Khayyam J. Math. 6 (2020), no. 1, 104–107 DOI: 10.22034/kjm.2019.97176

ON THE NORM OF JORDAN *-DERIVATIONS

ABOLFAZL NIAZI MOTLAGH

Communicated by M. Ito

ABSTRACT. Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . Let $T \in B(\mathcal{H})$. In this paper, we determine the norm of the inner Jordan *-derivation $\Delta_T : X \mapsto TX - X^*T$ acting on the Banach algebra $B(\mathcal{H})$. More precisely, we show that

$$\left\|\Delta_T\right\| \ge 2 \sup_{\lambda \in W_0(T)} |\mathrm{Im}(\lambda)|$$

in which $W_0(T)$ is the maximal numerical range of operator T.

1. INTRODUCTION AND PRELIMINARIES

Let \mathfrak{A} be a *-algebra. A Jordan *-derivation on \mathfrak{A} is a linear mapping $E : \mathfrak{A} \longrightarrow \mathfrak{A}$ which satisfies

$$E(a^2) = aE(a) + E(a)a^*$$

for all $a \in \mathfrak{A}$. Note that for a fixed $a \in \mathfrak{A}$ the mapping $\Delta_a(x) = ax - x^*a$ is a Jordan *-derivation; such a Jordan *-derivation is said to be inner.

In [1, 4], we can see the following results:

- (1) Every Jordan *-derivation on complex *-algebra with identity is inner.
- (2) Every Jordan *-derivation on the algebra of all bounded linear operators on a real Hilbert space \mathcal{H} with dim $\mathcal{H} > 1$, is inner.
- (3) Every Jordan *-derivation on the quaternion algebra is inner.

Let \mathcal{H} be a complex infinite dimensional Hilbert space and let $B(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} . For operators $A, B \in B(\mathcal{H})$, we define the generalized Jordan *-derivation $\Delta_{A,B}$ by

$$\Delta_{A,B}(X) = AX - X^*B$$

Date: Received: 21 January 2019; Revised: 8 April 2019; Accepted: 9 April 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A20; Secondary 47B47.

Key words and phrases. Jordan*-derivation, numerical range, maximal numerical range.

for all $X \in B(\mathcal{H})$. Note that if A = B, then $\Delta_{A,A} = \Delta_A$ is a Jordan *-derivation.

The notion of numerical range (also called field of values) was firstly introduced by O. Toeplitz [6] in 1918 for matrices, but his definition applies equally well to operators on infinite dimensional Hilbert spaces.

The numerical range of $A \in B(\mathcal{H})$ is defined by $W(A) = \{\langle Ax, x \rangle : x \in \mathcal{H}, ||x|| = 1\}$ and the numerical radius of A is defined by $w(A) = \sup\{|\lambda| : \lambda \in W(A)\}$ where $\langle ., . \rangle$ and ||.|| stand, respectively, for the scalar product on \mathcal{H} and the norm associated with it. In [3], it was shown that $\overline{W(A)}$ is a compact convex subset of \mathbb{C} and that $\sigma(A) \subseteq \overline{W(A)}$, where $\sigma(A)$, the spectrum of A, consists of those complex numbers λ such that $A - \lambda I$ is not invertible. The spectral radius is given by $r(A) = \sup\{|\lambda| : \lambda \in \sigma(A)\}$. The relation between the numerical range and the spectrum of an operator has been studied by several mathematicians; see, for instance, [2, 3].

The concept of maximal numerical range was introduced by Stampfli [5] for proving the norm of a derivation.

Definition 1.1. Let A be a bounded linear operator on a complex Hilbert space \mathcal{H} . The maximal numerical range of A is defined to be the set

$$W_0(\mathbf{A}) = \{\lambda \in \mathbb{C} : \langle \mathbf{A}x_n, x_n \rangle \to \lambda, \text{ where } \|x_n\| = 1 \text{ and } \|\mathbf{A}x_n\| \to \|\mathbf{A}\|\}.$$

It was shown in [5, Lemma 2] that $W_0(A)$ is convex and is contained in the closure of W(A).

In the next section, we investigate the norm of an inner Jordan *-derivation $\Delta_T : X \mapsto TX - X^*T$ acting on $B(\mathcal{H})$. We show that

If
$$\lambda \in W_0(T)$$
, then $\|\Delta_T\| \ge 2(\|T\|^2 - |\lambda|^2)^{\frac{1}{2}}$.
 $\|\Delta_T\| \ge 2 \sup_{\lambda \in W_0(T)} |\operatorname{Im}(\lambda)|$.
 $\|\Delta_T\| = 2\|T\|$ if and only if $0 \in W_0(T)$.
If $i\|T\| \in W_0(T)$, then $\|\Delta_T\| = 2\|T\|$.

2. Main results

Using some techniques from [5], we have the following result.

Theorem 2.1. Let \mathcal{H} be a Hilbert space and let $T \in B(\mathcal{H})$. If $\lambda \in W_0(T)$, then $\|\Delta_T\| \ge 2(\|T\|^2 - |\lambda|^2)^{\frac{1}{2}}$.

Proof. Suppose that $\lambda \in W_0(T)$. Then there exists a sequence $\{x_n\} \subseteq \mathcal{H}$ such that $||x_n|| = 1$, $\lim_n ||Tx_n|| = ||T||$ and $\lim_n \langle Tx_n, x_n \rangle = \lambda$. Set $Tx_n = \alpha_n x_n + \beta_n y_n$ in which $\langle x_n, y_n \rangle = 0$ and $||y_n|| = 1$ for all $n \in \mathbb{N}$. Hence

$$|\langle Tx_n, x_n \rangle| = |\langle \alpha_n x_n + \beta_n y_n, x_n \rangle| = |\alpha_n| \longrightarrow \lambda.$$

Now for all $n \in \mathbb{N}$ define $V_n : \mathcal{H} \mapsto \mathcal{H}$ by $V_n(x_n) = x_n, V_n(y_n) = -y_n$ and $V_n\Big|_{span\{x_n, y_n\}^{\perp}} = 0$. It is easy to see that $V_n^* = V_n$ and

$$\begin{aligned} \left| \Delta_T(V_n)(x_n) \right\| &= \left\| (TV_n - V_n^*T)(x_n) \right\| \\ &= \left\| Tx_n - V_n^*(\alpha_n x_n + \beta_n y_n) \right\| \\ &= \left\| \alpha_n x_n + \beta_n y_n - \alpha_n x_n + \beta_n y_n \right\| \\ &= 2|\beta_n|. \end{aligned}$$

Since $0 \leq \lim_{n} (||T||^{2} - ||Tx_{n}||^{2}) = \lim_{n} (||T||^{2} - |\alpha_{n}|^{2} - |\beta_{n}|^{2}) = 0$, there exists a sequence $\{\varepsilon_{n}\} \subseteq \mathbb{R}^{+}$ such that $\varepsilon_{n} \to 0$ and $0 \leq (||T||^{2} - |\alpha_{n}|^{2})^{\frac{1}{2}} - |\beta_{n}| \leq \frac{1}{2}\varepsilon_{n}$. Using $|\alpha_{n}| \to \lambda$ and $||\Delta_{T}(V_{n})(x_{n})|| = 2|\beta_{n}| \geq 2(||T||^{2} - |\alpha_{n}|^{2})^{\frac{1}{2}} - \varepsilon_{n}$ implies that $||\Delta_{T}|| \geq 2(||T||^{2} - |\lambda|^{2})^{\frac{1}{2}}$.

Now, The following corollary shows the relation between the norm of Δ_T and the maximal numerical range.

Corollary 2.2. Let \mathcal{H} be a Hilbert space and let $T \in B(\mathcal{H})$. Then $||\Delta_T|| = 2||T||$ if and only if $0 \in W_0(T)$.

Proof. Let $0 \in W_0(T)$. By Theorem (2.1), we can conclude that $||\Delta_T|| \ge 2||T||$ and that the upper estimate $||\Delta_T|| \le 2||T||$ is trivial, so $||\Delta_T|| = 2||T||$.

Now, let $\|\Delta_T\| = 2\|T\|$. Then there exist sequences $\{x_n\} \subseteq \mathcal{H}$ and $A_n \subseteq B(\mathcal{H})$ such that $\|x_n\| = \|A_n\| = 1$ and $\|\Delta_T(A_n)(x_n)\| \to 2\|T\|$. Since $\lim_n \|A_nx_n\| = 1$, we have $\lim_n \|Tx_n\| = \|T\|$ and $\lim_n \|TA_nx_n\| = \|T\|$, $\lim_n \|A_n^*x_n\| = 1$.

Set $y_n = TA_n x_n + A_n^* T x_n$. Using the $\lim_n ||\Delta_T(A_n)(x_n)|| = 2||T||$ implies that $\lim_n ||y_n|| = 0$. Since T is a bounded operator, there exists a subsequence $\{x_{n_k}\}$ such that $\langle Tx_{n_k}, x_{n_k} \rangle$ is a convergence sequence. Therefore, without loss of generality, one can assume that $\lim_n \langle Tx_n, x_n \rangle = \lambda$; hence $\lambda \in W_0(T)$. On the other hand, $\lim_n \langle TA_n x_n, A_n x_n \rangle = -\lambda$ because

$$\langle TA_n x_n, A_n x_n \rangle = \langle -A_n^* T x_n + y_n, A_n x_n \rangle = -\langle A_n^* T x_n, A_n x_n \rangle + \langle y_n, A_n x_n \rangle = -\langle T x_n, A_n^2 x_n \rangle + \langle y_n, A_n x_n \rangle = -\langle T x_n, x_n \rangle + \langle T x_n, x_n - A_n^2 x_n \rangle + \langle y_n, A_n x_n \rangle.$$

The equality $\lim_{n \to \infty} \|A_n x_n\| = 0$ implies $\lim_{n \to \infty} \|x_n - A_n^2 x_n\| = 0$, and so

$$\lim_{n} \left\langle Tx_n, x_n - \mathcal{A}_n^2 x_n \right\rangle = 0, \lim_{n} \left\langle y_n, \mathcal{A}_n x_n \right\rangle = 0.$$

Hence, $\lim_n \langle TA_n x_n, A_n x_n \rangle = \lim_n - \langle Tx_n, x_n \rangle = -\lambda$, and therefore $-\lambda \in W_0(T)$. Since we have $-\lambda, \lambda \in W_0(T)$ and $W_0(T)$ is convex, $0 = \frac{1}{2}\lambda + \frac{1}{2}(-\lambda) \in W_0(T)$. \Box

In the following theorem, we give a lower bound for $\|\Delta_T\|$.

Theorem 2.3. Let \mathcal{H} be a Hilbert space and let $T \in B(\mathcal{H})$. Then

$$\left\|\Delta_T\right\| \ge 2 \sup_{\lambda \in W_0(T)} |\mathrm{Im}(\lambda)|.$$

Proof. Let $\lambda \in W_0(T)$. Then there exists a sequence $\{x_n\} \subseteq \mathcal{H}$ such that $||x_n|| = 1$, $\lim_n ||Tx_n|| = ||T||$ and $\lim_n \langle Tx_n, x_n \rangle = \lambda$. Hence,

$$\begin{aligned} \left\| \Delta_T \big(x_n \otimes T x_n \big) (x_n) \right\| &= \| T(x_n \otimes T x_n) (x_n) - (x_n \otimes T x_n)^* T(x_n) \| \\ &= \| T(x_n \otimes T x_n) (x_n) - (T x_n \otimes x_n) T(x_n) \| \\ &= \| T(\langle x_n, T x_n \rangle x_n) - \langle T x_n, x_n \rangle T x_n \| \\ &= \| \langle x_n, T x_n \rangle T x_n - \langle T x_n, x_n \rangle T x_n \| \\ &= | \langle x_n, T x_n \rangle - \langle T x_n, x_n \rangle | \| T x_n \|. \end{aligned}$$

But since

$$\left\|\Delta_T(x_n \otimes Tx_n)(x_n)\right\| \le \|T\| \left\|\Delta_T\right\|,$$

we have

$$\langle x_n, Tx_n \rangle - \langle Tx_n, x_n \rangle |||Tx_n|| \le ||T|| ||\Delta_T||.$$

Therefore

$$\lim_{n} |\langle x_n, Tx_n \rangle - \langle Tx_n, x_n \rangle| ||Tx_n|| \leq \lim_{n} ||T|| ||\Delta_T||$$

$$|\overline{\lambda} - \lambda| ||T|| \leq ||T|| ||\Delta_T||$$

$$|\overline{\lambda} - \lambda| \leq |||\Delta_T||$$

$$2|\operatorname{Im}(\lambda)| \leq |||\Delta_T||.$$

Then

$$\left\|\Delta_T\right\| \ge 2 \sup_{\lambda \in W_0(T)} |\mathrm{Im}(\lambda)|.$$

Corollary 2.4. If $i \|T\| \in W_0(T)$, where $i^2 = -1$, then $\|\Delta_T\| = 2\|T\|$.

References

- M. Brešar and B. Zalar, On the structure of Jordan *-derivations, Colloq. Math. 63 (1992), no. 2, 163–171.
- K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlag, New York, 1997.
- P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, Princeton-Toronto-London, 1967.
- 4. P. Šemrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990) 241–251.
- 5. J.G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970) 737–747.
- O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Z. 2 (1918) 187– 197.

DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF BOJNORD, P.O. BOX 1339, BOJNORD, IRAN.

E-mail address: a.niazi@ub.ac.ir; niazimotlagh@gmail.com