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ON THE NORM OF JORDAN ∗-DERIVATIONS

ABOLFAZL NIAZI MOTLAGH
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Abstract. Let H be a complex Hilbert space and let B(H) be the algebra of
all bounded linear operators onH. Let T ∈ B(H). In this paper, we determine
the norm of the inner Jordan ∗-derivation ∆T : X 7→ TX −X∗T acting on the
Banach algebra B(H). More precisely, we show that∥∥∆T

∥∥ ≥ 2 sup
λ∈W0(T )

|Im(λ)|

in which W0(T ) is the maximal numerical range of operator T .

1. Introduction and preliminaries

Let A be a ∗-algebra. A Jordan ∗-derivation on A is a linear mapping E :
A −→ A which satisfies

E(a2) = aE(a) + E(a)a∗

for all a ∈ A. Note that for a fixed a ∈ A the mapping ∆a(x) = ax − x∗a is a
Jordan ∗-derivation; such a Jordan ∗-derivation is said to be inner.

In [1, 4], we can see the following results:

(1) Every Jordan ∗-derivation on complex ∗-algebra with identity is inner.
(2) Every Jordan ∗-derivation on the algebra of all bounded linear operators

on a real Hilbert space H with dimH > 1, is inner.
(3) Every Jordan ∗-derivation on the quaternion algebra is inner.

Let H be a complex infinite dimensional Hilbert space and let B(H) be the
Banach algebra of all bounded linear operators onH. For operators A,B ∈ B(H),
we define the generalized Jordan ∗-derivation ∆A,B by

∆A,B(X) = AX −X∗B
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for all X ∈ B(H). Note that if A = B, then ∆A,A = ∆A is a Jordan ∗-derivation.
The notion of numerical range (also called field of values) was firstly introduced

by O. Toeplitz [6] in 1918 for matrices, but his definition applies equally well to
operators on infinite dimensional Hilbert spaces.

The numerical range of A ∈ B(H) is defined by W (A) = {
〈
Ax, x

〉
: x ∈

H, ‖x‖ = 1} and the numerical radius of A is defined by w(A) = sup{|λ| : λ ∈
W (A)} where

〈
., .
〉

and ‖.‖ stand, respectively, for the scalar product on H and

the norm associated with it. In [3], it was shown that W (A) is a compact convex

subset of C and that σ(A) ⊆ W (A), where σ(A), the spectrum of A, consists of
those complex numbers λ such that A−λI is not invertible. The spectral radius is
given by r(A) = sup{|λ| : λ ∈ σ(A)}. The relation between the numerical range
and the spectrum of an operator has been studied by several mathematicians;
see, for instance, [2, 3].

The concept of maximal numerical range was introduced by Stampfli [5] for
proving the norm of a derivation.

Definition 1.1. Let A be a bounded linear operator on a complex Hilbert space
H. The maximal numerical range of A is defined to be the set

W0(A) = {λ ∈ C :
〈
Axn, xn

〉
→ λ, where ‖xn‖ = 1 and ‖Axn‖ → ‖A‖}.

It was shown in [5, Lemma 2] that W0(A) is convex and is contained in the
closure of W (A).

In the next section, we investigate the norm of an inner Jordan ∗-derivation
∆T : X 7→ TX −X∗T acting on B(H). We show that

If λ ∈ W0(T ), then ‖∆T‖ ≥ 2(‖T‖2 − |λ|2) 1
2 .∥∥∆T

∥∥ ≥ 2 supλ∈W0(T ) |Im(λ)|.∥∥∆T

∥∥ = 2‖T‖ if and only if 0 ∈ W0(T ) .

If i‖T‖ ∈ W0(T ), then
∥∥∆T

∥∥ = 2‖T‖.

2. Main results

Using some techniques from [5], we have the following result.

Theorem 2.1. Let H be a Hilbert space and let T ∈ B(H). If λ ∈ W0(T ), then

‖∆T‖ ≥ 2(‖T‖2 − |λ|2) 1
2 .

Proof. Suppose that λ ∈ W0(T ). Then there exists a sequence {xn} ⊆ H such
that ‖xn‖ = 1, limn ‖Txn‖ = ‖T‖ and limn

〈
Txn, xn

〉
= λ. Set Txn = αnxn+βnyn

in which
〈
xn, yn

〉
= 0 and ‖yn‖ = 1 for all n ∈ N. Hence

|
〈
Txn, xn

〉
| = |

〈
αnxn + βnyn, xn

〉
| = |αn| −→ λ.
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Now for all n ∈ N define Vn : H 7→ H by Vn(xn) = xn, Vn(yn) = −yn and

Vn

∣∣∣
span{xn,yn}⊥

= 0. It is easy to see that V ∗n = Vn and∥∥∆T (Vn)(xn)
∥∥ =

∥∥(TVn − V ∗n T )(xn)
∥∥

=
∥∥Txn − V ∗n (αnxn + βnyn)

∥∥
=

∥∥αnxn + βnyn − αnxn + βnyn
∥∥

= 2|βn|.
Since 0 ≤ limn

(
‖T‖2 − ‖Txn‖2

)
= limn

(
‖T‖2 − |αn|2 − |βn|2

)
= 0, there exists

a sequence {εn} ⊆ R+ such that εn → 0 and 0 ≤ (‖T‖2 − |αn|2)
1
2 − |βn| ≤ 1

2
εn.

Using |αn| → λ and
∥∥∆T (Vn)(xn)

∥∥ = 2|βn| ≥ 2(‖T‖2 − |αn|2)
1
2 − εn implies that∥∥∆T

∥∥ ≥ 2(‖T‖2 − |λ|2) 1
2 . �

Now, The following corollary shows the relation between the norm of ∆T and
the maximal numerical range.

Corollary 2.2. Let H be a Hilbert space and let T ∈ B(H). Then
∥∥∆T

∥∥ = 2‖T‖
if and only if 0 ∈ W0(T ).

Proof. Let 0 ∈ W0(T ). By Theorem (2.1), we can conclude that
∥∥∆T

∥∥ ≥ 2‖T‖
and that the upper estimate

∥∥∆T

∥∥ ≤ 2‖T‖ is trivial, so
∥∥∆T

∥∥ = 2‖T‖.
Now, let

∥∥∆T

∥∥ = 2‖T‖. Then there exist sequences {xn} ⊆ H and An ⊆ B(H)

such that ‖xn‖ = ‖An‖ = 1 and
∥∥∆T (An)(xn)

∥∥→ 2‖T‖. Since limn ‖Anxn‖ = 1,
we have limn ‖Txn‖ = ‖T‖ and limn ‖TAnxn‖ = ‖T‖, limn ‖A∗nxn‖ = 1.

Set yn = TAnxn + A∗nTxn. Using the limn

∥∥∆T (An)(xn)
∥∥ = 2‖T‖ implies

that limn ‖yn‖ = 0. Since T is a bounded operator, there exists a subsequence
{xnk
} such that

〈
Txnk

, xnk

〉
is a convergence sequence. Therefore, without loss

of generality, one can assume that limn

〈
Txn, xn

〉
= λ; hence λ ∈ W0(T ). On the

other hand, limn

〈
TAnxn,Anxn

〉
= −λ because〈

TAnxn,Anxn
〉

=
〈
− A∗nTxn + yn,Anxn

〉
= −

〈
A∗nTxn,Anxn

〉
+
〈
yn,Anxn

〉
= −

〈
Txn,A

2
nxn

〉
+
〈
yn,Anxn

〉
= −

〈
Txn, xn

〉
+
〈
Txn, xn − A2

nxn
〉

+
〈
yn,Anxn

〉
.

The equality limn ‖Anxn‖ = 0 implies limn ‖xn − A2
nxn‖ = 0, and so

lim
n

〈
Txn, xn − A2

nxn
〉

= 0, lim
n

〈
yn,Anxn

〉
= 0.

Hence, limn

〈
TAnxn,Anxn

〉
= limn−

〈
Txn, xn

〉
= −λ, and therefore−λ ∈ W0(T ).

Since we have −λ, λ ∈ W0(T ) and W0(T ) is convex, 0 = 1
2
λ+ 1

2
(−λ) ∈ W0(T ). �

In the following theorem, we give a lower bound for
∥∥∆T

∥∥.

Theorem 2.3. Let H be a Hilbert space and let T ∈ B(H). Then∥∥∆T

∥∥ ≥ 2 sup
λ∈W0(T )

|Im(λ)|.
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Proof. Let λ ∈ W0(T ). Then there exists a sequence {xn} ⊆ H such that ‖xn‖ =
1, limn ‖Txn‖ = ‖T‖ and limn

〈
Txn, xn

〉
= λ. Hence,∥∥∆T

(
xn ⊗ Txn

)
(xn)

∥∥ = ‖T (xn ⊗ Txn)(xn)− (xn ⊗ Txn)∗T (xn)‖
= ‖T (xn ⊗ Txn)(xn)− (Txn ⊗ xn)T (xn)‖
= ‖T (〈xn, Txn〉xn)− 〈Txn, xn〉Txn‖
= ‖〈xn, Txn〉Txn − 〈Txn, xn〉Txn‖
= |〈xn, Txn〉 − 〈Txn, xn〉|‖Txn‖.

But since ∥∥∆T

(
xn ⊗ Txn

)
(xn)

∥∥ ≤ ‖T‖∥∥∆T

∥∥,
we have

|〈xn, Txn〉 − 〈Txn, xn〉|‖Txn‖ ≤ ‖T‖
∥∥∆T

∥∥.
Therefore

lim
n
|〈xn, Txn〉 − 〈Txn, xn〉|‖Txn‖ ≤ lim

n
‖T‖

∥∥∆T

∥∥
|λ− λ|‖T‖ ≤ ‖T‖

∥∥∆T

∥∥
|λ− λ| ≤ ‖

∥∥∆T

∥∥
2|Im(λ)| ≤ ‖

∥∥∆T

∥∥.
Then ∥∥∆T

∥∥ ≥ 2 sup
λ∈W0(T )

|Im(λ)|.

�

Corollary 2.4. If i‖T‖ ∈ W0(T ), where i2 = −1, then
∥∥∆T

∥∥ = 2‖T‖.
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1. M. Brešar and B. Zalar, On the structure of Jordan ∗-derivations, Colloq. Math. 63 (1992),
no. 2, 163–171.

2. K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Opera-
tors and Matrices, Springer-Verlag, New York, 1997.

3. P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, Princeton-Toronto-London,
1967.
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