip(ξ(t), r), (r ≥ 1) class. Then the degree of approximation of the
function f̃ by t̃NEn means of the partial sums s̃n(f, x) of the series (1.2) is given
by ∥∥∥t̃NEn − f̃

∥∥∥
Lr

= O

(
1

(n+ 1)2

∫ π

π
n+1

ξ(t)

t3
dt

)
for all n ∈ {0, 1, 2, . . . }.

Corollary 4.3. Let (N, pn, qn) be a regular Nörlund method of summability de-
fined by a positive generating sequence (pn) satisfying (1.4) or (1.5) and (3.1). Let
f : [0, 2π] −→ R be a 2π-periodic function, Lebesgue integrable, and belonging to
the Lip(ξ(t), r), (r ≥ 1) class, and let ξ(t)

t
be monotone decreasing in (π/(n+1), π).

Then the degree of approximation of the function f̃ by t̃NEn means of the partial
sums s̃n(f, x) of the series (1.2) is given by∥∥∥t̃NEn − f̃

∥∥∥
Lr

= O
(
ξ

(
π

n+ 1

))
,

for all n ∈ {0, 1, 2, . . . }.

5. conclusion

The theory of approximations is a very important field of study in many re-
searchers. In particular, the theory of trigonometric approximation is of great
mathematical interest and still receives considerable attention. In many prob-
lems, we encountered the determination of the degree of approximation of periodic
functions belonging to generalized Lipschitz classes using the product of matrix
operators. In this paper, we considered the product (N, pn, qn)(E, θ), which is
obtained by superimposing (E, θ) summability, (θ > 0, θ 6= 3), on (N, pn, qn)
summability, to determine the degree of approximation (under some special con-
ditions on the sequences {pn} and {qn}) of periodic functions belonging to gen-
eralized Lipschitz classes (Theorems 3.1, 3.3, and 3.4). These results, presented
here, are more general than those proved earlier by others, and from them, we
derived several new corollaries.

Acknowledgement. The authors are thankful to the anonymous referee for
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provements of this paper.
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