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ON JENSEN’S MULTIPLICATIVE INEQUALITY FOR
POSITIVE CONVEX FUNCTIONS OF SELFADJOINT

OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1

Communicated by H.R. Ebrahimi Vishki

Abstract. We obtain some multiplicative refinements and reverses of Jensen’s
inequality for positive convex/concave functions of selfadjoint operators in
Hilbert spaces. Natural applications for power and exponential functions are
provided.

1. Introduction

The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1],
then

a1−νbν ≤ (1− ν) a+ νb (1.1)

with equality if and only if a = b. Inequality (1.1) is also called ν-weighted
arithmetic-geometric mean inequality.

We recall that Specht’s ratio is defined by [12]

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

(1.2)

It is well known that limh→1 S (h) = 1, S (h) = S
(

1
h

)
> 1 for h > 0, h 6= 1. The

function is decreasing on (0, 1) and increasing on (1,∞) .
The following inequality is due to Tominaga [13] and provides a multiplicative

reverse for Young’s inequality
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(1− ν) a+ νb ≤ S
(a
b

)
a1−νbν , (1.3)

where a, b > 0, ν ∈ [0, 1].
We consider Kantorovich’s constant defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (1.4)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for
any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative reverse of Young inequality in terms of Kan-
torovich’s constant has been obtained by Liao, Wu, and Zhao [8]

(1− ν) a+ νb ≤ KR
(a
b

)
a1−νbν , (1.5)

where a, b > 0, ν ∈ [0, 1], and R = max {1− ν, ν} .
The following result that provides a vector operator version for the Jensen

inequality is well known, see, for instance, [10] or [11, p. 5]:

Theorem 1.1. Let A be a selfadjoint operator on the Hilbert space H, and assume
that Sp (A) ⊆ [m,M ] for some scalars m and M with m < M. If f is a convex
function on [m,M ] , then

f (〈Ax, x〉) ≤ 〈f (A)x, x〉 (1.6)

for each x ∈ H with ‖x‖ = 1.

As a special case of Theorem 1.1, we have the Hölder-McCarthy inequality [9]:
Let A be a selfadjoint positive operator on a Hilbert space H; then

(i) 〈Arx, x〉 ≥ 〈Ax, x〉r for all r > 1 and x ∈ H with ‖x‖ = 1;
(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for all 0 < r < 1 and x ∈ H with ‖x‖ = 1;
(iii) if A is invertible, then 〈Arx, x〉 ≥ 〈Ax, x〉r for all r < 0 and x ∈ H with
‖x‖ = 1.

In [2] (see also [3, p. 16]) we obtained the following additive reverse of (1.6):

Theorem 1.2. Let I be an interval and let f : I → R be a convex and differen-
tiable function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊ . If

A is a selfadjoint operator on the Hilbert space H with Sp (A) ⊂ I̊ , then

(0 ≤) 〈f (A)x, x〉 − f (〈Ax, x〉) ≤ 〈f ′ (A)Ax, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉 (1.7)

for any x ∈ H with ‖x‖ = 1.

This is a generalization of the scalar discrete inequality obtained in [7]. For
other reverse inequalities of this type see [3, p. 16].

Motivated by the above results, in this paper, we obtain some multiplicative
refinements and reverses of Jensen’s inequality for positive convex or concave
functions of selfadjoint operators in Hilbert spaces. Natural applications for power
and exponential functions are provided.
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2. Refinements

We have the following theorem.

Theorem 2.1. Let f : I → [0,∞) be continuous on the interval I, and assume
that for some ν ∈ (0, 1) the function f ν is convex on I. Then f is convex on I
and we have the inequality

f (〈Ax, x〉) ≤ f 1−ν (〈Ax, x〉) 〈f ν (A)x, x〉 ≤ 〈f (A)x, x〉 , (2.1)

where A is a selfadjoint operator with Sp (A) ⊂ I and x ∈ H with ‖x‖ = 1.

Proof. Let t, s ∈ I and let λ ∈ [0, 1] . Since f ν is convex on I, then

f ν ((1− λ) t+ λs) ≤ (1− λ) f ν (t) + λf ν (s)

and by taking the power 1
ν
> 1 and using the convexity of power function g (t) = tr

with exponent r = 1
ν
> 1, we have

f ((1− λ) t+ λs) ≤ [(1− λ) f ν (t) + λf ν (s)]
1
ν

≤ (1− λ) (f ν (t))
1
ν + λ (f ν (s))

1
ν = (1− λ) f (t) + λf (s) ,

which proves the convexity of f on I.
Now by Hölder–McCarthy inequality, we have for any x ∈ H with ‖x‖ = 1

〈f ν (A)x, x〉 ≤ 〈f (A)x, x〉ν

and by Young’s inequality we have

f 1−ν (〈Ax, x〉) 〈f ν (A)x, x〉 ≤ f 1−ν (〈Ax, x〉) 〈f (A)x, x〉ν (2.2)

≤ (1− ν) f (〈Ax, x〉) + ν 〈f (A)x, x〉

for any x ∈ H with ‖x‖ = 1.
The last inequality follows now by Jensen’s inequality for the convex function

f.
Applying Jensen’s inequality for the convex function f ν , we also have

f ν (〈Ax, x〉) ≤ 〈f ν (A)x, x〉 ,
which implies that

f (〈Ax, x〉) = f 1−ν (〈Ax, x〉) f ν (〈Ax, x〉) ≤ f 1−ν (〈Ax, x〉) 〈f ν (A)x, x〉
that proves the first inequality in (2.1). �

The case of concave functions is as follows.

Theorem 2.2. Let f : I → [0,∞) be continuous and concave on the interval
I. Then for any ν ∈ (0, 1), the function f ν is concave on I and we have the
inequality 〈

f 1/2 (A)x, x
〉2 ≤

〈
f 1−ν (A)x, x

〉
〈f ν (A)x, x〉 (2.3)

≤ f 1−ν (〈Ax, x〉) 〈f ν (A)x, x〉 ≤ f (〈Ax, x〉) ,

where A is a selfadjoint operator with Sp (A) ⊂ I and x ∈ H with ‖x‖ = 1.
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Proof. From (2.2) and the concavity of f ,we have

f 1−ν (〈Ax, x〉) 〈f ν (A)x, x〉 ≤ f 1−ν (〈Ax, x〉) 〈f (A)x, x〉ν

≤ (1− ν) f (〈Ax, x〉) + ν 〈f (A)x, x〉
≤ f (〈Ax, x〉)

for any ν ∈ (0, 1) and x ∈ H with ‖x‖ = 1, that proves the last part of (2.3).
Now, let t, s ∈ I and λ ∈ [0, 1] . Since f is concave on I, then

f ((1− λ) t+ λs) ≥ (1− λ) f (t) + λf (s) .

By taking the power ν ∈ (0, 1) and using the concavity of power function g (t) = tr

for the exponent r = ν ∈ (0, 1), we have

f ν ((1− λ) t+ λs) ≥ ((1− λ) f (t) + λf (s))ν ≥ (1− λ) f ν (t) + λf ν (s)

that shows that f ν is concave on I.
Applying Jensen’s inequality for the concave function f 1−ν , we have〈

f 1−ν (A)x, x
〉
≤ f 1−ν (〈Ax, x〉)

for x ∈ H with ‖x‖ = 1, that proves the second inequality in (2.3).
Now, by using the Schwarz type inequality for continuous functions of selfad-

joint operators

〈g (A)h (A)x, x〉2 ≤
〈
g2 (A)x, x

〉 〈
h2 (A)x, x

〉
for x ∈ H with ‖x‖ = 1, then by choosing g = f

1−ν
2 and h = f

ν
2 , we get the first

inequality in (2.3). �

3. Upper bounds

The following reverse inequalities also hold.

Theorem 3.1. Let f : [m,M ] → [0,∞) be a continuous function, and assume
that

0 < γ = min
t∈[m,M ]

f (t) < max
t∈[m,M ]

f (t) = Γ <∞. (3.1)

Then for any A, a selfadjoint operator with

m1H ≤ A ≤M1H , (3.2)

we have the inequality

(1− ν) f (〈Ax, x〉) + ν 〈f (A)x, x〉 ≤ S

(
Γ

γ

)
〈f ν (A)x, x〉 f 1−ν (〈Ax, x〉) (3.3)

for any x ∈ H with ‖x‖ = 1, where ν ∈ [0, 1] .
Moreover, if f is convex on [m,M ], then

f ν (〈Ax, x〉) ≤ S

(
Γ

γ

)
〈f ν (A)x, x〉 (3.4)

while, if f is concave on [m,M ] , then

〈f (A)x, x〉 ≤ S

(
Γ

γ

)
〈f ν (A)x, x〉 f 1−ν (〈Ax, x〉) (3.5)
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for any x ∈ H with ‖x‖ = 1.

Proof. By Tominaga’s inequality, we have

(1− ν) + νs ≤ S (s) sν

for any s > 0 and ν ∈ [0, 1] .

If s ∈
[
γ
Γ
, Γ
γ

]
, then

(1− ν) + νs ≤ S (s) sν ≤ sν max
s∈[ γΓ ,

Γ
γ ]
S (s) = S

(
Γ

γ

)
sν , (3.6)

and since for any t ∈ [m,M ] and x ∈ H with ‖x‖ = 1, we have

f (t)

f (〈Ax, x〉)
∈
[
γ

Γ
,
Γ

γ

]
.

Hence by (3.6), we get

(1− ν) f (〈Ax, x〉) + νf (t) ≤ S

(
Γ

γ

)
f ν (t) f 1−ν (〈Ax, x〉) (3.7)

for any t ∈ [m,M ] and x ∈ H with ‖x‖ = 1.
If we use the functional calculus for the operator A, we have by (3.7) that

(1− ν) f (〈Ax, x〉) + νf (A) ≤ S

(
Γ

γ

)
f ν (A) f 1−ν (〈Ax, x〉) (3.8)

for any x ∈ H with ‖x‖ = 1.
If we take the inner product over y ∈ H with ‖y‖ = 1 in (3.8), then we get

(1− ν) f (〈Ax, x〉) + ν 〈f (A) y, y〉 ≤ S

(
Γ

γ

)
〈f ν (A) y, y〉 f 1−ν (〈Ax, x〉)

that for y = x we get the desired inequality.
If f is convex, then

f (〈Ax, x〉) ≤ 〈f (A)x, x〉
for any x ∈ H with ‖x‖ = 1, then by (3.3) we get

f (〈Ax, x〉) ≤ S

(
Γ

γ

)
〈f ν (A)x, x〉 f 1−ν (〈Ax, x〉)

for any x ∈ H with ‖x‖ = 1, which is equivalent to (3.4).
If f is concave, then

〈f (A)x, x〉 ≤ f (〈Ax, x〉)
and by (3.3), we get (3.5). �

Remark 3.2. If for some ν ∈ (0, 1) the function f ν is convex on [m,M ], then
according to Theorem 2.1, f is convex on I and inequality (3.4) is trivially satisfied

since S
(

Γ
γ

)
≥ 1.
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If f is convex on I and for some ν ∈ (0, 1) the function f ν is concave on [m,M ] ,
then from (3.4), we have the meaningful inequality

1 ≤ f ν (〈Ax, x〉)
〈f ν (A)x, x〉

≤ S

(
Γ

γ

)
(3.9)

for any x ∈ H with ‖x‖ = 1.
Inequality (3.5) can be written in equivalent form as

〈f (A)x, x〉
f (〈Ax, x〉)

≤ S

(
Γ

γ

)
〈f ν (A)x, x〉
f ν (〈Ax, x〉)

(3.10)

for any x ∈ H with ‖x‖ = 1.

We also have the following result.

Theorem 3.3. With the assumptions of Theorem 3.1, we have the inequality

(1− ν) f (〈Ax, x〉)+ν 〈f (A)x, x〉 ≤ KR

(
Γ

γ

)
〈f ν (A)x, x〉 f 1−ν (〈Ax, x〉) (3.11)

for any x ∈ H with ‖x‖ = 1, where ν ∈ [0, 1] and R = max {ν, 1− ν} .
Moreover, if f is convex on [m,M ], then

f ν (〈Ax, x〉)
〈f ν (A)x, x〉

≤ KR

(
Γ

γ

)
(3.12)

while, if f is concave on [m,M ] , then

〈f (A)x, x〉
f (〈Ax, x〉)

≤ KR

(
Γ

γ

)
〈f ν (A)x, x〉
f ν (〈Ax, x〉)

(3.13)

for any x ∈ H with ‖x‖ = 1.

Proof. By inequality (1.5), we have

(1− ν) + νs ≤ KR (s) sν

for any s > 0 and ν ∈ [0, 1] .

If s ∈
[
γ
Γ
, Γ
γ

]
, then

(1− ν) + νs ≤ S (s) sν ≤ sν max
s∈[ γΓ ,

Γ
γ ]
KR (s) = KR

(
Γ

γ

)
sν (3.14)

and since, for any t ∈ [m,M ] and x ∈ H with ‖x‖ = 1, we have

f (t)

f (〈Ax, x〉)
∈
[
γ

Γ
,
Γ

γ

]
.

Hence by (3.14), we get

(1− ν) f (〈Ax, x〉) + νf (t) ≤ KR

(
Γ

γ

)
f ν (t) f 1−ν (〈Ax, x〉)

for any t ∈ [m,M ] and x ∈ H with ‖x‖ = 1.
Now the proof goes along the lines of the proof in Theorem 3.1 and we omit

the details. �
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In the recent paper [6], the author obtained the following reverse of Young’s
inequality:

(1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]
, (3.15)

for any a, b > 0 and ν ∈ [0, 1] , where K is Kantorovich’s constant defined in
(1.4).

If a, b ∈ [m,M ] , then by the properties of K, we have the upper bound:

(1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K

(
M

m

)
− 1

)]
(3.16)

for any and ν ∈ [0, 1] .
Using a similar argument as in Theorem 2.1 and inequality (3.16) we can also

state the following result.

Theorem 3.4. With the assumptions of Theorem 3.1, we have the inequality

(1− ν) f (〈Ax, x〉) + ν 〈f (A)x, x〉 (3.17)

≤ exp

[
4ν (1− ν)

(
K

(
Γ

γ

)
− 1

)]
〈f ν (A)x, x〉 f 1−ν (〈Ax, x〉)

for any x ∈ H with ‖x‖ = 1, where ν ∈ [0, 1] .
Moreover, if f is convex on [m,M ], then

f ν (〈Ax, x〉)
〈f ν (A)x, x〉

≤ exp

[
4ν (1− ν)

(
K

(
Γ

γ

)
− 1

)]
(3.18)

while, if f is concave on [m,M ] , then

〈f (A)x, x〉
f (〈Ax, x〉)

≤ exp

[
4ν (1− ν)

(
K

(
Γ

γ

)
− 1

)]
〈f ν (A)x, x〉
f ν (〈Ax, x〉)

(3.19)

for any x ∈ H with ‖x‖ = 1.

The proof follows as above, however the details are not presented here.
The interested reader may establish similar results by employing the following

multiplicative reverses of Young inequalities.

Lemma 3.5 ([4]). If a, b ∈ [γ,Γ] ⊂ (0,∞) and ν ∈ [0, 1] , then we have

(1− ν) a+ νb

a1−νbν
≤ max {κγ,Γ (ν) , κγ,Γ (1− ν)} , (3.20)

where

κγ,Γ (ν) :=
(1− ν) γ + νΓ

γ1−νΓν
. (3.21)

Also the following result holds.

Lemma 3.6 ([5]). If a, b ∈ [γ,Γ] ⊂ (0,∞) and ν ∈ [0, 1] , then we have

(1− ν) a+ νb

a1−νbν
≤ exp

[
1

2
ν (1− ν)

(
Γ

γ
− 1

)2
]
. (3.22)

Inequality (3.22) can also be obtained from inequality (2.9) from the paper [1].
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4. Some examples

Now, let ν ∈ (0, 1) and let r ≥ 1
ν
> 1. Consider the function f : [0,∞)→ [0,∞)

defined by f (t) = tr. Then the function f ν is convex on [0,∞), and if A is a
positive operator on the Hilbert space H, then by inequality (2.1) we have the
following refinement of Hölder–McCarthy inequality

〈Ax, x〉r ≤ 〈Ax, x〉(1−ν)r 〈Aνrx, x〉 ≤ 〈Arx, x〉 , (4.1)

for any x ∈ H with ‖x‖ = 1.
If r ≥ 2, then by (4.1), we have

〈Ax, x〉r ≤ 〈Ax, x〉r/2
〈
Ar/2x, x

〉
≤ 〈Arx, x〉 , (4.2)

for any x ∈ H with ‖x‖ = 1.
Let ν ∈ (0, 1) and let α ∈ R. Consider the function f (t) = exp (αt) , t ∈ R.

Then the function f ν (t) = exp (ναt) is convex on R, and for any selfadjoint
operator A on H we have

exp (α 〈Ax, x〉) ≤ exp ((1− ν)α 〈Ax, x〉) 〈exp (ναA)x, x〉 ≤ 〈exp (αA)x, x〉
(4.3)

for any x ∈ H with ‖x‖ = 1.
For α = 1, we get

exp (〈Ax, x〉) ≤ exp ((1− ν) 〈Ax, x〉) 〈exp (νA)x, x〉 ≤ 〈exp (A)x, x〉 (4.4)

for any x ∈ H with ‖x‖ = 1 and ν ∈ (0, 1) .
Consider q ∈ (0, 1) ; then the function f (t) = tq is concave on [0,∞), and if A

is a positive operator on the Hilbert space H, then by inequality (2.3) we have〈
Aq/2x, x

〉2 ≤
〈
A(1−ν)qx, x

〉
〈Aνqx, x〉 ≤ 〈Ax, x〉(1−ν)q 〈Aνqx, x〉 (4.5)

≤ 〈Ax, x〉q

for any x ∈ H with ‖x‖ = 1.
If we take in (4.5) q → 1, q < 1, we get〈

A1/2x, x
〉2 ≤

〈
A1−νx, x

〉
〈Aνx, x〉 ≤ 〈Ax, x〉1−ν 〈Aνx, x〉 (4.6)

≤ 〈Ax, x〉
for any x ∈ H with ‖x‖ = 1.

The function f (t) = ln (t+ 1) is positive concave on [0,∞), and if A is a
positive operator on the Hilbert space H, then by inequality (2.3), we have〈√

ln (A+ 1H)x, x
〉2

≤
〈

ln
1−ν

(A+ 1H)x, x
〉
〈lnν (A+ 1H)x, x〉 (4.7)

≤ ln1−ν (〈Ax, x〉+ 1) 〈lnν (A+ 1H)x, x〉
≤ ln (〈Ax, x〉+ 1)

for any x ∈ H with ‖x‖ = 1 and ν ∈ (0, 1) .
Consider the function f : R→ (0,∞) , f (t) = exp

(
−1

2
t2
)
. Then

f ′ (t) = −t exp

(
−1

2
t2
)

and f ′′ (t) = exp

(
−1

2
t2
)(

t2 − 1
)
,
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which shows that the function is concave on [−1, 1] .
Now, if A is selfadjoint and −1H ≤ A ≤ 1H , then by (2.3) we have that〈

exp

(
−1

4
A2

)
x, x

〉2

(4.8)

≤
〈

exp

(
−1

2
(1− ν)A2

)
x, x

〉〈
exp

(
−1

2
νA2

)
x, x

〉
≤ exp

(
−1

2
(1− ν) 〈Ax, x〉2

)〈
exp

(
−1

2
νA2

)
x, x

〉
≤ exp

(
−1

2
〈Ax, x〉2

)
for any x ∈ H with ‖x‖ = 1.

Now, let ν ∈ (0, 1) and let 1
ν
> r ≥ 1. Consider the function f : [0,∞)→ [0,∞)

defined by f (t) = tr. Then f is convex while the function f ν is concave on [0,∞),
and if A is a positive operator on the Hilbert space H satisfying condition (3.2),
then by taking γ = mr and Γ = M r in (3.9) we get

1 ≤ 〈Ax, x〉
rν

〈Arνx, x〉
≤ S

((
M

m

)r)
(4.9)

for any x ∈ H with ‖x‖ = 1, where ν ∈ (0, 1) and 1
ν
> r ≥ 1.

If we take r = 1 in (4.9), then we get

1 ≤ 〈Ax, x〉
ν

〈Aνx, x〉
≤ S

(
M

m

)
(4.10)

for any x ∈ H with ‖x‖ = 1 and ν ∈ (0, 1) .
Consider q ∈ (0, 1) , then the function f (t) = tq is concave on [0,∞) and if A

is a positive operator on the Hilbert space H satisfying condition (3.2), then by
taking γ = mq and Γ = M q in (3.5), we get

〈Aqx, x〉 ≤ S

((
M

m

)q)
〈Aνqx, x〉 〈Ax, x〉(1−ν)q (4.11)

for any x ∈ H with ‖x‖ = 1 and ν ∈ (0, 1) .
This inequality can be written in the equivalent form as

〈Aqx, x〉
〈Ax, x〉q

≤ S

((
M

m

)q) 〈Aνqx, x〉
〈Ax, x〉νq

(4.12)

for any x ∈ H with ‖x‖ = 1 and ν ∈ (0, 1) .
Consider the function f (t) = exp

(
−1

2
t2
)

on the concavity interval [−1, 1] . We
have that

max
t∈[−1,1]

f (t) = f (0) = 1 and min
t∈[−1,1]

f (t) = f (±1) = exp

(
−1

2

)
.

If A is selfadjoint and −1H ≤ A ≤ 1H , then by inequality (3.10), we have〈
exp

(
−1

2
A2
)
x, x
〉

exp
(
−1

2
〈Ax, x〉2

) ≤ S

(
exp

(
1

2

)) 〈
exp

(
−1

2
νA2

)
x, x
〉

exp
(
−1

2
ν 〈Ax, x〉2

) (4.13)
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for any x ∈ H with ‖x‖ = 1.
If A is a positive operator on the Hilbert space H satisfying the condition (3.2),

then by (3.12) we get

1 ≤ 〈Ax, x〉
rν

〈Arνx, x〉
≤ KR

((
M

m

)r)
(4.14)

for any x ∈ H with ‖x‖ = 1, where ν ∈ (0, 1) with 1
ν
> r ≥ 1 and R =

max {ν, 1− ν} .
From (3.13), we have

〈Aqx, x〉
〈Ax, x〉q

≤ KR

((
M

m

)q) 〈Aνqx, x〉
〈Ax, x〉νq

, (4.15)

where q ∈ (0, 1), ν ∈ (0, 1) and R = max {ν, 1− ν} .
If A is selfadjoint and −1H ≤ A ≤ 1H , then by inequality (3.13), we have〈

exp
(
−1

2
A2
)
x, x
〉

exp
(
−1

2
〈Ax, x〉2

) ≤ KR

(
exp

(
1

2

)) 〈
exp

(
−1

2
νA2

)
x, x
〉

exp
(
−1

2
ν 〈Ax, x〉2

) (4.16)

for any x ∈ H with ‖x‖ = 1, where ν ∈ (0, 1) and R = max {ν, 1− ν} .
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