

ON PAIR OF GENERALIZED DERIVATIONS IN RINGS

ASMA ALI ${ }^{1 *}$ AND MD HAMIDUR RAHAMAN ${ }^{1}$

Communicated by B. Torrecillas

Abstract

Let R be an associative ring with extended centroid C, let G and F be generalized derivations of R associated with nonzero derivations δ and d, respectively, and let $m, k, n \geq 1$ be fixed integers. In the present paper, we study the situations: (i) $F(x) \circ_{m} G(y)=\left(x \circ_{n} y\right)^{k}$, (ii) $[F(x), y]_{m}+[x, d(y)]_{n}=0$ for all y, x in some appropriate subset of R.

1. Introduction

Throughout the present paper, R is always an associative ring with centre $Z(R), C$ is the extended centroid of R, and the Utumi quotient ring is denoted by U. For further information related to these concepts, we refer the reader to [2]. For any elements $x, y \in R,[x, y]$ and $x \circ y$ stand for the Lie commutator $x y-y x$ and the Jordan commutator $x y+y x$, respectively. Let $x, y \in R$, then we set $x \circ_{0} y=x$, $x \circ_{1} y=x \circ y=x y+y x$, and $x \circ_{m} y=\left(x \circ_{m-1} y\right) y+y\left(x \circ_{m-1} y\right)$ for $m \geqslant 2$. We also set $[x, y]_{0}=x$ and $[x, y]_{1}=x y-y x$. The Engel condition is a polynomial $[x, y]_{m}=[x, y]_{m-1} y-y[x, y]_{m-1}, m \geq 2$ in non-commuting indeterminates x and y. A ring R is said to satisfy the Engel condition if $[x, y]_{m}=0$ for some integer $m \geq 1$. Recall that a ring R is a prime ring if for each $y, x \in R, y R x=\{0\}$ implies that either $y=0$ or $x=0$ and R is a semiprime ring if for each $z \in R$, $z R z=\{0\}$ implies that $z=0$. Prime rings are always semiprime but the converse is not true in general.

In the present paper, we establish a relation within the structure of rings and the nature of suitable mappings that satisfy some certain identities. In particular, we discuss generalized derivations defined on a ring R. An additive map $d: R \rightarrow$

[^0]R is called a derivation of R if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In particular, if d can be written as $d(x)=[b, x]$ for some element $b \in R$, then d is called an inner derivation (determined by b). We use the notation I_{b} to denote the inner derivation determined by the element b. By a generalized inner derivation on R, we mean a self mapping F on R which is additive and for each $x \in R$ satisfies $F(x)=b x+x c$, where b, c are fixed elements in R. We can see that such a mapping F satisfies $F(x y)=x[c, y]+F(x) y=x I_{c}(y)+F(x) y$, where I_{c} denotes the inner derivation determined by the element c. This observation gives the following definition, which is given in [4]: An additive mapping $F: R \rightarrow R$ is said to be a generalized derivation if $F(z w)=F(z) w+z d(w)$ for all $w, z \in R$, where d stands for some derivation on R. Some homely instances of generalized derivations are generalized inner derivations, derivations, and left multipliers. We recall that a self additive mapping F of R is said to be a left multiplier if $F(a b)=F(a) b$ for all $b, a \in R$.

Argaç and Inceboz [1] showed that if a nonzero derivation d of a prime ring R satisfies $(d(x \circ y))^{k}=x \circ y$ for all $y, x \in I$, where I is a nonzero ideal of R and k is a fixed positive integer, then the ring is commutative. Further, Huang [9] proved that if U is a square closed Lie ideal of a prime ring R with the characteristic different from 2 and a generalized derivation F with associated derivation d on R satisfying $F(y) \circ d(x)=y \circ x$ for any $y, x \in U$, then either R is commutative or $d=0$.

Influence by the mentioned above results, we prove the following result.
Theorem 1.1. Let m, n, k be the fixed positive integers, and let I be a nonzero ideal of a prime ring R with characteristic different from 2. If R admits generalized derivations F and G with associated nonzero derivations d and δ, respectively, such that $F(x) \circ_{m} G(y)=\left(x \circ_{n} y\right)^{k}$ for all $x, y \in I$, then R is commutative.

Bell and Daif [3] initiated the concept of the term strong commutativity preserving (SCP) maps and showed the following: Let I be a nonzero right ideal of a semiprime ring R. If a derivation d of R satisfies $[d(x), d(y)]=[x, y]$ for all $y, x \in$ I, then I is central. Inspired by the work of Bell and Daif [3], Huang [10] proved the following: If I is a nonzero ideal of R, a prime ring having characteristic different from 2, which admits a nonzero derivation d satisfying $[d(x), d(y)]_{m}=[x, y]_{n}$ for any $y, x \in I$, for some fixed positive integers m, n, then R is commutative. Influence by these results, Dhara, Ali, and Pattanayak [6] showed the following: Let I a nonzero ideal of a 2-torsion free semiprime ring R that admits a generalized derivation F associated with derivation d such that $d(I) \neq\{0\}$. If $[d(y), F(x)]= \pm[y, x]$ holds for all $y, x \in I$, then R contains a central ideal that is nonzero.

Tendentious by the above results, we study the following condition: $[F(x), y]_{m}+$ $[x, d(y)]_{n}=0$ for any $y, x \in I$, where I is a nonzero ideal of R and F is a generalized derivation associated with the derivation d of R. Bluntly, we prove the following.

Theorem 1.2. Let m and n be fixed positive integers and let I be a nonzero ideal of a prime ring R with characteristic different from 2. If a generalized derivation
F with associated nonzero derivation d of R satisfies $[F(x), y]_{m}+[x, d(y)]_{n}=0$ for all $x, y \in I$, then R is commutative.

Theorem 1.3. Let m and n be fixed positive integers and let R be a semiprime ring with characteristic different from 2. If a generalized derivation F with associated nonzero derivation d of R satisfies $[F(x), y]_{m}=[x, d(y)]_{n}$ for all $x, y \in R$, then there exists an idempotent element e in U that is central such that the ring $(1-e) U$ is commutative and the derivation d vanishes identically on $e U$.

2. Main Results

We will use frequently the following important result due to Kharchenko [11]:
Let d be a nonzero derivation of a prime ring R and let I be a nonzero ideal of R. Let $g\left(z_{1}, \ldots, z_{n}, d\left(z_{1}\right), \ldots, d\left(z_{n}\right)\right)$ be a differential identity in I, that is,

$$
g\left(w_{1}, \ldots, w_{n}, d\left(w_{1}\right), \ldots, d\left(w_{n}\right)\right)=0 \text { for all } w_{1}, w_{2}, \ldots, w_{n} \in I
$$

Then one of the following holds:
(i) d is an inner in Q, where Q is a martingale ring of quotient of R, that is, d can be written as $d(x)=[p, x]$ for any $x \in R$ and for some $p \in Q$. Also we have

$$
g\left(w_{1}, \ldots, w_{n},\left[p, w_{1}\right], \ldots,\left[p, w_{n}\right]\right)=0 \quad \text { for any } w_{1}, \ldots, w_{n} \in I
$$

(ii) d is Q-outer and the following GPI is satisfied by I :

$$
g\left(w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{n}\right)=0
$$

Remark 2.1. Let I be an ideal of R. Then
(i) U, R, and I satisfy the same differential identities; see [13, Theorem 2].
(ii) U, R, and I satisfy the same GPI with coefficients in U; see [5, Theorem 2].

Remark 2.2. Let F be a generalized derivation defined on a dense right ideal of a semiprime ring R. Then F can be uniquely extended to U that takes the form $F(x)=a x+d(x)$, where d is a derivation on U and for some $a \in U$. Moreover, a and d are uniquely determined by the generalized derivation F; see [14, Theorem 4].

Proof of Theorem 1.1. By the hypotheses, we have

$$
\begin{equation*}
F(x) \circ_{m} G(y)=\left(x \circ_{n} y\right)^{k} \quad \text { for any } x, y \in I \tag{2.1}
\end{equation*}
$$

Now since R is a prime ring and F, G are generalized derivations of R, by Remark 2.2, $G(x)=b x+\delta(x)$ and $F(x)=a x+d(x)$ for some $b, a \in U$ and derivations δ, d on U. By Remark 2.1, we have

$$
\begin{equation*}
F(x) \circ_{m} G(y)=\left(x \circ_{n} y\right)^{k} \tag{2.2}
\end{equation*}
$$

for any $y, x \in U$. Hence

$$
\begin{equation*}
(a x+d(x)) \circ_{m}(b y+\delta(y))=\left(x \circ_{n} y\right)^{k} \quad \text { for any } y, x \in U \tag{2.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
a x \circ_{m} b y+d(x) \circ_{m} b y+a x \circ_{m} \delta(y)+d(x) \circ_{m} \delta(y)=\left(x \circ_{n} y\right)^{k} . \tag{2.4}
\end{equation*}
$$

Here the proof is divided into three cases:
Case 1 If both δ and d are inner derivations, then there exist elements q and $p \in U$, respectively, such that $d(x)=[q, x]$ and $\delta(x)=[p, x]$ for any $x \in U$. So, we have

$$
\begin{align*}
H(x, y)= & a x \circ_{m} b y+[q, x] \circ_{m} b y+a x \circ_{m}[p, y] \\
& +[q, x] \circ_{m}[p, y]-\left(x \circ_{n} y\right)^{k}=0 \quad \text { for any } y, x \in U . \tag{2.5}
\end{align*}
$$

If C is infinite, then $U \bigotimes_{C} \bar{C}$ satisfies (2.5), where \bar{C} stands for the algebraic closure of C. By [7], U and $U \bigotimes_{C} \bar{C}$ are centrally closed and prime. Therefore, we may replace R by $U \bigotimes_{C} \bar{C}$ or U according to C is infinite or finite. Thus we may assume that R is centrally closed over C, which is either algebraically closed and $H(x, y)=0$ for any $y, x \in R$ or finite. By the use of Martindale's theorem [7], R is a primitive ring with D as an associative division ring as well as R has nonzero $\operatorname{soc}(R)$. Also by the use of Jacobson's theorem [8], R and the dense ring of linear transformations for some vector space V over C are isomorphic, that is, $R \cong M_{k}(D)$, where $k=\operatorname{dim}_{D} V$. Assume that $\operatorname{dim}_{D} V \geqslant 2$, otherwise we are done. Also assume that there exists $v \in V$ such that $q v$ and v are linearly D-independent.

If $p v$ does not belong to the span of $\{v, q v\}$, then $\{v, p v, q v\}$ is linearly independent. By the density of ring R, there exist $y, x \in R$ such that

$$
\begin{equation*}
x v=0, \quad x q v=-v, \quad y p v=v, \quad x p v=0, \quad y v=0, \quad y q v=v . \tag{2.6}
\end{equation*}
$$

Multiplying equation (2.5) by v from right and using conditions in equation (2.6), we get $(-1)^{m-1} 2^{m-1} v=0$, a contradiction.

If $p v$ belongs to the span of $\{v, q v\}$, then $p=v \alpha+q v \beta$ for some $\alpha, 0 \neq \beta \in D$. Again by the density of ring R, there exist $y, x \in R$ such that

$$
\begin{equation*}
x v=0, \quad x q v=-v, \quad y q v=v, \quad y v=0 . \tag{2.7}
\end{equation*}
$$

Again multiplying equation (2.5) by v from right and using conditions in equations (2.7), we get $(-1)^{m-1} 2^{m-1} v \beta=0$, a contradiction.

Therefore, $\{v, q v\}$ is linearly dependent over D and hence $q \in Z(R)$, that is, $d=0$ which is a contradiction to our hypotheses. Similarly, we can show that $\delta=0$, which contradicts our hypotheses.
Case 2 Assume that both δ and d are not both inner derivations of U. let δ and d are C-linearly dependent modulo $D_{\text {int }}$. Let $\delta=a d(p)+\beta d$, for some $\beta \in C$, where $a d(p)$ is an inner derivation induced by the element $p \in U$. Observe that if either $\beta=0$ or d is inner, then δ is also inner which contradicts. So, $\beta \neq 0$ and d is not inner. Then by (2.3), we have

$$
(a x+d(x)) \circ_{m}(b y+\beta d(y)+[p, y])=\left(x \circ_{n} y\right)^{k} \quad \text { for any } y, x \in U
$$

that is,

$$
a x \circ_{m}(b y+\beta d(y)+[p, y])+d(x) \circ_{m}(b y+\beta d(y)+[p, y])=\left(x \circ_{n} y\right)^{k} .
$$

Then by the use of Kharchenko's theorem [11], we have

$$
a x \circ_{m}\left(b y+\beta y_{1}+[p, y]\right)+x_{1} \circ_{m}\left(b y+\beta y_{1}+[p, y]\right)=\left(x \circ_{n} y\right)^{k}
$$

for all $y, x, y_{1}, x_{1} \in I$. Setting $y=0=x$, we obtain

$$
\begin{equation*}
x_{1} \circ_{m} y_{1}=0 \tag{2.8}
\end{equation*}
$$

for all $y_{1}, x_{1} \in I$. By [5, Theorem 2], Q as well as R satisfies the polynomial identity $x_{1} \circ_{m} y_{1}=0$. By [12, Lemma 1], we have $R \subseteq M_{n}(F)$, the ring of $n \times n$ matrices over some field F, where $n \geq 1$. Also, $M_{n}(F)$ and R satisfy the same polynomial identity, that is, $x_{1} \circ_{m} y_{1}=0$, for any $y_{1}, x_{1} \in M_{n}(F)$. We use $e_{i j}$ to denote matrix unit with 1 in (i, j) th-entry and zero elsewhere. Taking $y_{1}=e_{11}$ and $x_{1}=e_{12}$, we see that $x_{1} \circ_{m} y_{1}=e_{12} \neq 0$, a contradiction.

The case when $d=a d(q)+\gamma \delta$ for some $\gamma \in C$ and $a d(q)$, an inner derivation induced by an element $q \in U$, is similar.
Case 3 Now assume that δ and d are C-linearly independent modulo $D_{\text {int }}$. Therefore, from (2.4), we have

$$
a x \circ_{m} b y+d(x) \circ_{m} b y+a x \circ_{m} \delta(y)+d(x) \circ_{m} \delta(y)=\left(x \circ_{n} y\right)^{k}
$$

for any $y, x \in U$. Then by the use of Kharchenko's theorem [11], we have

$$
a x \circ_{m} b y+z \circ_{m} b y+a x \circ_{m} w+z \circ_{m} w=\left(x \circ_{n} y\right)^{k}
$$

for any $w, z, y, x \in I$. Particularly, for $y=x=0$, we have

$$
\begin{equation*}
z \circ_{m} w=0 \tag{2.9}
\end{equation*}
$$

which is the same as equation (2.8). Therefore, by a similar argument as above, this leads that R is commutative. This finishes the proof of the theorem.

Now, we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. By hypotheses, we have

$$
\begin{equation*}
[F(x), y]_{m}+[x, d(y)]_{n}=0 \quad \text { for any } y, x \in I \tag{2.10}
\end{equation*}
$$

By Remark 2.1, we have

$$
\begin{equation*}
[F(x), y]_{m}+[x, d(y)]_{n}=0 \quad \text { for any } y, x \in U \tag{2.11}
\end{equation*}
$$

By Remark 2.2, it follows that $F(x)=a x+d(x)$ for some $a \in U$ and derivation d on U. Then we have

$$
\begin{equation*}
[a x+d(x), y]_{m}+[x, d(y)]_{n}=0 \quad \text { for any } y, x \in U \tag{2.12}
\end{equation*}
$$

That is,

$$
\begin{equation*}
[a x, y]_{m}+[d(x), y]_{m}+[x, d(y)]_{n}=0 \quad \text { for any } y, x \in U \tag{2.13}
\end{equation*}
$$

In the light of Kharchenko's theorem [11, Theorem 2], the proof is divided into two cases:
Case I Let d be an inner derivation of U, that is, $d(x)=[q, x]$ for any $x \in U$ and for some $q \in U$. Then

$$
\begin{equation*}
H(x, y)=[a x, y]_{m}+[[q, x], y]_{m}+[x,[q, y]]_{n}=0 \quad \text { for any } y, x \in U \tag{2.14}
\end{equation*}
$$

If C is infinite, then $U \bigotimes_{C} \bar{C}$ satisfies (2.14), where \bar{C} stands for the algebraic closure of C. By [7], U and $U \bigotimes_{C} \bar{C}$ are centrally closed and prime. Therefore,
we may replace R by $U \bigotimes_{C} \bar{C}$ or U according to C is infinite or finite. Thus we may assume that R is centrally closed over C, which is either algebraically closed and $H(x, y)=0$ for any $y, x \in R$ or finite. By the use of Martindale's theorem [7], R is a primitive ring with D as associative division ring as well as R has nonzero $\operatorname{soc}(R)$. Also by the use of Jacobson's theorem [8], R and the dense ring of linear transformations for some vector space V over C are isomorphic, that is, $R \cong M_{k}(D)$, where $k=\operatorname{dim}_{D} V$. Assume that $\operatorname{dim}_{D} V \geqslant 2$, otherwise we are done. Also assume that there exists $v \in V$ such that $q v$ and v are linearly D independent. Since $\operatorname{dim}_{D} V \geqslant 2$, it is possible to find $w \in V$ such that $\{w, q v, v\}$ is linearly independent over D. By the density of the ring R, we can find $y, x \in R$ such that

$$
\begin{equation*}
x v=0, \quad x q v=w, \quad y w=v, \quad x w=0, \quad y v=0, \quad y q v=v . \tag{2.15}
\end{equation*}
$$

Multiplying equation (2.14) by v from right and using conditions in equation (2.15), we get $v=0$, which is a contradiction to the linearly independent of the set $\{v, q v\}$. Therefore, $\{q v, v\}$ is linearly dependent and hence $q \in Z(R)$, that is, $d=0$, which is a contradiction to our hypotheses. Hence our assumption $\operatorname{dim}_{D} V \geqslant 2$ is wrong. Therefore, $\operatorname{dim}_{D} V=1$ and hence R is commutative.
Case II Let d be an outer derivation. Then

$$
\begin{equation*}
[a x, y]_{m}+[t, y]_{m}+[x, s]_{n}=0 \quad \text { for any } y, x, t, s \in I \tag{2.16}
\end{equation*}
$$

In particular, choosing $y=0$, we get $[x, s]_{n}=0$ for any $s, x \in I$, that is, $[x, s]_{m}=$ $0=\left[I_{x}(s)_{m-1}, s\right]$ for all $s, x \in I$. By [12, Theorem 1], either R is commutative or $I_{x}=\{0\}$, that is, $I \subseteq Z(R)$ that is R is commutative by Mayne [15].

Now we prove the last result.
Proof of Theorem 1.3. We know that any derivation defined on a semiprime ring R can be uniquely extended to a derivation on U, where U is a left Utumi ring of quotient of R, and hence every derivation of R can be defined on U; see [13, Lemma 2]. Also, U, R, and I satisfy the same generalized polynomial identity (GPI) and differential identities (see [5, 13]). By [14, Theorem 4], F can be expressed as $F(x)=d(x)+a x$ for some $a \in U$ and a derivation d defined on U. We have

$$
\begin{equation*}
[a x, y]_{m}+[d(x), y]_{m}+[x, d(y)]_{n}=0 \quad \text { for any } y, x \in U \tag{2.17}
\end{equation*}
$$

Let $M(C)=\{A \mid A$ is a maximal ideal of $C\}$ and let $P \in M(C)$. Then $P U$ is a prime ideal of U, which is invariant under all derivations of U by the theory of orthogonal completions of semiprime ring (see [13, pp. 31-32]). Also, $\bigcap\{P U \mid P \in M(C)\}=\{0\}$. Set $\bar{U}=U / P U$. Now any derivation d of R canonically induces a derivation \bar{d} on \bar{U} defined by $\bar{d}(\bar{x})=\overline{d(x)}$ for any $x \in \bar{U}$. Then

$$
[\bar{a} \bar{x}, \bar{y}]_{m}+[\overline{d(x)}, \bar{y}]_{m}+[\bar{x}, \overline{d(y)}]_{n}=0
$$

for all $\bar{y}, \bar{x} \in \bar{U}$. It is clear that \bar{U} is a prime ring. So by the use of Theorem 1.2, we have, either $[U, U] \subseteq P U$ or $d(U) \subseteq P U$ for any $P \in M(C)$. This gives that $d(U)[U, U] \subseteq P U$ for any $P \in M(C)$. Since $\bigcap\{P U \mid P \in M(C)\}=\{0\}$, we have $d(U)[U, U]=\{0\}$. Again using the standard theory of orthogonal completion of semiprime ring [2], it is obvious that there exists an element e that is a central
idempotent in U such that on the direct sum decomposition $U=e U \oplus(1-e) U$, such that d vanishes identically on $e U$ and the ring $(1-e) U$ is commutative.

The following examples demonstrate that R to be prime cannot be omitted in the hypotheses of Theorems 1.1 and 1.2.

Example 2.3. For any ring K with characteristic different from two, let $R=$ $\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right) \right\rvert\, x, y \in K\right\}$ and $I=\left\{\left.\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right) \right\rvert\, y \in K\right\}$. Then R is a ring under the usual addition and multiplication of matrices and I is a nonzero ideal of R. Define maps $F, G, d, \delta: R \rightarrow R$ by $F\left(\left(\begin{array}{cc}x & y \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}x & 2 y \\ 0 & 0\end{array}\right)$, $G\left(\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right), \delta\left(\left(\begin{array}{cc}x & y \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & -y \\ 0 & 0\end{array}\right)$, and $d\left(\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)\right)$ $=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$. Then F and G are generalized derivations on R associated with the nonzero derivations d and δ, respectively, satisfying $F(x) \circ_{m} G(y)=\left(x \circ_{n}\right.$ $y)^{k}$ for all $x, y \in I$. However R is not commutative. Hence Theorem 1.1 is not true for arbitrary rings.
Example 2.4. Let $R=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, y, z \in K\right\}$ and $I=\left\{\left.\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right) \right\rvert\,\right.$ $y \in K\}$, where K is a ring with characteristic different from two. Then R is a ring under the usual addition and multiplication of matrices and I is a nonzero ideal of R. Define maps $F, d: R \rightarrow R$ by $F\left(\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right)\right)=\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$ and $d\left(\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)\right)=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$. Then F is a generalized derivation on R associated with the nonzero derivation d satisfying $[F(x), y]_{m}+[x, d(y)]_{n}=0$ for all $x, y \in I$. However R is not commutative. Hence Theorem 1.2 does not hold for arbitrary rings.

References

1. N. Argaç and H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009) 997-1005.
2. K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, New York, 1996.
3. H.E. Bell and M.N. Daif, On commutativity and strong commutativity-preserving maps, Cand. Math. Bull. 37 (1994) 443-447.
4. M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 89-93.
5. C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728.
6. B. Dhara, S. Ali and A. Pattanayak, Identities with generalized derivations in semiprime rings, Demonstratio Math. 46 (2013) 453-460.
7. T. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63.
8. N. Jacobson, Structure of Rings, Colloq. Publ. 37, Amer. Math. Soc. Providence, RI, 1956.
9. S. Huang, Generalized derivations of prime rings, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 85612, 6 pp.
10. S. Huang, Derivations with Engel conditions in prime and semiprime rings, Czechoslovak Math. J. 61 (2011) 1135-1140.
11. V.K. Kharchenko, Differential identities of prime rings, (Russian) Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
12. C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993) 731-734.
13. T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin. 8 (1992) 27-38.
14. T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 (1999) 40574073.
15. J.H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984) 122-126.

1 Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.

E-mail address: asma_ali2@rediffmail.com, rahamanhamidmath@gmail.com

[^0]: Date: Submitted: 12 December 2018; Revised: 24 April 2019 ; Accepted: 15 October 2019.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 16W25; Secondary 16N60, 15A27.
 Key words and phrases. Prime rings, semiprime rings, generalized derivations, extended centroid.

